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We develop an approach for self-consistent ac quantum transport in the presence of time-dependent poten-
tials at nontransport terminals. We apply the approach to calculate the high-frequency characteristics of a
nanotube transistor with the ac signal applied at the gate terminal. We show that the self-consistent feedback
between the ac charge and potential is essential to properly capture the transport properties of the system. In the
on-state, this feedback leads to the excitation of plasmons, which appear as pronounced divergent peaks in the
dynamic conductance at terahertz frequencies. In the off-state, these collective features vanish, and the con-
ductance exhibits smooth oscillations, a signature of single-particle excitations. The proposed approach is
general and will allow the study of the high-frequency characteristics of many other low-dimensional nano-
scale materials such as nanowires and graphene-based systems, which are attractive for terahertz devices,
including those that exploit plasmonic excitations.
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I. INTRODUCTION

A fundamental understanding of the physical processes
controlling the complex space- and time-dependent behavior
of the carrier dynamics in reduced dimensions is essential to
assess the technological potential of a variety of nanomate-
rials for future high-speed electronic devices. Such assess-
ment, however, requires both experimental and theoretical
techniques by which high-frequency material properties,
such as the dynamic �ac� conductance, can be measured or
calculated.

Experimentally, much progress has been made in devel-
oping techniques to probe the rf response of nanomaterials.
Among these nanomaterials, carbon nanotubes have received
much attention due to their exceptional electronic transport
properties at dc,1–4 and the hope that these carry over to high
frequencies. Measurements of the high-frequency character-
istics of carbon nanotube field-effect transistors �NTFETs�
�Refs. 5–8� indicate little decrease in performance up to gi-
gahertz �GHz� frequencies. In addition, the carrier dynamics
in the terahertz �THz� regime was recently probed using
time-domain techniques, suggesting that the carrier dynamics
is determined by single-particle rather than plasmonic
properties.9

Theoretically, the problem of time-dependent transport
has been approached using a variety of techniques such as
scattering matrix theory,10–14 Floquet methods,15–21 Boltz-
mann transport theory,22–25 and nonequilibrium Green func-
tions �NEGF�.26–54 Even though the NEGF technique has
become to some extent the standard in modeling electronic
quantum transport, its application to time-dependent prob-
lems has been mainly focused on simplified few-level
models,45–48,51–54 or to few-atom one-dimensional wires or
molecules.51–54 While such model systems are invaluable to
gain insight into the basic dynamic processes of simple quan-
tum systems, it can be difficult to relate them to more real-
istic devices for three main reasons. First, the self-
consistency between the charge and the potential is needed to
properly determine the operation of the device in the pres-

ence of dynamic potentials. Second, it is necessary to capture
the rather complex dielectric environment of real devices.
Third, most approaches have focused on applying time-
dependent signals at the source-drain, i.e., transport
terminals,29,36–38 rather than at the gate, a nontransport ter-
minal. Physically, nontransport terminals do not supply the
device region with charge, unlike source-drain contacts, but
are coupled to the device channel only through the �self-
consistent� dynamic potential, which plays a similar role as
the pumping potential in the field of parametric pumping.39,49

In this work, we make a first step toward solving this
problem and develop a linear response theory for ac quantum
transport employing nonequilibrium Green functions solved
self-consistently with Poisson’s equation, when a time-
dependent signal is applied at the gate terminal. We apply the
approach to a NTFET and determine its high-frequency re-
sponse, showing that the approach cannot only describe
time-dependent, single-particle quantum-transport effects,
but also is able to capture the plasmonic excitations of the
device.

The program of the paper is as follows: in Sec. II, we
detail the formal theory for ac quantum transport and derive
an effective Dyson equation describing the dynamics of the
system for a time-harmonic signal at a nontransport terminal.
Special attention is given to the practical calculation of the
frequency-dependent charge density for which we develop a
computationally efficient scheme, a prerequisite for calculat-
ing the self-consistent ac response of larger systems, as we
have demonstrated previously.55 In Sec. III, general expres-
sions for the ac particle current and associated conductance
are derived along with a brief outline of the current partition-
ing scheme,10,47 and how it applies to a multiterminal device
with nontransport terminals. In Sec. IV, we apply the theory
to a NTFET. There, we discuss details of the significance of
the operation mode of the device, and the self-consistent
feedback between charge and potential for collective excita-
tions. Our conclusions are presented in Sec. V.
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II. GENERAL APPROACH

In this section we describe the development of the ac
approach, which consists of three steps: �1� definition of the
model Hamiltonian of the total system, �2� formulating the
quantum dynamics and nonequilibrium statistics in terms of
Green functions in the energy domain, and �3� self-consistent
calculation of the ac charge and potential.

A. Model Hamiltonian

We begin by specifying the Hamiltonian operator of the
system. As usual, the total system is divided into three iso-
lated regions following the partitioning scheme of Caroli and
co-workers56,57 The Hamiltonian of the entire infinite system
is written as

H = Hd + Hc + Ht, �1�

where Hd is the Hamiltonian for the device region, Hc refers
to the two semi-infinite leads, and Ht couples the device
region to the leads. In a site representation, the device Hamil-
tonian is given by

Hd = Hd
0 + Hd

DC + Hd
AC, �2�

where

Hd
0 = �

n

�n
0ĉn

†ĉn +
1

2�
n,m

tn,mĉn
†ĉm + h.c., �3�

and

Hd
DC = �

n

Un
DCĉn

†ĉn, Hd
AC = �

n

Un�t�ĉn
†ĉn, �4�

where ĉn
† and ĉn refer to fermionic creation and annihilation

operators at site n. Hd
0 defines the equilibrium electronic

structure of the isolated system. The electron-electron inter-
action is approximated on the Hartree level and has two
components Hd

DC and Hd
AC, cf. Eq. �4�. The term Un

DC repre-
sents a spatially varying, but time-independent electrostatic
potential, such as the one present when calculating the dc
properties and leads to a renormalization of the onsite ener-
gies �n

0.
The new physics studied here originates from the pres-

ence of an a priori unknown time- and space-dependent po-
tential Un�t� induced by externally applied time-dependent
fields. As further discussed below, both Un

DC and Un�t� must
be determined separately by solving Poisson’s equation in a
self-consistent manner. In general, the approach allows to
investigate the dynamic response beyond the Hartree ap-
proximation of the Coulomb interaction by including ex-
change and correlation functionals54 calculated self-
consistently.

The Hamiltonian for the two contacts to the left and right
��=s ,d� of the device reads

Hc = �
k,�

�k�
0 ĉk�

† ĉk�, �5�

where ĉk�
† and ĉk� are fermionic creation and annihilation

operators for a particle in terminal � in state k. We note that

Eqs. �3�–�5� differ from those considered previously where a
time-dependent source-drain bias is considered, in which
case the onsite energy �k�

0 of the contacts become time-
dependent rather than the ones of the device.

Finally, the Hamiltonian

Ht = �
k�,n

Tn,k�ĉn
†ĉk� + Tn,k�

� ĉk�
† ĉn, �6�

couples the device subspace with the semi-infinite source
and drain reservoirs, and allows for a physical exchange of
particles through the device-contact interface. Therefore, the
tunneling Hamiltonian Eq. �6� describes only the coupling
between the device and transport terminals, but not to non-
transport terminals.

B. Quantum dynamics and nonequilibrium statistics

The next step is to describe the carrier dynamics within
the device scattering region using Green functions. The
Green functions are in general functions of both space and
time, e.g., G�rt ;r�t��. However, to simplify the equations for
compactness we adopt a short-hand notation G�t , t��
�G�rt ;r�t��. In addition, whenever regular functions appear
with Green functions in the same equation, we also omit the
spatial dependence on the regular functions.

We start with the time-dependent Dyson equation58

G��t,t�� = g0
��t,t�� +� dt1dt2g0

��t,t1����t1,t2�G��t2,t�� ,

�7�

where g0
��t , t��=g0

��t− t�� refers to the retarded/advanced ��
=r ,a� Green function of the isolated system. The self-energy
���t , t�� accounts for all interactions of the isolated system
with its environment. In our case, the self-energy ���t , t��
can be divided into three contributions

���t,t�� = �
�=s,d

��
��t − t�� + UDC��t − t�� + U�t���t − t�� .

�8�

The first term �c���=s,d�� is the contact self-energy and
corresponds to the quantum-transport open-boundary condi-
tions connecting the device region with the semi-infinite
source and drain contacts. The second term is a scalar poten-
tial and represents the internal response of the device to ex-
ternally applied time-independent fields. The third term is the
prominent feature in the ac theory presented here, and de-
scribes the dynamic response of the device due to external
time-dependent fields. Contrary to most studies where the ac
signal is applied at the source-drain terminals,32,47,50,54 in our
case the time-dependent signal is applied at the gate termi-
nal. This implies that the induced potential U�t� distorts only
the device scattering region, while the contacts remain in
steady state.

We now switch from the time-domain into energy repre-
sentation through a double-time Fourier-transform defined
as47
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F�E,E�� =� dtdt�eiEt/�e−iE�t�/�F�t,t�� �9�

and

F�t,t�� =� dE

2�

dE�

2�
e−iEt/�eiE�t�/�F�E,E�� , �10�

so that the self-energy, cf. Eq. �8� is given by

���E,E�� = 2���E − E����c
��E� + UDC� + U�E − E�� .

�11�

It is worthwhile mentioning that in energy domain the con-
tact self-energies are local in energy, reflecting that under
steady-state conditions there is no mixing between states
with different energy within the reservoirs. On the other
hand, the original time-local potential U becomes now in
energy domain nonlocal, implying that a time-dependent po-
tential mediates transitions between states at different ener-
gies within the device scattering region.

Fourier transforming Eq. �7� and using Eq. �11�, one de-
rives an effective Dyson equation for the device

G��E,E�� = 2���E − E��G0
��E� +� dĒ

2�
G0

��E�U�E

− Ē�G��Ē,E�� , �12�

where

G0
��E� = �g0

��E�−1 − UDC − �c
��E��−1, �13�

and

g0
��E� = ��E 	 i
�I − Hd

0�−1, �14�

with an infinitesimal 
�0. What we have gained in refor-
mulating Dyson’s equation is to partition the full dynamic
response of the system described through the two-energy
Green function G�E ,E�� into its dc and ac components given
by the first and second term in Eq. �12�, respectively. Impor-
tantly, the dc component determined by the newly defined
Green function G0

�, cf. Eq. �13�, refers no longer to the re-
sponse of the isolated system g0

�, cf. Eq. �14�, but rather
describes the system’s response in contact with the leads and
subject to a dc electrostatic potential. Hence, G0

� defines the
operation point of the open system under dc steady state. The
ac component, i.e., the second term in Eq. �12� contains this
term as well and determines the distortion of the system
away from the operation point G0

�, and is driven by the time-
dependent potential U�t� leading to a coupling of states at
different energies.

We still need to know how the total nonequilibrium par-
ticle distribution G� deviates from its �reference� distribution
at dc in the presence of the ac potential U. This is accom-
plished by mapping Dyson’s equation for G�, symbolically
written as G�= �G0+G0UG��, onto the real-time axis utiliz-
ing the Langreth rules58,59 which gives: G�=G0

�+G0
�UGa

+G0
rUG�. This integral equation can be solved exactly mak-

ing use of Eqs. �12� and �13�. Details of the derivation are
found in Appendix A. After Fourier transform, the particle
distribution is given by

G��E,E�� = 2�G0
��E���E − E��

+� dĒ

2�
�G0

��E�U�E − Ē�Ga�Ē,E��

+ Gr�E,Ē�U�Ē − E��G0
��E���

+� dE1

2�

dE2

2�

dE3

2�
Gr�E,E1�U�E1 − E2�G0

��E2�


U�E2 − E3�Ga�E3,E�� , �15�

where G0
��E�=G0

r�E��c
��E�G0

a�E� corresponds to the non-
equilibrium spectral particle density at dc. The function
�c

��E�=��if��E����E� where ���E�= i���
r −��

a� is the
broadening function, and f��E�=1 / �1+e�E−���/kBT� is the
Fermi function at temperature T with �� being the chemical
potential of terminal �.

While the set of Eqs. �12�–�15� developed so far describe
entirely the quantum transport and nonequilibrium statistics,
they do not allow to determine the dynamic potential U. This
must be obtained by solving Poisson’s equation

����r� � U�r,E − E��� = − ��r,E − E�� , �16�

with the frequency-dependent charge density

���� = ie� dE

2�
G��E+,E� . �17�

The calculation of the ac charge density using Eq. �15� re-
quires G� to be evaluated at two energies �E+ ,E���E
+�� ,E�, in contrast to the dc case where only one energy is
needed.

Equations �16� and �17� implement the self-consistent
coupling between electrostatics and transport, which repre-
sents the key component in our ac approach. Note that at the
frequencies considered here the electromagnetic fields re-
spond instantaneously, so that the full time dependence in
Maxwell’s equations can be neglected. Poisson’s equation is
supplemented by boundary conditions appropriate for the
problem at hand, and ��r� is a spatially dependent dielectric
constant that can account for more complex inhomogeneous
dielectric environments quite common in devices.

The set of Eqs. �12�–�17� describe the nonequilibrium
quantum dynamics and its coupling to Poisson’s equation for
an arbitrary time-dependent potential U, and can thus de-
scribe situations beyond linear response, in general. How-
ever, the numerical implementation of the full nonlinear
theory requires the calculation of a triple energy integral in
Eq. �15�, which is prohibitive at this time given the need for
self-consistency to capture the plasmonic response of real
devices as discussed in Sec. IV.

C. Linearized equations

To proceed further, we now apply a time-harmonic signal
at the gate terminal ṽg�t�=v0 cos��t� of small amplitude v0
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and frequency �, and seek the potential response in the form
U�r , t�=V�r ,��cos��t�, which reads in energy domain

U�E� =
1

2
V�r,�����E + ��� + ��E − ���� . �18�

Keeping only terms to linear order in V, the ac transport-
Poisson equations take the form

G��E+,E� = 2�G0
��E������ +

1

2
G0

��E+�V���G0
��E� ,

�19�

G��E+,E� = 2�G0
��E������ +

1

2
G0

��E+�V���G0
a�E�

+
1

2
G0

r�E+�V���G0
��E� , �20�

���� = ie� dE

2�
G��E+,E� , �21�

− ��r,�� = ����r� � V�r,��� . �22�

D. Numerical calculation of �(r ,�)

An integral part in the self-consistent transport calcula-
tions is the determination of the charge density. In practice,
one has to evaluate the integral in Eq. �21� which is often
performed by direct integration along the real energy axis. In
many cases, this is a sufficient approach because the spectral
density of states has a finite bandwidth, thus narrowing the
integration window. However, such conditions are rarely re-
alized in more realistic device models. For instance, even in
a simple tight-binding representation of a NTFET �see Sec.
IV� the bandwidth of the valence and conduction band is
about 10 eV, in which case the calculation of the charge
density through a real-axis integration can become prohibi-
tive for self-consistent calculations even at dc. This becomes
an even more severe bottleneck in the case of ac simulations,
where now the charge has to be determined at every fre-
quency �.

In the following, we describe a computational efficient
approach, which permits the calculation of the frequency-
dependent charge density ���� by exploiting contour integra-
tion in the complex energy plane.60,61 The basic idea is simi-
lar to the dc case, i.e., to separate in Eq. �21� the zero-bias
�ZB� contribution to ���� from the nonzero-bias component.
If we further assume that the lowest chemical potential is at
the drain terminal, i.e., �d

�+���s
�+� the frequency-dependent

particle distribution at zero-bias reads

GZB
� �E+,E� =

i

2
A0

+V���G0
afd

+ +
i

2
G0

r,+V���A0fd, �23�

where a + superscript indicates a function evaluated at E
+��, and the absence of such a superscript indicates a func-
tion evaluated at E. The steady-state spectral density is given
by

A0
�+� = i�G0

r,�+� − G0
a,�+�� . �24�

GZB contains Fermi functions evaluated a two different en-
ergies E and E+, reflecting the nonequilibrium nature of the
ac charge density for finite frequencies even at zero-bias,
which means that an externally applied ac signal acts as if a
frequency-dependent bias were applied.

Taking advantage of this ac -signal-bias analogy and not-
ing that fd

+� fd, one can split again the zero-bias particle
density into its equilibrium and nonequilibrium components,
i.e., GZB

� =GZB
�,eq+GZB

�,neq, which after rearrangement take the
form

GZB
�,eq = −

i

2
�fd + fd

+�Im�G0
r,+V���G0

r	 , �25�

and

GZB
�,neq = −

1

2
�fd − fd

+��Re�G0
r,+V���G0

r	 − G0
r,+V���G0

a� .

�26�

The equilibrium part GZB
�,eq is analytic in the upper complex

plane, since it consists of the product of two retarded Green
functions G0

r and G0
r,+ each of which has poles only in the

lower complex plane.58 Therefore, the equilibrium zero-bias
ac particle density, which involves all states below the
frequency-dependent chemical potential �d

+, can be effi-
ciently calculated through integration over a complex energy
contour.60,61 Conversely, the nonequilibrium component at
zero-bias GZB

�,neq is nonanalytic, because both the retarded
and the advanced Green functions are needed with their cor-
responding poles located in the lower and upper complex
plane, respectively. However, this does not pose a serious
problem in practice as the integration range is limited to a
finite energy window given by ��, i.e., the difference be-
tween the chemical potentials �d−�d

+.62

III. ac RESPONSE FUNCTIONS: CURRENT
AND CONDUCTANCE

The set of Eqs. �19�–�22� developed in the previous sec-
tion allow the determination of the frequency-dependent
Green functions, which can now be used to obtain ac re-
sponse functions. One basic response function to characterize
transport is the dynamic conductance g��, which relates the
total ac current I� with the voltage applied at terminal �.
Under time-dependent conditions this conductance is not en-
tirely determined by the particle current, but has in general
contributions from the displacement current as well. In the
following sections, we derive an expression for the particle
conductance, and summarize how displacement currents can
be included in the total conductance.

A. Particle current I�
p (�)

The first contribution to the total current consists of the
flow of charged particles through the terminal �, and is
hence determined by the dynamic change in the particle den-
sity at this terminal

KIENLE, VAIDYANATHAN, AND LÉONARD PHYSICAL REVIEW B 81, 115455 �2010�

115455-4



I�
p�t� = − e

d

dt

N̂��t�� = − e

d

dt�k


ĉk�
† �t�ĉk��t�� . �27�

Making use of the fermionic anticommutator relations,58 and

the Heisenberg equation of motion for operators Ȯ
= i

� �H ,O� with H the total system Hamiltonian, cf. Eq. �1�,
one derives the well-known matrix equation for the equal-
time particle current27,46,50

I�
p�t� =

e

�
Tr� dt��Gr�t,t����

��t�,t� − ��
��t,t��Ga�t�,t�

+ G��t,t����
a�t�,t� − ��

r �t,t��G��t�,t�� . �28�

Its corresponding energy representation reads27,46,47

I�
p��� =

e

�
Tr� dE

2�

dE�

2�
�G��E+,E����

a�E�,E�

− ��
r �E+,E��G��E�,E� + Gr�E+,E����

��E�,E�

− ��
��E+,E��Ga�E�,E�� . �29�

Equation �29� simplifies further if we exploit the steady-state
property of the contact self-energies from Eq. �11� in which
case one obtains the frequency-dependent particle current

I�
p��� =

e

h
Tr� dE�G��E+,E���

a�E� − ��
r �E+�G��E+,E�

+ Gr�E+,E���
��E� − ��

��E+�Ga�E+,E�� . �30�

We note that the expression for I�
p��� differs from those de-

rived in Refs. 46, 47, and 50, since those applied a time-
dependent voltage at the source-drain, instead of the gate
excitation considered here.

One can now derive the dynamic particle conductance by
expanding ��

� and G� appearing in Eq. �30� to linear order
in the terminal voltage v�, and utilizing Eq. �19� and �20� to
substitute for G��E+ ,E� and G��E+ ,E�. These linearized ex-
pressions are summarized in Appendix B. Inserting all rel-
evant terms in Eq. �30� and keeping components linear in
V���, we derive for the frequency-dependent particle current

I�
p��� =

1

2

e2

h
�
�

Tr� dE��G0
r,+V���G0

r�̃�
�

− �̃�
�,+G0

a,+V���G0
a	��� + G̃0,�

�,+V���G0
a��

a

+ G0
r,+V���G̃0,�

� ��
a − ��

r,+G̃0,�
�,+V���G0

a

− ��
r,+G0

r,+V���G̃0,�
� �v�. �31�

By definition, the �tensor� prefactor that relates the terminal
current I� with the applied bias v� is the ac linear response
particle conductance, and can be read directly from Eq. �31�

g��
p ��� =

1

2

e2

h
Tr� dE��G0

r,+V���G0
r�̃�

�

− �̃�
�,+G0

a,+V���G0
a	��� + G̃0,�

�,+V���G0
a��

a

+ G0
r,+V���G̃0,�

� ��
a − ��

r,+G̃0,�
�,+V���G0

a

− ��
r,+G0

r,+V���G̃0,�
� � . �32�

B. Displacement current Id(�)

Under time-dependent conditions the particle conductance
does not in general obey sum-rules, i.e., ��g��=0 and
��g��=0, reflecting current continuity and gauge-invariance,
because the displacement current present under ac conditions
is often discarded. The current partitioning scheme of Wang
et al.47 allows to re-establish these sum-rules by taking dis-
placement currents into account.

The basic idea of this scheme can be summarized as fol-
lows: starting from the charge continuity equation, �t�
+� · jp=0, and integrating over the volume one obtains Kir-
choff’s current law, i.e., Id�t�+��I�

p =0. I�
p refers to the par-

ticle current through terminal �, and can be associated with a
particle conductance through I�

p =��g��
p v� with v� the volt-

age at terminal �. The displacement current Id�t�=�tQ�t� ac-
counts for the dynamic change in the total charge, and is
nonzero under time-dependent conditions.

To obtain an expression for the total conductance defined
by I�=��g��v� one needs to know how the current I� is split
between the particle and the displacement current at each
terminal. While the particle component I�

p is directly acces-
sible through transport, this is not immediately possible for
Id, since only the total rather than the terminal displacement
current is known. This problem can be resolved by making
two Ansätze for the terminal and total displacement
current,47 i.e., I�ª I�

p +A�Id and Id
ª��g�

dv�, where g�
d de-

fines the displacement conductance, and permits to specify a
total conductance: g��=g��

p +A�g�
d . The partitioning factor

A� can be determined by employing the sum-rules ��g��

=0 and ��g��=0, so that the total conductance is given by47

g�� = g��
p −

�
�

g��
p

�
�

g�
d g�

d , �33�

and constitutes a �N
N� matrix for a system with N termi-
nals, in general.

IV. APPLICATION: NANOTUBE FET

In this section, we apply the approach developed in the
previous sections to a ballistic nanotube transistor shown in
Fig. 1 with a channel length of L=20 nm. In general, the
high-frequency properties of this three-terminal device can
be determined by any component of the �3
3�-conductance
matrix, cf. Eq. �33�; here we chose the source-drain conduc-
tance gsd��� calculated at zero-bias and T=300 K. Since the
ac signal is applied only at the gate terminal, which couples
capacitively to the nanotube channel, one can assume that
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the dominant contribution to the displacement current is car-
ried by the gate, i.e., Id� Ig. In this case, the partitioning
factors for the three terminals simplify, i.e., �As ,Ad ,Ag�
��0,0 ,1�, so that the source-drain ac conductance is given
by gsd����gsd

p ���. Here, we focus on one particular channel
length to discuss aspects of the methodology that are essen-
tial for the proper description of the ac behavior. The prop-
erties of such devices with different dimensions were pre-
sented by us in detail in Ref. 55.

A. Transistor response in the dc operation point

We begin our analysis by specifying the setup of the de-
vice shown in Fig. 1 following the modeling approach of
Ref. 63. The channel, which consists of a semi-conducting
nanotube with chirality �m ,n�= �17,0� and radius 0.66 nm, is
placed in the center of a cylindrical hole with radius 0.96 nm
and surrounded by a dielectric with a permittivity of 16
�HfO2�.

The equilibrium electronic structure of the nanotube is
described within a pz tight-binding model with diagonal ma-
trix elements �i,i

0 =0, and off-diagonal elements t2i,2i−1

= t2i−1,2i=2� cos� �J
m �, t2i,2i+1= t2i+1,2i=�, where m refers to the

number of carbon atoms per ring. The periodic boundary
conditions along the tube circumference leads to a quantiza-
tion of the wave function, so that the NT electronic structure
can be classified by an angular momentum J=1, . . . ,m
labeling the subbands. We chose �=2.5 eV for the �
carbon–carbon bond energy, so that the band gap between
the highest valence and lowest conduction band �J=6� is
Eg=0.55 eV.63

The contacts are semi-infinite extensions of the NT chan-
nel and described through self-energies ��

r =�2g�
r for each

contact ��=s ,d� where � couples the first/last ring of the NT
channel to the surface of the contacts to the left and right.63

The surface Green function g�
r is calculated numerically at

each energy using a matrix iterative scheme.64 The matrix
elements of the retarded Green function G0

r for the NT chan-
nel are obtained employing a recursive algorithm.65 The
function of the two embedding metallic regions is to electro-
statically dope the ends of the NT channel. In all simulations,
the equilibrium Fermi level of the semi-infinite NT source/
drain contacts EF is set at −1.0 eV below the NT midgap
energy before self-consistency, which gives after self-
consistency p-type Ohmic contacts.

Due to the cylindrical symmetry, the three-dimensional
�3D� Poisson’s equation Eq. �22� reduces to a two-
dimensional �2D� problem. In this case, Poisson’s equation is

discretized along the axial and radial axis within the 2D
simulation domain as marked by the rectangular box using
finite differences,63 and the resulting linear matrix system is
solved by successive overrelaxation.66 Along the domain
boundary we impose homogeneous von Neumann boundary
conditions for the electrostatic potential ��V=0�, and use
Dirichlet boundary conditions �V=const.� at the perfect-
metal source, drain, and gate terminals. Poisson’s equation
requires a 3D charge density in real-space as input. However,
an orthogonal tight-binding representation of the NEGF
transport equations calculates the total charge per NT ring. A
3D charge density can be obtained by smearing of the total
charge per ring along the axial and radial direction of the 2D
domain using Gaussian smearing functions.63

The first step in determining the ac response of the tran-
sistor is to choose an operation point either in the off- or
on-state, which is controlled by an appropriate dc gate bias
Vg. Figure 2�a� shows the output characteristics for our NT-
FET specified by the dc source-drain conductance Gsd in the
absence of a gate perturbation �v0=0� with arrows marking
the selected on- and off-states. At zero frequency, the con-
ductance gsd��=0� examined in the forthcoming sections is
related to Gsd by its slope taken at the operation point, i.e.,

gsd��=0��
�Gsd

�Vg
v0. Figure 2�b� displays the respective dc

band profiles with the band being flat in the on-state leading
to a maximum conductance of 2e2 /h �per spin� whereas in
the off-state the hole current is reduced due to the gate-
controlled barrier in the channel.

B. Transistor response in the off-state

We now superpose an ac signal of small amplitude v0
=10 meV and frequency � to the dc gate bias Vg. Figure
3�a� shows the dynamic conductance in the off-state, with
real and imaginary parts having oscillatory character as a
function of frequency �. One can understand this behavior
from the space- and energy-dependent 2D density-of-states
�DOS� shown in Fig. 3�b�. For a given position z along the
tube, the DOS oscillates in energy due to the quantum inter-
ference of states by the barriers. Photoexcitations of carriers
between states associated with maxima in the DOS lead to
maxima in gsd���, while its minima are caused by transitions
between maxima and minima.55 An oscillatory behavior of

gv (t)~

L

sgV
dVV

3.4 nmε = 16

FIG. 1. �Color online� Cross section of the NTFET device in
cylindrical geometry and embedded in a dielectric medium. The
dashed rectangle specifies the computational domain. FIG. 2. �Color online� �a� dc output characteristics for L

=20 nm NTFET. The arrows mark the operation point in the on and
off-state, while panel �b� shows the respective self-consistent band
profiles. The dashed-dotted line is the Fermi level with EF

=−1 eV.
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the conductance is hence a signature of single-particle exci-
tations, and is preserved when the self-consistent feedback is
disabled as will be shown further below. We note that at low
frequencies the real part of the conductance is negative. This
is because in the limit �→0 the ac signal perturbation
ṽg�t�=v0 cos��t� becomes effectively a positive dc bias
ṽg�t�=v0�0 superposed to Vg. According to the dc transfer
characteristics of Fig. 2�a� �Gsd /�Vg�0, so that an increase
of Vg by v0 leads to a reduction in the conductance.

C. Transistor response in the on-state

The dynamic response is quite different in the on-state as
shown in Fig. 4�a�. For small frequencies the dynamic con-
ductance is slightly negative for the same reason as in the
off-state, and exhibits a pronounced divergence at a discrete
frequency of about �36 THz. Away from this resonance, the
conductance is oscillatory similar to the off-state, as shown
more clearly in the inset of Fig. 4�a�.

In order to identify the nature of this resonance, we deter-
mine the response of the electrostatic potential V��� for fine-
sampled frequencies near the divergent behavior. In Fig.
4�b�, we show the ratio of V��� /Vext with Vext the external
perturbing potential. Interestingly, upon approaching the
resonance the amplitude of the potential diverges, cf. Fig.
4�b�. Alternatively, one can evaluate the frequency-
dependent dielectric screening ����=Vext /V��� shown in the
inset of Fig. 4�b�, which has a clear zero crossing at �0,

while the potential undergoes a change in sign as displayed
in Fig. 4�c�. These observations verify that the divergent be-
havior of the dynamic conductance observed in the on-state
is attributed to the excitation of plasmons which coexist with
the single-particle excitations.

D. Importance of self-consistency

In the previous section, we were able to identify the basic
features in the dynamic conductance such as the oscillatory
and divergent characteristics with the single-particle and col-

FIG. 3. �Color online� ac response for a L=20 nm NTFET in
the off-state: �a� real/imaginary part of the frequency-dependent
conductance, and �b� color plot of the NTFET 2D density-of-states
illustrating the resonant photoexcitation of carriers between spa-
tially and energetically oscillating states. The solid black line marks
the valence band edge, and the Fermi level is EF=−1 eV.

FIG. 4. �Color online� ac response for a NTFET with L
=20 nm in the on-state. Panel �a� shows the real/imaginary part of
gsd��� with an enlarged view of the data shown in the inset. Panel
�b�: amplitude of the normalized potential 
V��� /Vext
 with the di-
electric function ���� shown in the inset. The arrows mark the
near-resonance frequencies �0

	. Panel �c� shows the large amplitude
potential profile V��� for �0

	.
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lective behavior of the channel electrons, and concluded that
plasmons can only be excited if the device is operated in the
on-state.

Are there other, more fundamental prerequisites irrespec-
tive of the operation point, which determine whether the sys-
tem can be driven into a collective state at all ? The answer
is yes, and is related to the self-consistency between charge
and potential. In Fig. 5, we compare the conductance gsd���
and the frequency-dependent charge density ��z ,�� calcu-
lated using the full self-consistent �SC� and a non-self-
consistent approach where in the latter case the dynamic con-
ductance is calculated in one step from the dc band profile.

In the off-state, the most apparent difference between the
SC vs non-SC case is that, while the SC amplitude of the
conductance is larger, the smooth oscillatory behavior is pre-
served as shown in Fig. 5�a�. Hence, the single-particle ex-
citation spectrum is—at least qualitatively—not affected by
the charge-potential feedback. This is also apparent in the ac
charge density ��z ,��, cf. Figs. 5�b� and 5�c�, which exhibits
space- and frequency-dependent oscillations in both the SC-
and non-SC case.

In the on-state, eliminating the feedback loop has a quite
different impact on the response as demonstrated in Fig.
5�d�. The plasmonic component visible through a divergent
conductance gsd��� with SC vanishes for the non-SC calcu-
lation. This drastic change in the response from the �diver-
gent� plasmon-dominated to single-particle characteristics is
again clearly reflected in the ac charge density ��z ,�� calcu-

lated with �SC� and without �non-SC� feedback shown in
Figs. 5�e� and 5�f�. In the SC case, the charge density has a
large amplitude at resonance with a peak in the middle of the
channel, a feature that is absent in the non-SC calculation.

V. CONCLUSIONS

We develop an approach for ac quantum transport within
the nonequilibrium Green function formalism, which allows
to determine the frequency-dependent charge and potential
under excitation at a nontransport terminal within a fully
self-consistent framework.

The capability of our approach to determine the high-
frequency properties of systems in complex environments is
demonstrated using a nanotube transistor with an ac signal
applied at its gate terminal. In the off-state, the dynamic
conductance shows oscillations that originate from single-
particle excitations between quantized energy levels. When
the device is operated in the on-state, the dynamic conduc-
tance exhibits discrete divergent peaks at terahertz frequen-
cies. These peaks are associated with plasmonic excitations
of the charge density at the resonant frequencies of the tran-
sistor acting as a quantum cavity. It is shown that the self-
consistent coupling between charge and potential is an essen-
tial component in the ac transport theory to capture plasmon
excitations of the system. A non-self-consistent approach
misses this important physics, and can only provide informa-
tion about the single-particle excitation spectrum.

The proposed approach is not limited to study the ac re-
sponse of nanotube devices, but can be applied to explore
nonequilibrium, time-dependent electronic and optical pro-
cesses in other low-dimensional materials such as nanowires,
graphene, or molecules, including the exploration of their
collective excitation modes for novel plasmon-based nano-
scale devices.
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APPENDIX A: DERIVATION OF THE NONEQUILIBRIUM
PARTICLE DENSITY G�

In the following, we detail the derivation for the particle
density G��E ,E��, cf. Eq. �15�. We start from the expression
for the �time-domain� Dyson equation for G� mapped onto
the real axis utilizing Langreth rules,58,59 and symbolically
written as

FIG. 5. �Color online� Comparison of the self-consistent �SC� vs
Non-self-consistent �Non-SC� response for a L=20 nm NTFET.
Panels �a�–�c� is the response in the off-state, with panel �a� the
conductance and panels �b� and �c� the charge density. Panels �d�–
�e� show the behavior in the on-state.
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G� = �G0 + G0UG�� = G0
� + G0

�UGa + G0
rUG� �A1�

where we have used that U�=U�������−���=0 for a time-
local potential.58 This equation can be rearranged by collect-
ing the G0

� terms first

G� = G0
��1 + UGa� + G0

rUG�. �A2�

Equation �A2� can be solved through iteration by inserting
the expression for G� on the lhs into the second term on the
rhs, and collecting now the G0

��1+UGa� elements. After the
first iteration, one obtains

G� = �1 + G0
rU�G0

��1 + UGa� + G0
rUG0

rUG�. �A3�

The retarded Green function G0
r in the prefactor �1+G0

rU� is
the first term in Dyson’s series, Gr=G0

r +G0
rUGr, which be-

comes more transparent when iterating one more time

G� = �1 + G0
rU + G0

rUG0
rU�G0

��1 + UGa�

+ G0
rUG0

rUG0
rUG�, �A4�

=�1 + �G0
r + G0

rUG0
r�U�G0

��1 + UGa� , �A5�

+ G0
rUG0

rUG0
rUG�. �A6�

Iterating to infinite order, this Dyson series converges toward
Gr, so that the final expression for the nonequilibrium par-
ticle density reads

G� = �1 + GrU�G0
��1 + UGa� . �A7�

Equation �15� in Sec. II B corresponds to Eq. �A7� after Fou-
rier transform.

APPENDIX B: SMALL BIAS EXPRESSIONS
FOR G� and �c

�

The conductance associated with the particle and dis-
placement current are response functions which relate the
terminal current I� with the terminal voltage v� in a
linear manner. In order to derive a formula for the conduc-
tance g��

p given in Sec. III, one needs linearized expressions

for �� and G�. These can be easily obtained from the
Taylor expansion of the Fermi function f�� f��E�
=1 / �1+e�E−��,0+ev��/kBT� to first order in the terminal voltages
v�, i.e.,

f� � f�,0 + ef̃�v�, f̃� = −
1

kBT
f�,0�1 − f�,0� , �B1�

where ��,0 is the chemical potential of terminal � at zero
bias, and f�,0=1 / �1+e�E−��,0�/kBT� the corresponding Fermi
function. Inserting Eq. �B1� into �� and G�, one obtains the
following set of linearized expressions:

��
� = if��� = ��,0

� + �̃�
�v�, �B2�

��,0
� = i��f�,0, �̃�

� = i�� f̃�, �B3�

and

G0
� = �

�=s,d
G0

r if���G0
a = Ḡ0

� + �
�=s,d

G̃0,�
� v�, �B4�

Ḡ0
� = �

�=s,d
G0

r��,0
� G0

a, G̃0,�
� = G0

r�̃�
�G0

a, �B5�

with ��= i���
r −��

a� the broadening function.
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