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Abstract – We perform Brownian dynamics simulations of molecular motor-induced ordering
and structure formations in semi-dilute cytoskeletal filament solutions. In contrast to the
previously studied dilute case where binary filament interactions prevail, the semi-dilute regime is
characterized by multiple motor-mediated interactions. Moreover, the forces and torques exerted
by motors on filaments are intrinsically fluctuating quantities. We incorporate the influences of
thermal and motor fluctuations into our model as additive and multiplicative noises, respectively.
Numerical simulations reveal that filament bundles and vortices emerge from a disordered initial
state. Subsequent analysis of motor noise effects reveals: i) Pattern formation is very robust against
fluctuations in motor force; ii) bundle formation is associated with a significant reduction of the
motor fluctuation contributions; iii) the time scale of vortex formation and coalescence decreases
with increases in motor noise amplitude.

Copyright c© EPLA, 2010

Introduction. – The dynamics and structural prop-
erties of out-of-equilibrium complex liquids, such as the
cytoplasm of living cells, pose formidable challenges for
fundamental physics and biology research. Moreover, the
ability to predict and orchestrate self-assembly of biologi-
cal filaments into desired microstructures is an important
requirement for further development of hybrid biome-
chanical systems. Recently, pattern formation and intrin-
sic nonequilibrium dynamics in the cytoskeleton have
been investigated both experimentally [1–9] and theoret-
ically [10–18]. The main components of the cytoskeleton
are protein filaments (rigid microtubules and semiflexible
actin filaments), associated molecular motors (e.g. various
types of kinesin or dynein motors for microtubules, myosin
minifilaments for actin [19]), and the energy agent Adeno-
sine Triphosphate (ATP). The chemical energy of ATP,
converted by molecular motors into mechanical energy,
enables motors to march on filaments and exert forces and
torques that reorganize the filament networks.

(a)E-mail: sumanthswaminathan2010@u.northwestern.edu

A transition to a locally ordered state with a nonzero
mean filament orientation – the isotropic-polar transi-
tion – occurs when a combination of motor and fila-
ment densities surpasses a certain threshold; the struc-
tures found experimentally in cytoskeletal solutions, like
bundles, asters, and vortices, can be interpreted as the
result of this ordering transition [13]. In the dilute limit,
binary interaction models have proven efficient in describ-
ing the qualitative effects of motors on filament self-
organization [13,20–22]. However, when the number of
filaments per volume is larger than 1/Ld, with L the fila-
ment length and d the spatial dimension, the semi-dilute
regime is reached [23]. In this region, binary interaction
models are insufficient because motors can bind a fila-
ment to several other filaments. Alternative macroscopic
(hydrodynamic) models have been formulated [11,24] to
study such systems, but they do not demonstrate a suffi-
cient connection between the phenomenological parame-
ters and the underlying microscopic mechanisms. More-
over, the validity of taking a macroscopic approach is in
question as there is no rigorous scale separation between
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the size of the elementary object (filament) and the scale
of the pattern.
In this study, we bridge the gap by formulating a model

for the spatially inhomogeneous semi-dilute regime.
A model for the spatially homogeneous case has been pro-
posed and studied in ref. [25]. There, the authors show that
an isotropic-polar transition can be either second or first
order depending on the importance of a force-dependent,
motor detachment rate. The model developed in this
paper, however, accounts both for spatial degrees of
freedom and for intrinsic motor force fluctuations. Most
models of filament ordering dynamics incorporate noise,
usually additive and thermal, which leads to diffusion
and smoothening of concentration inhomogeneities.
Active processes, by contrast, favor order; when motor
forces overwhelm thermal fluctuations, an orientational
transition occurs resulting in pattern formation. The
assumption that motors always favor ordering, however,
is not obvious; motors are microscopic objects (of scale
30 nm) that undergo intrinsic fluctuations in step time and
force. These stepping fluctuations result in an additional
noise which is intrinsically multiplicative. It has been
estimated [15,16] (and evaluated by Brownian dynamics
simulations [17]) that the fluctuation strength due to
motors may exceed the thermal fluctuations by one or
even two orders of magnitude. It is also known that single
motor fluctuations are of the order of the mean force [26].
The effect of these substantial fluctuations on filament
self-organization and broader cytoplasm dynamics is an
important issue to be resolved.
In this work we assess the extent to which multiplica-

tive noise affects the overall evolution of multi-filament
networks. Using a Brownian dynamics-type stochastic
simulation, we demonstrate that our model exhibits an
ordering instability in the presence of motor noise, result-
ing in the emergence of bundles and vortices from initially
disordered filament solutions. We show that both types
of patterns are strongly affected by motor affinity and
motor force fluctuations. Remarkably, in the course of
bundle formation, the contribution of the motor fluctu-
ations rapidly decreases and finally vanishes in the fully
ordered state. Secondly, the rate of coarsening of smaller
vortices into larger ones is shown to increase substantially
as the mean amplitude of motor fluctuations increases.
These findings suggest that active noises can encourage
pattern formation. Such counterintuitive behavior is a
novel illustration of the potential benefit of noise on biolog-
ical functionality. The classical example in this framework,
usually related to sensing, is the well-known stochastic
resonance present in a variety of biological systems, e.g.,
in hair cell stimulation in crayfish or predatory sensors
in crickets [27]. Our work similarly delineates nontriv-
ial effects of the intrinsic fluctuations of motor forces
(or “active temperature”) on the macroscopic behavior of
motor-filament solutions.

Model of filament organization. – A semi-dilute
solution of microtubules (or short actin filament bundles)

Fig. 1: (Colour on-line) (a) Illustration of a multi-filament
configuration showing the interaction of the i-th microtubule
(marked in red) with all other microtubules in motor contact.
Respective forces acting on this filament are sketched as arrows.
(b) Motor-mediated, binary microtubule interaction: motors
attach at the rods’ intersection point, zip across the rods
causing alignment, and detach.

interacting via molecular motors is modeled as a collec-
tion of N stiff rods of fixed length L. For the sake of
simplicity (and since most experiments are carried out in
a quasi–two-dimensional geometry) we restrict our model-
ing to two spatial dimensions; the orientation of filament
i can be described by a unit vector ni = (cosϕi, sinϕi),
or by the angle ϕi (with respect to the x-axis, see fig. 1).
The position of the center of mass of the i-th filament
is denoted by ri. For a system of i= 1 . . . N interacting
filaments, we can write the equations of motion in the
following Langevin-type form:

ϕ̇i = ζ
−1
r

[
lmni×

∑
j,i∩ j

nb⊥ij F
m
ij + ξ

r
i

]
, (1)

ṙi =M(ϕi) ζ
−1M(−ϕi)

[ ∑
j,i∩ j

nb⊥ij F
m
ij + ξi

]
. (2)

Equations (1) and (2) represent torque and force
balances, respectively; Fmij is the magnitude of the force
due to motor action on the filament pair (i, j) and is
specified below. The force is assumed to be perpendicular
to the bisecting line of two intersecting filaments (i, j);
i.e. its direction is given by nb⊥ij = (sinϕij ,−cosϕij),
where ϕij =

ϕi+ϕj
2 is the bisector angle. In eq. (1), ζr

is the rotational drag coefficient and lm is the average
motor run length. The torque ξri is due to thermal
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fluctuations that lead to rotational diffusion. In eq. (2),
the term in brackets represents the sum of forces due
to motor action and thermal fluctuations; these forces
balance with the viscous drag, which is anisotropic due
to the rod-like shape of filaments. ζ−1 is the diagonal
inverse friction matrix with components ζ−1‖ and ζ−1⊥ .
M(ϕ) is the rotation matrix which expresses parallel
and perpendicular components in Cartesian components.
ξi is the force due to thermal fluctuations, leading to
translational diffusion. The sum,

∑
j,i∩ j , is taken over all

intersecting filaments; motors are assumed to be attached
close to the filament intersection points. In the derivation
of eq. (1) we use a fixed “lever arm” lm to compute the
motor torques [28]. This simplification establishes an
average motor forcing location at a distance lm from the
filament intersection point.
For the motor force we write

Fmij = σij
(
κ lm + ξ

m
j

)
sin(ψij), (3)

with ψij =
ϕi−ϕj
2 the angle between a filament and the

bisecting line of the pair. σij is the number of motors span-
ning the filament pair (i, j). The first term in brackets is
the average (i.e. deterministic) strength of the motor force
and the stochastic term ξmj describes fluctuations around
the average. These fluctuations, unlike the thermal noise
represented by ξri and ξi, are intrinsically multiplicative.
For simplicity, we have assumed that every intersection of
two filaments is symmetric; i.e. that motors act perpen-
dicular to the bisecting line, see fig. 1b). For filament pair
interactions, such configurations are rapidly achieved (see
the discussions in refs. [20,25,28].) The number of motors
σij of the pair (i, j) includes an additional exponential
form, σij = σ0 exp(−Est/kBT ), where σ0 is the average
number of motors per microtubule. The argument of the
exponential represents the ratio of the motor stretching
energy, Est = κal| sin(ϕi−ϕj2 )|, to the thermal energy. This
form is motivated by experimental studies [29] and was
developed in ref. [30]. The stretching energy was estimated
by using a typical distance l (of order 100 nm; along the
microtubule) between the motor position and the intersec-
tion point of the two filaments [28]. κ is the motor spring
constant, known to be of the order of 200–400 pN/µm [31]
for kinesin motors, and a is a molecular length scale (a
few nm).
The torque ξri is due to thermal fluctuations which give

rise to rotational diffusion [23] with diffusion coefficient
Dr =

kBT
ζr
and kBT the thermal energy. Analogously, ξi

leads to anisotropic translational diffusion with D‖ and
D⊥. For these stochastic torques/forces we assume zero
ensemble average and Gaussian distribution, 〈ξ∗i 〉= 0
and 〈ξ∗i (t)ξ∗j (t′)〉= 2kBTζ∗δ(t− t′)δij , with ∗= r, ‖,⊥.
The active motor noise is motivated by experiments, e.g.,
on actin-myosin systems [8], which showed that motor
fluctuations shift the system away from thermodynamic
equilibrium behavior. The effect of motor noise is captured
in our model by the noise term ξmj , which enters the motor

force. The respective fluctuation strength can be described
by an effective temperature that exceeds the equilibrium
thermodynamic temperature [8,15,17,18]. We assume
〈ξmi (t)〉= 0 and 〈ξmi (t)ξmj (t′)〉= 2kBTaζrl2m

δ(t− t′)δij . Note
that the noise amplitude contains Ta, which is the
effective (or active) temperature; it can be estimated

as Ta =
〈F 〉〈L〉
kB
, with the mean motor force 〈F 〉 and the

motor step length 〈Ls〉. Using experimental values for
kinesin, 〈F 〉= 5pN and 〈Ls〉= 8nm [32], one estimates
Ta � 10T in agreement with refs. [8,15,17].
Evolution of multi-filament state. – In this section,

we focus on the question of whether polar structures
—bundles and vortices— form in the presence of active
motor fluctuations. The model given by eqs. (1) and (2)
represents a system of 3N equations that is highly nonlin-
ear and nonlocal. We evolve the system using a stochas-
tic simulation procedure. First, the independent variables
are rescaled as follows, r̃i = r/L and t̃= (kBT/ζr) t. Drag
coefficients1 have been scaled by ζ = ζ‖ and we introduced
the rescaled motor stiffness κ̃= (lm L/kBT )κ.
The dimensionless versions of eqs. (1) and (2) are then

investigated as follows. First, the system is initialized by
randomly distributing N filaments (of unit length due to
rescaling) on a circle. Typical radii used in simulations are
in the range R= 10–12. To study the semi-dilute regime,
N should be chosen so that intially, there are multi-
filament intersections. Typically a random configuration of
1000–4000 filaments on a circle of R= 12 initially produces
an average of 1–3 intersections per filament. For the
time evolution of the multi-filament state, the following
algorithm is implemented: for every time step, all filament
intersections are located. Next, we compute the total force,
Fi =

∑
j,i∩ j n

b⊥
ij F

m
ij , and the total torque, lmni×Fi,

acting on each filament i, which accounts for all motor-
mediated interactions, including the fluctuating motor
forces. Finally, the filament orientations and center-of-
mass positions are updated according to eqs. (1) and (2),
accounting for the thermal noise contributions and the
rotation matrices.
Simulations show two dominant modes of filament

reorganization: first, if few filaments are interacting, e.g.
a pair, they rotate to decrease the intersection angle
while the center of mass of the pair remains constant.
These dynamics are anticipated from binary interaction
models and have been extensively discussed (including the
explicit effects of multiple motors in ref. [28]). A second
collective mode of reorganization occurs when a local
preferred orientation prevails, given by several filaments
pointing in a similar direction. One (or a few) additional
filament(s) interacting with this locally oriented state will
effectively be transported over this region until it finally,

1The drag coefficients are defined as [23]: ζr =
πηL3

3 ln(L/b)
, ζ|| =

2πηL
ln(L/b)

and ζ⊥ = 2ζ‖. Here, η≈ 0.005 pNs/µm2 is the solvent viscos-
ity, L≈ 10–15µm and b= 24nm are the microtubule’s length and
diameter, respectively.
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Fig. 2: Select simulation results: (a)–(c) snapshots of bundle
formation at times (a) t= 0, (b) t= 180 and (c) t= 450.
Simulation parameters are κ̃= 300, σ0 = 0.5, lm/L= 0.1 and
Ta/T = 10. Bundles tend to form for larger values of the
motor affinity parameter lm/L. (d)–(f) Simulation of vortex
formation and coarsening for smaller values of the motor
affinity parameter, lm/L= 0.005. Snapshots are taken at times
(d) t= 0, (e) t= 170 and (f) t= 370. Other parameters are as
in (a)–(c).

when reaching the boundary of the oriented region, aligns
with the oriented state or escapes.

Pattern formation in the presence of motor
noise. – Figures 2(a)–(c) and 2(d)–(f) show bundles and
vortices formed from an initially disordered semi-dilute
filament solution —even in the presence of substantial
(Ta/T = 10) motor fluctuations. The patterns formed are
much more pronounced and stable as compared to those
obtained from models accounting for only binary interac-
tions, cf. the recent Monte Carlo simulation study [33].
Vortices in particular tend to coarsen and finally

coalesce in the course of time. The self-organization
dynamics and the types of patterns are very sensitive to
the choice of parameters within the physical ranges. We
have found that the primary control parameter governing
the type of pattern formed is lm, which describes the
typical (average) distance between the motors’ position
and the actual filament intersection point. In the model

0 1 2 3 4
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-19
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-15
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M

)

0 2 4 6 8
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0

0.5
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M

Fig. 3: (Colour on-line) Time evolution (in units of the
rotational time) of active fluctuations Nm during the course
of bundle formation. For the given parameters, small bundles
form within twice the rotational time and concomitantly the
fluctuation magnitude decreases approximately exponentially.
For longer times, bundles slowly aggregate and the noise
decreases slowly toward a small, constant value.

for multiple motors on a filament pair developed in
ref. [28], it corresponds to the typical extension of the
cluster of multiple motors around filament intersection
points and is thus also related to the average number of
motors per filament. The parameter lm, referred to in
the following as the “motor affinity parameter”, enters
both the motor torque, where it acts as the lever arm,
and the motor force, where it determines the motor
extension. If this distance is small with respect to the
filament length, vortices prevail while high values lead to
bundles. There is, however, a sizeable range of lm-values
(lm/L≈ 0.01–0.1 for the parameters given in fig. 2) that
leads to intermediate vortices followed by long time
bundle formation.
The rescaled motor stiffness κ̃ affects the size of patterns

formed (recall that κ̃= (lm L/kBT )κ): low κ̃ yields smaller
structures (comprised of 10–20 filaments) which slowly
coarsen, while large κ̃ induces fast formation of large struc-
tures (comprised of hundreds to thousands of filaments).
Finally, low initial filament densities (small N/πR2, but
still semi-dilute) and low average numbers of motors per
filament σ0 (i.e. smaller total motor number) both lead to
slow coarsening dynamics of the structures, of similar type
as studied in ref. [22]. These assertions are hard to quan-
tify due to the magnitude of noises. The trends, however,
prevail in a large region of the parameter space: κ= 1–500,
σ0 = 0.1–5, lm/L≈ 0.001–0.7.
Another interesting phenomenon is the evolution of the

overall motor fluctuation strength in the course of time.
The square of the total force fluctuations (total fluctuation
power) can be extracted from eq. (2) and is given by

Nm =
∑
i,j

(
σij

lm

L

Ta

T
sinψij cosψij

)2
. (4)

Figure 3 indicates that this measure for the overall
fluctuation strength decays rapidly as bundles form. Such
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behavior suggests that larger motor forcing fluctuations
(represented by a large multiplicative noise amplitude)
are not likely to destroy pattern formations. By contrast,
increases in thermal fluctuations slow down and eventually
destroy structures. We verified this prediction for bundle
formation with active fluctuations in the range of Ta/T =
[1, 1000]. For vortices, the question is more subtle since
vortices are comprised of filaments with a preferred angle
with respect to each other, and thus the active fluctuations
do not decay as rapidly, and can even increase. Our
simulations do show, however, that the coarsening of
smaller vortices into larger ones occurs on a faster time
scale with increased multiplicative noise amplitude. The
largest increase in coarsening speed is seen for Ta/T
growing in the range of 1–100. This trend is seen until
Ta/T crosses an upper threshold and destroys all pattern
formations.
Finally, we have found that vortices are less pronounced

or disappear completely if the anisotropy in viscous fric-
tion is neglected (i.e. if one chooses ζ‖ = ζ⊥). This behav-
ior has been predicted by binary interaction models [20]
and remains true in the semi-dilute regime. The parameter
ranges for vortex and bundle formation found in our model
are in good agreement with in vitro experiments and previ-
ous binary interaction models. Specifically, experiments on
self-organization in protein-filament systems have shown
that bundles form at high concentrations of motor and
cross-linking proteins while vortices form at low concentra-
tions [2,3]. Simulations of binary interaction models have
displayed similar trends [21]. We do not see asters in our
simulations because our models do not account for interac-
tion anisotropy when describing motor-induced alignment.

Conclusions. – The effects of both active and thermal
fluctuations on self-organization have been studied within
the context of active cytoskeletal processes. In this study,
we focused on the emergence of coherent structures from
initially disordered, semi-dilute motor-filament solutions.
We developed a model that accounts for multiple motors
binding a filament to several other filaments, in contrast
to dilute solutions with binary interactions. A generic
multiplicative noise – due to intrinsic fluctuations in motor
forcing – was incorporated into the model in a natural way.
Stochastic simulations revealed that filament bundles

and vortices emerge in the presence of substantial motor
noise. The types of structures are governed primarily by
the “motor affinity parameter,” which enters through the
motor-mediated forces and torques between filaments.
The patterns are in qualitative agreement with previous
binary interaction models [13,20–22] and in vitro experi-
ments [2–4]. Additional analysis of the ordering dynamics
showed a qualitative difference between the action of
multiplicative motor force fluctuations and additive
thermal fluctuations. Specifically, we found that bundle
formation was accompanied by a rapid decay in the
motor fluctuation strength. Moreover, the characteristic
speed of vortex formation and coalescence increased

substantially as the motor fluctuation amplitude Ta/T
increased; this behavior prevailed until a threshold was
crossed and pattern formation was inhibited. These
findings imply a counter-intuitive conclusion: substantial
multiplicative motor fluctuations do not inhibit but
rather promote pattern formation by helping filaments
to explore the space and create new filament intersec-
tions. In contrast, an increase in the additive (thermal)
noise consistently slows down or destroys structure
formations.
Several open questions remain. First, our current model

does not produce aster patterns that have been exper-
imentally observed [2]. This is due to the absence of
an interaction anisotropy [13], which can be included
in further studies. Second, further analytical treatment
of the proposed model may help to determine whether
the switch from a continuous to a discontinuous transi-
tion to alignment persists in the spatially inhomogeneous
case. This phenomenon related to the force-dependent
detachment of motors has been suggested recently by a
model for the homogeneous case [25]. Finally, the influ-
ence of intrinsic multiplicative noise on pattern forma-
tion and the modeling formalisms developed in this study
have potential applications to several other physical prob-
lems. A few examples include the self-assembly of charged
nano-particles or vibrated granular materials [34]. Further
refinement and modifications of the proposed modeling
framework could provide deeper insight into a wide range
of physical problems.
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