
J. Fluid Mech. (2010), vol. 642, pp. 15–48. c© Cambridge University Press 2009

doi:10.1017/S0022112009991686

15

Strong non-Boussinesq effects near the onset
of convection in a fluid near its critical point

GUENTER AHLERS1†, BERND DRESSEL2, JAECHUL OH3

AND WERNER PESCH2

1Department of Physics, University of California, Santa Barbara, CA 93106, USA
2Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany

3Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA

(Received 23 March 2009; revised 13 August 2009; accepted 14 August 2009;

first published online 16 November 2009)

Measurements of fluctuations and convection patterns in horizontal layers of fluid
heated from below and near the onset of Rayleigh–Bénard convection (RBC)
are reported under conditions where the fluid properties vary strongly over the
temperature range �T = Tb − Tt (Tb and Tt are the temperatures at the bottom
and top of the sample, respectively). To facilitate a comparison with the data,
the theory of Busse (J. Fluid Mech., vol. 30, 1967, p. 625) of these so called non-
Oberbeck–Boussinesq (NOB) effects, which applies to the case of relatively weak
(and linear) temperature dependences, was extended to arbitrary variations with
temperature. It is conceptually useful to divide the variations with temperature of the
fluid properties into two disjunct parts. One part is chosen so that it preserves the
reflection symmetry of the system about the horizontal midplane, while the remainder
breaks that symmetry. The latter, exclusively considered by Busse, leads (in contrast to
the formation of the typical convection rolls in RBC) to hexagons immediately above
the transition to convection at the critical temperature difference �Tc. The symmetric
part, on the other hand, does not prevent the bifurcation to rolls, but may become
very important for the determination of �Tc. In the experiment the fluid was sulfur
hexafluoride at temperatures above but close to the gas–liquid critical point, where all
fluid properties vary strongly with temperature. All measurements were done along
isobars by varying �T . Patterns were observed above onset (�T � �Tc), while for
the conduction state at �T <�Tc there were only fluctuations induced by Brownian
motion. When the mean temperature Tm = (Tb + Tt )/2 was such that the density ρ

at Tm was equal to the critical density ρ∗, the mirror symmetry about the horizontal
midplane of the sample was essentially preserved. In that case, as expected, we found a
direct transition to rolls and the critical temperature difference �Tc was considerably
shifted compared to the critical value �Tc,OB in the absence of NOB effects. When,
on the other hand, Tm was not located on the critical isochore, the NOB effects
broke the reflection symmetry and led to a hysteretic transition from fluctuations to
hexagonal patterns. In this latter case the hexagonal pattern, the observed hysteresis
at onset and the transition from hexagons to rolls at larger �T were consistent with
the ‘classical’ predictions by Busse.
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1. Introduction
Convection of a fluid confined between two parallel horizontal plates and heated

from below (Rayleigh–Bénard convection or RBC) is a standard paradigm of
pattern-forming instabilities in spatially extended nonlinear systems (see for instance
Bodenschatz, Pesch & Ahlers 2000). The main control parameter is the temperature
difference �T across the fluid layer between the bottom plate (at temperature T = Tb)
and the top plate (at T = Tt <Tb). The critical temperature difference �Tc is defined as
the smallest �T at which the spatially uniform basic state becomes linearly unstable.
In RBC the first destabilizing modes to acquire a positive growth rate as �T increases
beyond �Tc are characterized by the critical wavenumber qc. Since qc is non-zero,
these modes give rise to spatially varying convection patterns.

RBC usually is studied in the Oberbeck–Boussinesq (OB) approximation (Oberbeck
1879; Boussinesq 1903). There the temperature dependences of the thermal diffusivity
κ and the kinematic viscosity ν are neglected. In addition, the density (which provides
the buoyancy force crucial for RBC) is assumed to vary linearly as a function of T

between Tb and Tt , implying that the thermal expansion coefficient α is constant. In
this approximation the bifurcation to convection rolls at �T =�Tc,OB is stationary
and continuous, i.e. supercritical (Schlüter, Lortz & Busse 1965). Thus the onset of
convection �Tc,exp observed in experiments is expected to agree with �Tc,OB within
the experimental resolution.

There is a sizable literature devoted to the theoretical study of so called non-
Oberbeck–Boussinesq (NOB) effects that occur when the assumptions of the OB
approximation break down. An important study of weak NOB corrections near the
onset of convection, i.e. for �T ≈ �Tc, was carried out by Busse (1967). He considered
the temperature variations of κ, ν and α to be small and kept them in the leading-
order linear approximation. As a result the standard supercritical bifurcation to rolls
in the OB system is replaced by a hysteretic transcritical bifurcation to a stationary
hexagonal pattern, while �Tc and qc remain unchanged. As a consequence, in
experiments the onset of convection in the form of hexagons at �Tc,exp slightly below
�Tc may occur in the presence of finite-amplitude perturbations, inhomogeneities
near boundaries or thermally induced fluctuations.

The various implications of NOB conditions were confirmed to a large extent by
several experiments (Hoard, Robertson & Acrivos 1970; Ahlers 1980; Walden &
Ahlers 1981; Ciliberto, Pampaloni & Perez-Garcia 1988; Ciliberto et al. 1990; Perez-
Garcia, Pampaloni & Ciliberto 1990; Bodenschatz et al. 1991, 1992; Pampaloni et al.
1992). In the present paper we address, both experimentally and theoretically, several
new aspects of how NOB effects manifest themselves when the assumption of weak
temperature variations of the fluid properties in the sense of Busse ceases to be valid.
This situation prevails, for instance, in a gas near its gas–liquid critical point, even for
�T ≈ �Tc, and this is the system studied experimentally in the present project (for
earlier experiments, see e.g. Assenheimer & Steinberg 1993; Roy & Steinberg 2002).

Our theoretical analysis is based exclusively on a deterministic hydrodynamic
description of the system. Although thermally induced fluctuations (Swift &
Hohenberg 1977; Hohenberg & Swift 1992) (which are neglected in the deterministic
equations) become stronger near the critical point and are readily observed below the
onset of convection (Oh & Ahlers 2003), we found no indications that the influence
of thermal noise had to be included in the comparison with the experimental results
for the bifurcation points and patterns reported in this paper. In any case, an analysis
of NOB effects using fluctuating hydrodynamics (Landau & Lifshitz 1987) would be
a highly demanding task.
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For completeness we mention that a significant effort was devoted recently also to
the study of NOB effects well above the onset of convection in a regime where the
fluid flow is highly turbulent (Wu & Libchaber 1991; Zhang, Childress & Libchaber
1997, 1999; Ahlers et al. 2006, 2007; Sugiyama et al. 2007; Ahlers et al. 2008).

In order to illustrate the issues that arise in near-critical fluids, we describe their
properties briefly in § 2 and show qualitatively that the NOB effects can lead to a
considerable increase of �Tc beyond the value for the OB case. There we show also
that the ‘classical’ signature of NOB convection, the bifurcation to hexagons, may
remain unobservable for those systems. It should be stressed that we used very thin
fluid layers, of thickness d ≈ 50 μm, in the present work. In that case the stabilizing
compression of the fluid under its own weight near the bottom of the sample is
completely negligible. However, this mechanism can be important near the critical
point for fluid layers with thicknesses of the order of 1 cm or more; in those cases it
can also lead to a considerable increase of �Tc compared to the OB value (see e.g.
Ashkenazi & Steinberg 1999; Kogan & Meyer 2001).

In § 3 we describe briefly the experimental set-up. Section 4 is devoted to a detailed
discussion of the experimental results. In § 5 we provide the background for theoretical
analysis of NOB effects in the present system and discuss the resulting shifts of �Tc.
Section 6 is devoted to the weakly nonlinear regime. In this context also the theoretical
results of Busse were re-examined. This led to adjustments of some of the numerical
values of coefficients given by Busse (1967). Section 7 contains some concluding
remarks, and finally some technical details can be found in two appendices.

2. Qualitative features of RBC in ‘near-critical’ fluids
The working fluid used in the experiment was sulfur hexafluoride (SF6) with

temperatures Tt , Tb slightly above the critical temperature T ∗ =318.72 K and at
pressures just above the critical pressure P ∗ =37.55 bars. Under those conditions the
fluid density ρ was close to the critical density ρ∗ = 742 kg m−3. The equation of state
of SF6 was taken from the work of Wyczalkowska & Sengers (1999). In figure 1 we
show the phase diagram in the temperature–density plane. The dashed line denotes
the co-existence curve of liquid and vapour and the dotted lines the critical isochore
(ρ∗) and isotherm (T ∗).

In the present paper we report measurements on the three isobars Pis = 38.09, 38.33,
and 39.59 bars illustrated by the solid lines in figure 1. Some of the results have been
reported briefly in previous publications (Ahlers & Oh 2003; Oh & Ahlers 2003; Oh
et al. 2004; Ahlers 2006). The pairs of symbols (open circles, solid circles, stars) on
each isobar indicate the bottom temperatures Tb (left) and top temperatures Tt (right)
at the experimentally observed onset of convection, i.e. for �T = Tb − Tt = �Tc,exp .
Note that the small temperature differences involved correspond nevertheless to large
temperature gradients because of the small thickness d ≈ 50 μm of the fluid layer used
in the experiments. In three experimental runs (indicated as E-I, E-II, E-III in the
following) the average temperature Tm =(Tb + Tt )/2 was chosen so that the condition
ρ(Tm) = ρ∗ was fulfilled to high accuracy. Two additional runs (indicated as E-IV, E-V
in the following), on the isobar Pis = 39.59 bars, were made with ρ(Tm) <ρ∗. For these
the temperature extrema of the fluid at onset are shown as solid circles and stars.
The experimental parameters for the five runs are listed in table 1. Only the total
critical temperature �Tc,tot across the whole convection cell including the confining
plates is measured. The critical temperature difference �Tc,exp across the fluid layer is
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Experiment E-I E-II E-III E-IV E-V

Pis ( bars) 38.091 38.326 39.587 39.587 39.587
Tm (◦C) 46.219 46.500 48.002 48.097 48.296

(Tm − T ∗)/T ∗ 0.0020 0.0029 0.0076 0.0079 0.0086
(ρm − ρ∗)/ρ∗ −0.0005 −0.0003 0.0000 −0.0478 −0.1212

d (μm) 34.3 34.3 59 59 59
�Tc,tot (K) 0.304 0.930 0.616 0.670 1.023
Pattern R R R H + R H

Table 1. Parameters for and results from the five experimental runs E-I–E-V. The pressure Pis ,
mean temperature Tm, relative distances of Tm and ρm from the critical values T ∗ and ρ∗, cell
thickness d , experimental critical temperature difference �Tc,tot across the whole convection
cell including the top and bottom plates, and the observed type of pattern (R: rolls, H :
hexagons) are given.
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Figure 1. Temperature–density plane near the critical point (CP) of SF6. Dashed line:
coexistence curve of liquid and vapour. Dotted lines: critical isochore (ρ∗) and isotherm
(T ∗). Solid lines from bottom to top: the isobars Pis = 38.09, 38.33 and 39.59 bars used in the
experiment. Each symbol pair on the solid lines represents the highest and lowest temperature
at the onset of convection for a given mean sample temperature Tm. The open circles are for
runs with ρ(Tm, Pis) = ρ∗. The solid circles and stars on the isobar Pis = 39.59 bars correspond
to Tm = 48.10 ◦C and 48.30 ◦C, respectively.

then calculated as �Tc,exp = r�Tc,tot , where r is an estimate of the ratio of the thermal
resistance of the fluid layer to the total thermal resistance (for details see § 3).

As usual, we introduce the Rayleigh number R as a non-dimensional measure of
the applied temperature difference �T :

R ≡ �T/Ts =
αmCp,mρ2

mgd3

λmηm

�T . (2.1)
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It involves the temperature scale Ts defined as

Ts ≡ κmνm

αmgd3
=

λmηm

αmCp,mρ2
mgd3

, (2.2)

where g is the gravitational acceleration. The subscript ‘m’ denotes that the material
constants are evaluated at the temperature T = Tm. In the second term on the r.h.s. of
(2.2) we introduced the shear viscosity η = νρ and the thermal conductivity λ=Cpρκ ,
where Cp denotes the heat capacity at constant pressure. Note that in the present
work Tb and Tt always were varied at constant Tm. In the framework of the OB theory
the critical temperature difference �Tc,OB is given by

�Tc,OB = Rc,OBTs with Rc,OB = 1707.8. (2.3)

According to (2.3) small values of Ts lead to small values of �Tc,OB . As realized, for
instance, by Assenheimer & Steinberg (1993), this situation prevails near a liquid–gas
critical point, since both α and Cp diverge strongly as T ∗ is approached from above.
The thermal conductivity λ diverges less strongly than α and Cp , and η remains finite.
Thus, at constant d the temperature scale Ts (2.2), and thus also �Tc,OB (2.3), will
vanish at T ∗. For completeness, we mention that upon approaching the critical point
the isothermal compressibility

kT = ρ−1 ∂ρ

∂p

∣∣∣
T

= α
∂T

∂p

∣∣∣
ρ

(2.4)

(p denotes the pressure) diverges as well. However, we will demonstrate in § 5.1 that
the ensuing strong pressure dependence of the density is not important for the present
case.

For the evaluation of �Tc,OB according to (2.2), (2.3) we need, besides α(T ), ρ(T ),
and Cp(T ) (Wyczalkowska & Sengers 1999), the shear viscosity η(T ) and the thermal
conductivity λ(T ). For η(T ) we used a fit of a piecewise smooth function to data
from Hoogland, van den Berg & Trappeniers (1985) and from Strehlow & Vogel
(1989). This approach neglects a small anomaly of the viscosity at the critical point.
For λ(T ) we used a smooth-function fit to a variety of conductivity data in the
literature (Lis & Kellard 1965; Lim et al. 1971; Swinney & Henry 1973; Kestin &
Imaishi 1985). These data define λ quite well along the critical isochore, but are less
definitive away from ρ = ρ∗ (i.e. for the runs E-IV and E-V). In table 2 we present the
material parameters at T = Tm for our five experimental runs together with the Prandtl
number σ = νm/κm = Cp,mηm/λm. Note that σ diverges as well as T → T ∗. Furthermore
we included the data for r = �Tc,exp/�Tc,tot which depend on d/λm (see § 3).

In the first row of table 3 we give the experimental values �Tc,exp of the critical
temperature differences across the fluid. With the use of the material parameters
in table 2 and (2.3) one obtains the OB critical temperature differences �Tc,OB for
the five experimental runs. They are listed in the second row of table 3. In the
third row of that table we show the corresponding experimental critical temperature
differences normalized by �Tc,OB , i.e. δTc,exp =�Tc,exp/�Tc,OB . The following two rows
present our theoretical NOB results, which will be discussed in detail below in § 5.
The fourth row contains δTc,theor = �Tc/�Tc,OB , where �Tc was determined from the
exact linear stability analysis of the basic state (5.23). Finally, the fifth row shows
an ‘analytical’ approximation to the NOB critical temperature difference in the form
δTc,app = �Tc,app/�Tc,OB , where �Tc,app is given by (5.28).

Although the values of �Tc,OB shown in table 3 are of the same order of magnitude
as the experimental �Tc,exp , the latter turn out to be systematically larger than �Tc,OB
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Experiment E-I E-II E-III E-IV E-V

αm (1/K) 2.459 1.590 0.498 0.472 0.339
CP,m (kJ kg−1 K−1) 89.52 58.35 19.07 18.12 13.28

ρm (kg m−3) 741.6 741.3 742.0 708.4 652.5
105kT,m (m2 N−1) 2.936 1.900 0.593 0.586 0.454

102λm (W m−1 K−1) 7.53 6.897 5.774 5.70 5.521
105ηm (kg m−1 s−1) 4.023 4.024 4.040 3.820 3.486

σ 47.81 34.04 13.34 12.14 8.33
r 0.451 0.473 0.647 0.652 0.658

Table 2. Material parameters at T = Tm for the experiments E-I–E-V together with the
Prandtl number σ and r = �Tc,exp/�Tc,tot (see § 3).

Experiment E-I E-II E-III E-IV E-V

�Tc,exp(K) 0.131 0.440 0.398 0.437 0.673
�Tc,OB (K) 0.1082 0.2352 0.3787 0.4313 0.8529

δTc,exp 1.206 1.87 1.053 1.013 0.789
δTc 1.304 1.82 1.06 1.032 0.879

δTc,app 1.35 1.92 1.05 1.04 0.92

Table 3. Experimental and theoretical values of the critical temperature differences. The first
row gives the experimental estimate of the critical temperature difference �Tc,exp = r�Tc,tot

across the fluid. Here r is from table 2 and �Tc,tot is from table 1. The second row
contains the OB values �Tc,OB given by (2.2) and (2.3). The third, fourth and fifth rows give
critical temperature differences normalized by the OB value �Tc,OB : δTc,exp = �Tc,exp/�Tc,OB ,
δTc = �Tc/�Tc,OB from (5.23), and δTc,app = �Tc,app/�Tc,OB from (5.28)

for the runs E-I, E-II, E-III, while �Tc,exp <�Tc,OB for E-V. To understand this feature
we realize that the vicinity of the critical point is characterized not only by large
values of Cp,m and αm, but also by their strong temperature dependences along an
isobar. This is demonstrated in figure 2. There we show Cp for the experiment E-I as
function of the reduced temperature

δ̃(T ) = (T − Tm)/�Tc,OB (2.5)

as a representative example. One sees that Cp decreases by almost a factor of 2.5

from its maximum at δ̃ = 0 (i.e. at T = Tm) as T approaches Tb or Tt . The temperature
variation of α is comparable while the temperature dependences of the other material
parameters are much weaker (see figure 11).

To capture approximately the general behaviour of the NOB critical temperature
difference, it seems reasonable to replace Ts in (2.3) by a suitable average T s over the
temperature interval Tb � T � Tt . A reasonable choice for T s would be (2.2), but with
Cp,m and αm replaced by their corresponding averages Cp and α. Inspection of figure 2,

as well as of figure 11, illustrates that α < αm and Cp <Cp,m for the experiments E-

I–E-III. Thus T s >Ts and �Tc/�Tc,OB = T s/Ts > 1. This estimate is confirmed by
the experimental and the exact theoretical critical temperature differences presented
in table 3. In contrast, we expect �Tc/�Tc,OB < 1 for E-V since α, Cp,m <αm, Cp,m.
This is confirmed as well in table 3. The approach described above will be put
on a more sound theoretical foundation in § 5. Considering the resulting values
for �Tc,app/�Tc,OB (see (5.28)) in table 3, the approximation scheme works quite
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Figure 2. The heat capacity at constant pressure CP as a function of δ̃ = (T − Tm)/�Tc,OB

for Pis = 38.09 bars, and for Tm = 46.22 ◦C chosen so that ρ(Tm) = ρ∗. The two open circles
correspond to the values Tm ± �Tc,exp/2 for the experimental run E-I.

well. Thus it is apparent that the values of Cp/Cp,m and α/αm, which become 1
in the OB case, play a crucial role in determining the shifts of �Tc in the NOB
case.

It is important to realize that the averages Cp and α reflect only the contributions

to Cp(δ̃) and α(δ̃) which are even in δ̃. If only these even-in-δ̃ terms are kept for the
other material parameters as well, the hydrodynamic equations obey the Boussinesq
symmetry, i.e. they are invariant under the reflection z → −z at the horizontal midplane
of the cell.

The odd-in-δ̃ contributions to the material parameters, on the other hand, which
break the Boussinesq symmetry, will not modify �Tc significantly, but are responsible
for the ‘classical’ NOB effects: In their presence, the nature of the bifurcation and the
convection planform near onset change qualitatively. Instead of a bifurcation to rolls,
a transcritical bifurcation to a hexagonal pattern generally takes place. Associated
with that bifurcation is a saddle node located at ε = εa < 0 below which the hexagons
cease to exist and only the conduction state is stable.

Here and in the following we use

ε = �T/�Tc − 1 (2.6)

as the conventional reduced distance from onset. With increasing ε a point of
marginal stability of rolls is reached at εr > 0. Beyond εr both rolls and hexagons
can exist until εb > εr where hexagons become unstable (for more details, see § 6).
Inspection of figure 2, as well as of figure 11, shows that the odd-in-δ̃ terms in
the material parameters are very small when Tm is chosen so that ρ(Tm, Pis) = ρ∗.
Thus within our experimental resolution only rolls should be seen near onset for
the three runs E-I, E-II and E-III. This is indeed confirmed by the experiments
(see § 4) and has been documented already in the last row of table 1. The situation is
different for the two runs E-IV and E-V with ρ(Tm, Pis) < ρ∗. Here the corresponding
odd-in-δ̃ terms become considerably larger, and indeed we observe hexagons in the
experiments.

The classical NOB scenario was quantified by Busse (1967) in a pioneering paper.
For simplicity he first neglected the even-in-δ̃ corrections to α, Cp , etc. completely and
performed a perturbative analysis with respect to the odd corrections to linear order
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in δ̃. He thus used the following representation of the material parameters:

ρ̂(T ) ≡ ρ(T )

ρm

= 1 − γ0

(
δ̃ + γ1δ̃

2
)
, (2.7a)

ν̂(T ) ≡ ν(T )

νm

= 1 + γ2δ̃, (2.7b)

λ̂(T ) ≡ λ(T )

λm

= 1 + γ3δ̃, (2.7c)

Ĉp(T ) ≡ Cp(T )

Cp,m

= 1 + γ4δ̃. (2.7d )

From (2.7a) the thermal expansion coefficient α in this approximation is given by

α(T ) = − 1

ρ(T )

∂ρ(T )

∂T
=

γ0

�Tc,OB

(1 + (γ0 + 2γ1)δ̃), (2.8)

and consequently αm = γ0/�Tc,OB . Since we have access to the temperature
dependences of the material parameters, the γi are available as well.

The strength of the classical NOB effects usually is characterized by the Busse
parameter

Q =

4∑
i=1

γiPi . (2.9)

The coefficients Pi are linear functions of σ −1 and were calculated by Busse in the
limit σ → ∞. Except for a calculational error in P3, they were confirmed by our own
calculations (for more details see § 6.1). We obtained the following expressions (first
given by Tschammer 1996):

P0 = 2.676 − 0.361/σ , P1 = −6.631 − 0.772/σ,

P2 = 2.765 , P3 = 9.54,

P4 = −6.225 + 0.3857/σ. (2.10)

Busse obtained expressions for εa , εr , and εb; all of them are proportional to Q2

(see § 6.1 and Appendix A). To a good approximation the hexagonal patterns can be
described by three coupled Ginzburg–Landau equations (see e.g. § 6) which have a
potential. One can then define (see Bodenschatz et al. 1991 and references therein)
a point εT with εa < εT < 0 where the potentials of the pure conduction state and
the hexagons are equal. In a sample with a gradient of ε, for instance because of a
small spatial variation of the spacing d over the cell, the conduction state and the
hexagonal pattern may be able to co-exist in different spatial regions. In that case
one would expect a front between them at a location where ε = εT . Similarly, at a
point εr < εT ′ <εb the potentials of rolls and of hexagons are equal, and in principle
a co-existence of rolls and hexagons could occur in a non-uniform sample. In the
presence of localized inhomogeneities, such as the sidewalls or even very small local
imperfections, a transition between patterns can be induced at εT or εT ′ instead of at
the points of marginal stability.

To give a first impression of the magnitude of the classical NOB effects, we listed
in table 4 the coefficients γi (2.7), the values of Q (2.9), and the values of the
stability limits based on the explicit expressions in Appendix A, for each of the five
experimental runs. We obtained the values of the γi by using the derivative of the
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Experiment E-I E-II E-III E-IV E-V

γ0 0.2660 0.3736 0.1887 0.2031 0.2881
γ1 −0.0633 −0.1131 −0.0751 −0.3520 −0.9118
γ2 −0.0639 −0.0892 −0.0444 −0.0349 −0.0192
γ3 −0.0510 −0.0692 −0.0271 −0.1106 −0.0791
γ4 0.2012 0.2111 0.0396 −0.4705 −1.4458
Q −0.78 −0.47 0.38 4.66 15.01

103εa −0.100 −0.036 −0.025 −3.67 −38.1
103εr 8.77 3.14 1.95 298 (3030)
103εT ′ 12.09 4.33 2.69 411.8 (4180)
103εb 29.99 10.76 6.68 (1024) (10400)

Table 4. The coefficients γi (2.7), the Busse parameter Q (2.9), and the stability limits εa, εr , ε
′
T ,

and εb based on the classical NOB expressions shown in § 6.1 and Appendix A. The data in
parentheses have relatively large uncertainties, as discussed in § 4.1.

material parameters (2.7) with respect to δ̃ at δ̃ =0. In much of the literature it has
been customary to calculate γi via a finite difference such as γ4 = Ĉp(Tt )−Ĉp(Tb), using
the material parameters at the top and the bottom of the layer. This procedure is
reliable if the temperature dependences of the material parameters are well described
by the approximations given in (2.7) over the whole temperature range, but is not
really justified in our case of strong temperature variations.

Qualitatively, the patterns observed near onset (see table 1) are well described by
the parameters in table 4: The small values of Q for the runs E-I, E-II and E-III,
which led to small values of εr, εb ∼ Q2, are consistent with the fact that only rolls
are observed in the experiments. For E-IV we obtained a much larger Q value,
and indeed we were able to observe the hysteretic transition to hexagons and the
subsequent transition to rolls with increasing ε. Consistent with the very large Q value
for E-V, which implies εr > 1, a transition from hexagons to rolls was not reached
in the experiment. The experimental details and a comparison with the theory are
presented in § 4.

3. Apparatus and procedures
The measurements were made with sulfur hexafluoride (SF6) near but slightly

above its gas–liquid critical point. The apparatus and experimental procedures were
described in detail by de Bruyn et al. (1996), and the particular modifications required
for working near the critical point were discussed by Oh et al. (2004). We mention
briefly that the entire sample was surrounded along the sides and bottom by a can
that was maintained at the temperature of the top-plate cooling water. The can
contained a volume of fluid much larger than that of the sample. There was optical
access to the sample from the top. The pressure was held constant to approximately
± 1 mbar by adjusting the temperature of an external gas volume that was connected
to the can by a capillary. This adjustment was done in response to the readout of a
pressure gauge through a computer-controlled feedback loop.

The bottom plate of the convection cell was an optically flat sapphire of thickness
0.318 cm on top of an aluminum plate. A metal-film heater glued to the bottom of the
aluminum plate provided the heat current. A thin silver film was evaporated on the
top surface of the sapphire to provide a mirror for the shadowgraphy. The top plate
was also an optically flat sapphire of 0.318 cm thickness. A temperature-controlled
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water bath cooled the top sapphire; it was maintained at or very near the sample
pressure so as to minimize sample distortion due to a pressure difference across the
top sapphire. At the top of the water bath optical access was available through a
non-crystalline quartz window.

The cell spacing was fixed by a porous paper sidewall with an inner (outer) diameter
of 2.5 (3.5) cm. Since the top sapphire was supported along its perimeter which had
a diameter of 10 cm (i.e. considerably larger than the cell wall), the force exerted
on the cell top by the bottom plate and the wall caused a slight upward bowing
of the initially flat top. Over the entire sample diameter this yielded a radial cell-
spacing variation corresponding to about one circular fringe when illuminated with an
expanded parallel He–Ne laser beam. This variation of the thickness by about 0.3 μm
assured that convection would start in the cell centre, rather than being nucleated
inhomogeneously near the cell wall. Assuming a parabolic radial profile for the cell
spacing, we estimate that the spacing was uniform to much better than 0.1 % over the
1.9 × 1.9 mm2 area near the cell centre. The actual sample thickness was measured
interferometrically (de Bruyn et al. 1996) and found to be 34.3 μm for some of the
measurements and 59 μm for the others.

Patterns were visualized by the shadowgraph method (de Bruyn et al. 1996) by
recording the pictures in the uniform central region mentioned above. At each pressure
Pis and mean temperature Tm a sequence of images with �T =0 was averaged and
used as a reference image. All other images were then divided by this reference.
Fourier transforms of the ratios were obtained, and the integrals of the squares of
their moduli yielded the total power in Fourier space, equivalent to the variance
in real space. The reference-divided image was re-scaled in proportion to its own
variance to yield a rendering of the patterns over a suitable grey-scale range.

In experiments on RBC with very thin samples it is difficult to determine the
temperature drop �T across the fluid layer and the mean temperature Tm of the fluid
with high accuracy. Because of the small sample thickness the thermal resistance of the
sample was comparable to those of the top and bottom confining plates even though
these plates had much higher thermal conductivities. Thus an imposed �Ttot = (TBP −
Tbath) (TBP and Tbath are the imposed bottom-plate and bath temperatures, respectively)
is the sum of the temperature differences across the bottom aluminum plate �TAl ,
across the boundary between the aluminum plate and the bottom sapphire �Tb1,
across the bottom sapphire �Tsb, across the sample �T , across the top sapphire �Tst

and across a boundary layer above the top sapphire in the water bath �Tb2. From
estimates of the thermal resistances of these sections we determined the ratio r ≡
�T/�Ttot . Although the top- and bottom-plate resistances were essentially constant
over the narrow temperature range of the experiments, the sample resistance changed
from one run to another because the sample conductivity varied and because the
sample spacing was not always the same. The values of r for �Ttot = �Tc,tot are given
in table 2 for each experimental run. By definition they yield the critical temperature
difference �Tc,exp across the fluid layer from the measured �Tc,tot . Near onset they
also give the temperature differences �T across the sample from the total differences
�Ttot with sufficient accuracy. The systematic errors in �T due to uncertainties of r

are difficult to estimate, but are probably a few percent on the critical isochore and
larger away from it.

The small thermal resistance of the sample also required a special procedure to
assure that the sample was indeed at or near the temperature corresponding to ρ∗

or a known temperature increment away from it. Before a run on a given isobar
was started, a fixed �Ttot sufficiently small for �T to be below the onset value of
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convection was imposed. Measurements of the power of shadowgraph images of
the fluctuations as a function of the mean temperature Tm,tot = (TBP + Tbath)/2 then
were made. Thereafter Tbath and TBP were adjusted so as to hold the mean sample
temperature Tm constant at the value of maximum fluctuation power throughout a
run in which the temperature difference �T was changed in steps. In practice it
turned out that the thermal resistances of the top plate and the composite bottom
plate were dominated by the sapphires and thus were nearly equal. As a consequence
a constant Tm,tot was nearly equivalent to a constant Tm. We note that the maximum
of the fluctuation power does not necessarily occur precisely on the critical isochore;
but the deviation is small.

4. Experimental results
This section is devoted to a detailed discussion of the five experimental runs listed

in table 1. We give the results for �Tc,exp (see table 3), show the patterns that are
observed near onset, provide data for the intensity of these patterns and examine how
these data compare with the theoretical results.

4.1. General remarks about the comparison with theory

As already discussed in § 2, we find considerable shifts of �Tc,exp relative to �Tc,OB

(see table 3). These shifts are described satisfactorily by the complete linear stability
analysis presented in § 5. This analysis can be performed only numerically. However,
the relevant physical mechanism could be elucidated in terms of a quasi-analytical
approach.

We demonstrated already in § 2 that only the Busse parameter Q is needed to
explain qualitatively the general trend of the observed patterns in the nonlinear regime
near onset. This trend could be understood in the framework of the classical NOB
analysis (Busse 1967; see the predictions given in table 4). However, a quantitative
understanding of the experimentally observed stability limits is not possible within
the framework of this analysis for several reasons. First, this theory utilizes a linear
material-property approximation (2.7). This is in conflict with the strong nonlinear
temperature variations (see e.g. figure 2) in the present case. These variations are
responsible for the �Tc shifts. In addition, the classical NOB effects are assumed to
be small, which implies small γi, i = 1, . . . , 4 in (2.7). This stands in contrast to the
large γi values for E-IV and E-V. However, keeping the full temperature dependences
of the material parameters only leads to a partial improvement of the stability limits
(compare the entries in tables 4 and 8) because even our complete analysis is based
on a weakly nonlinear theory, which in general is justified only at small |ε|. Thus, the
large values of εr and εb of order 1 in tables 4 and 8 are not trustworthy.

Last but not least, for the present near-critical fluids all theoretical estimates, in
particular the stability limits, depend sensitively on the average temperature Tm, the
pressure Pis , and the precise knowledge of the temperature dependence of the material
parameters. As mentioned already in § 2, especially the uncertainties of λ for the
experimental runs E-IV and E-V lead to relatively large uncertainties of the derived
quantities. Even for runs E-I–E-III, where the properties are relatively well established,
we find that very small changes within the small experimental uncertainties of Pis

and/or Tm can have a significant effect on the material parameters. As a consequence
of the combined effect of all the uncertainties discussed before, the agreement between
theory and experiment, in particular with respect to the stability limits, is expected to
be only semiquantitative in the best cases.
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Figure 3. Shadowgraph images (top row) and the moduli of their Fourier transforms (bottom
row) for (a–c) �T =0.3972, 0.3985 and 0.3998 K at Pis = 39.59 bars and Tm = 48.00 K◦C
(E-III). Each image covers an area of 0.96 × 0.96 mm2. The centre of the Fourier transform
was removed to eliminate an instrumental noise peak near the origin.

4.2. Near-OB convection on the critical isochore

The NOB effects are expected to be smallest at the highest pressure with the maximal
value of Tm − T ∗. Thus, the isobar Pis = 39.587 bars was used to study a case
that conforms fairly well to the Boussinesq approximation. The mean temperature
was adjusted to be 48.000 ◦C (on our temperature scale) which yielded a maximum
of the shadowgraph intensity below onset and thus was presumed to correspond
approximately to ρ(Tm) = ρ∗. The experimentally found onset for this case (E-III) is
illustrated by the open circles on the top solid line in figure 1.

Figure 3 shows three shadowgraph images of the patterns near the centre of the
sample and the moduli of their Fourier transforms. In this experiment �T was
decreased in small steps from larger values where there was a well-developed roll
pattern, with an equilibration time at each step of about 160 min. We note that
the rolls above onset are influenced significantly by thermal noise. The response to
the noise yields the superimposed small-scale structure that leads to a remnant faint
ring in Fourier space, and results in the long-wavelength undulations of the rolls.
Below onset, at �T = 0.3972 K (left image), one sees only random fluctuations driven
by the Brownian motion of the molecules. This leads to a nearly uniform ring in
Fourier space, reflecting the rotational invariance of the RBC system. The middle
image, at �T = 0.3985 K, already reveals some organization in a preferred direction,
although the fluctuations still dominate. Finally, in the right image at �T = 0.3998 K,
a clear roll structure is evident and gives two well-defined spots in Fourier space. As
discussed by Oh & Ahlers (2003), even in this last case above onset fluctuations still
exist and lead to a background ring in the Fourier transform modulus. As expected
from the relevant entries in table 8 (which are of the same order of magnitude as the
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Figure 4. The total shadowgraph power as a function of �T for Pis = 39.59 bars and
Tm = 48.00 ◦C (E-III). The open circles correspond to the images shown in figure 3.

approximate analytical ones in table 2), none of these images show any evidence of a
hexagonal structure that would be expected if classical NOB effects had a noticeable
influence. This is particularly clear by inspection of the Fourier transforms in figure 3
which reveal the formation of a single pair of peaks, characteristic for rolls, as �T is
increased. In figure 4 we show the total power obtained from integrating the square
of the Fourier transform modulus after removal of small experimental contributions
near the centre. The open circles correspond to the images shown in figure 3. One
sees a well-defined onset of convection, and a continuous increase from zero of the
power beyond onset.

On the basis of the experimental data in figures 3 and 4, we chose �Tc,exp =0.398 K
(listed in table 3). Within ± 0.001 K, the same value of �Tc,exp was found in another
experimental run where �T was increased. This value is about 5 % higher than the
corresponding Boussinesq value �Tc,OB = 0.379 K (see table 3) obtained from (2.2),
(2.3) and the material properties at Tm (see table 2). We consider this difference to
be larger than the uncertainties due to the fluid properties. In fact there is very good
agreement with the increase of the theoretical �Tc by about 6 % compared to �Tc,OB .

4.3. Classical NOB convection away from the critical isochore

Moving away from the critical isochore at the same pressure Pis = 39.59 bars,
the onset of convection changes qualitatively. For the run E-IV (Tm = 48.100 ◦C)
the approximate classical NOB theory (see table 4) yields the estimate Q =4.66,
considerably larger than at Tm = 48.00 ◦C in § 4.2. The very good agreement of
the approximate stability limits (table 4) and the fully numerical ones (table 8) is
reassuring. A sequence of images for E-IV is shown in figure 5. This experiment was
done by changing �T in steps of 0.6 mK, and equilibrating at each step for 40 min
before taking the image. From bottom to top one sees first only fluctuations, then
the formation of an island of hexagons, then a spreading of the area occupied by the
hexagons. The hexagons are of course the hallmark of the transition to convection in
a NOB system. The initial formation of the small island is attributable to the small
inhomogeneity of the sample thickness (see § 3). No hysteresis was detectable at onset.
Given the small value of the theoretical εa � −3.2 × 10−3, this hysteresis should have
a width of only about 1 mK in a perfectly homogeneous system in the absence of
fluctuations and would not have been detected in the experiment. Figure 6 shows
the Fourier transform power corresponding to this case; one sees that the power
still increases continuously and gradually from the fluctuation values as �Tc,exp is
exceeded. The images and the power yield �Tc,exp = 0.437 ± 0.001 K (see table 3),
which deviates from the theoretical one in table 3 by 2 %.
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Figure 5. Shadowgraph images (left column) and the moduli of their Fourier transforms (right
column) for (from bottom to top) �T =0.4362, 0.4368, 0.4375 and 0.4388 K at Pis =39.59
bars and Tm = 48.10 ◦C (E-IV). Each image covers an area of 1.92 × 1.92 mm2. The centre of
the Fourier transform was removed to eliminate an instrumental noise peak near the origin.
From these images we estimate �Tc,exp = 0.437 ± 0.001 K.
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Figure 6. The total shadowgraph power as a function of �T for Pis = 39.59 bars and
Tm = 48.10 ◦C (E-IV). The open circles correspond to the images shown in figure 5.

Figure 7. Shadowgraph images (left column) and the moduli of their Fourier transforms
(right column) for (from bottom to top) �T = 0.5607 and 0.5672 K at Pis = 39.59 bars and
Tm = 48.10 ◦C (E-IV). Each image covers an area of 1.92 × 1.92 mm2. The centre of the Fourier
transform was removed to eliminate an instrumental noise peak near the origin. From these
images we estimate �Thr = 0.564 ± 0.003 K, corresponding to εhr = 0.29 ± 0.01.

As can be seen in figure 7, the hexagons persisted up to �Th,r = 0.564 ± 0.003 K,
where a transition to rolls occurred. This yields εh,r ≡ �Th,r/�Tc,exp − 1 = 0.29 ± 0.01
for the hexagon to roll transition. Measurements were also made, by the same method,
of the transition from rolls to hexagons that occurs as �T is reduced from high
values. They yielded εr,h = 0.26 ± 0.01, somewhat lower than the experimental value
of εh,r . The quantitative agreement with the theory (see tables 4 or 8) is not really
satisfactory. The transition point εh,r is comparable with εr � 0.3 where according
to the amplitude-equation description stable rolls exist. However, εh.r is considerably
below the theoretical estimate εT ′ = 0.42 for the point where the potentials of the
hexagons and rolls become equal. Apart from uncertainties with respect to the
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material parameters, the discrepancies might be attributed to a problematic use of
the weakly nonlinear analysis at larger ε, as has been discussed in § 4.1.

A more extreme case of classical NOB convection was found by increasing Tm

further on the same isobar to Tm = 48.30 ◦C (E-V). In that case the classical estimate
yields, according to table 4, a very large Q =15 and εa = −0.038. Thus one expects
a well-resolved hysteresis loop. Its existence is indeed clearly confirmed by the
experimental images in figure 8 (each of these images was taken after equilibration at
a given �T for 40 min; only every second step of �T is shown) and the corresponding
Fourier power shown in figure 9.

From these data we estimate �Tc,exp = 0.6728 ± 0.0006 K which implies a reduction
compared to �Tc,OB by a factor of 0.79. Inspection of table 3 shows that the reduction
of �Tc,OB is also predicted by the theory, but by a smaller amount corresponding to a
factor of 0.89. The experimental width of the hysteresis loop �Ts is about −3.3 ± 0.6
mK, yielding εs = �Ts/�Tc = −0.005 ± 0.001. This value is considerably smaller than
the theoretical value based on the full numerical calculation εa = −0.011 (see table 8),
while the classical NOB approach would predict an even larger εa = −0.038 (see
table 4). Part of this discrepancy may be due to a fluctuation-induced transition to
hexagons at a slightly negative ε, and to a transition from hexagons to fluctuations
at εT rather than at εa . However, we attribute the majority of the discrepancy to an
inadequately accurate knowledge of the material parameters. In contrast to E-IV, a
transition from hexagons to rolls is not observed for the run E-V within the range
of our experiment. This is consistent with the large theoretical values of εr and εb in
tables 4 and 8, which are, however, not reliable from a quantitative point of view
(see the discussion in § 4.1).

4.4. Non-Boussinesq effects on the critical isochore

Finally, we consider the cases on the lower two solid curves in figure 1. For these
ρ(Tm) is equal or very close to ρ∗ and the odd-in-δ̃ terms of the fluid properties
should be very small as already discussed in § 2. One finds that Q is quite small as
well (see table 4), consistent with the numerical values of the stability limits in table 8.
Thus we do not expect classical NOB effects for these cases. Images for the case
of Pis = 38.09 bars at Tm = 46.22 ◦C are shown in figure 10. They reveal a transition
from fluctuations to rolls, with no evidence of hexagonal structures. We obtained
�Tc,exp = 0.131 K, which is larger by a factor 1.21 than the OB value 0.108 K, in
modest agreement with the theory (see table 3).

From table 4 one sees that the case Pis = 38.33 bars (E-II) has a Q-value that is
even smaller than that of the Pis =38.09 bars case. Thus, at the level of classical
theory and also in line with the stability limits shown in table 8, the classical NOB
effects should be even smaller, although they would be expected to be unnoticeable
in either case. A transition from fluctuations to rolls indeed is found without any hint
of hexagons, but �Tc,exp = 0.440 K is larger than the OB value �Tc,OB = 0.235 K by a
factor of 1.86 compared to the corresponding ratio 1.2 for E-I discussed before. The
agreement with the theoretical ratio 1.82 in table 3 is very good.

4.5. Summary of experimental results

We demonstrated that the experiments on the critical isochore (E-I, E-II, E-III) agree
quite well with the theoretical calculations. They are characterized by a fairly small
Busse parameter Q; thus only rolls should be observable at onset as is indeed the
case. The measurements show a significant shift of �Tc.exp relative to the Boussinesq
value, in good overall agreement with the theory presented in § 5.2.
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Figure 8. Shadowgraph images of size 0.96 × 0.96 mm2 (each image has its own grey scale,
chosen on the basis of the variance of the image). From bottom to top, the images are for
�T = 0.6685, 0.6698, 0.6712, 0.6725K and 0.6738 K at Pis = 39.59 bars and Tm = 48.30 ◦C
(E-V). The left column was taken with increasing �T , and the right column with decreasing
�T . The hysteresis associated with the transcritical bifurcation is apparent.
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Figure 9. The shadowgraph intensity (in arbitrary units) on a logarithmic scale as a function
of the temperature difference �T on a linear scale at Pis =39.59 bars and Tm = 48.30 ◦C (E-V).
Open circles: increasing �T ; solid circles: decreasing �T . The vertical dashed lines correspond
to the best experimental estimates of the transitions.

Figure 10. Shadowgraph images of size 1.28 × 1.28 mm2 and the moduli of their Fourier
transforms for Pis = 38.09 bars and Tm = 46.22 ◦C (E-I). From left to right, the images are for
�T = 0.125 K, 0.131 K and 0.132 K.

In the experiment E-IV with a moderate Q =4.66, slightly away from the critical
isochore, one observes the classical NOB scenario: a bifurcation to hexagons at onset
followed by a transition to rolls at higher ε. Consistent with theoretical expectations,
the hysteresis at onset was too small to be observable in this case. The transition
to rolls occurred at a value of εh,r � 0.29, close to the point εr = 0.30 where rolls
are predicted to first become stable, but well below the point εT ′ = 0.41 (see table 4
and § 4.3) where rolls acquire a lower potential than hexagons. For completeness
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we mention another system with Q � 4, namely CO2 away from the critical point
(Bodenschatz et al. 1991; see also § 6.1). In that case the small hysteresis at onset
could be resolved because the temperature differences involved were two orders of
magnitude larger than those of the present work. Here theory and experiment agree
very well, but in contrast to the present case the linear approximation to the material
properties (2.7) is quite accurate. The largest quantitative discrepancies between theory
and experiment are found in the case of E-V, where only hexagons are observed near
onset (for details, see § 4.3). In this case the hysteresis at onset was resolved very well,
but found to be smaller by about a factor of 2 than the theoretical value. Since the
distance to the critical isochore is larger than for E-IV, the material parameters are
less well known in this case. In addition, as discussed in § 4.1, the weakly nonlinear
analysis becomes questionable due to the very large Busse parameter Q =15.

5. Theory of non-Boussinesq effects and the linear regime
In this section we first lay the general foundations of our theoretical treatment of

NOB effects in terms of an appropriate hydrodynamic description. The analysis is
simplified considerably by using an analytic description of the material parameters
as functions of temperature in terms of Padé approximants. Within a linear stability
analysis of the heat-conducting basic state of the fluid layer we then determine the
critical temperature difference �Tc. It can differ substantially from the OB value
�Tc,OB , as anticipated already in table 3. A weakly nonlinear treatment of NOB
effects is deferred to the next section.

5.1. On the temperature and pressure dependence of the material properties

In figure 2 we already showed a representative example of the heat capacity Cp as a

function of the dimensionless temperature δ̃ =(T − Tm)/�Tc,OB on the isobar of the
experimental run E-I; further relevant material parameters are shown in figure 11.
It turns out that their temperature dependences can be described very well in closed
form by rational functions of δ̃ in the form of Padé approximants. To achieve an
accuracy of better than 0.05 % it is sufficient to restrict the degrees of the polynomials
in the numerator and the denominator of the Padé approximant to be less than 5.

For instance, ρ̂(δ̃) ≡ ρ(δ̃)/ρm can be represented by

ρ̂(δ̃) =
1 + ρ1δ̃ + ρ2δ̃

2 + ρ3δ̃
3 + ρ4δ̃

4

1 + ρ5δ̃2 + ρ6δ̃4
, (5.1)

where ρm denotes the density at T = Tm, i.e. at δ̃ = 0. Thus the reduced thermal
expansion coefficient α(T )/α(Tm) = − ρ(T )−1∂T ρ(T )/α(Tm) as function of δ̃ is given
by

α̂(δ̃) ≡ α(δ̃)

αm

= − ∂δ̃ρ̂(δ̃)

ρ1

ρ̂(δ̃)−1

with αm ≡ α(0) = −ρ1/�Tc,OB. (5.2)

In analogy to ρ̂(δ̃) in (5.1), we fit all fluid properties, i.e. the set X = (ρ̂, α̂, Ĉp, η̂, λ̂),

normalized by their values at δ̃ =0 (i.e at T = Tm), by a Padé approximant

X =
1 + x1δ̃ + x2δ̃

2 + x3δ̃
3 + x4δ̃

4

1 + x5δ̃2 + x6δ̃4
. (5.3)

Note that in general we kept only even powers of δ̃ in the denominators in order to be
able to separate more easily the parts that are even and odd in δ̃. In table 5 we listed
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ρ̂ α̂ Ĉp η̂ λ̂

x1 −0.266 0.170 0.230 −0.336 −0.035
x2 4.961 3.133 3.130 5.710 26.080
x3 −0.837 0.292 0.260 −1.260 −2.110
x4 1.503 0 0 1.950 79.350
x5 4.93 8.53 8.44 5.63 26.71
x6 1.49 5.73 5.30 1.95 91.93

Table 5. Padé coefficients xi (5.3) for the members of the material-parameter set X for the
experimental run E-I
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Figure 11. The fluid properties along the isobar Pis = 38.09 bars (E-I) as a function of
δ̃ = (T − Tm)/�Tc,OB . Dotted lines: Data taken from the literature as detailed in § 2. Heavy
solid lines: Padé approximants, (5.3), to the material properties with the coefficients listed in
table 5 over the temperature range covered at the experimental onset of convection.

the Padé coefficients for the representative experimental run E-I. The corresponding
Padé approximants for the material properties have been included in figure 11; they
fit the data extremely well.
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While the temperature dependences of the material properties play an important
role, we shall now demonstrate by some rough estimates that the variations of these
properties with pressure are unimportant for the present experiments. Because of the
divergence of the isothermal compressibility kT (2.4) at T ∗, the density is very sensitive
to pressure variations. To get a feeling for the relevance of kT in our case we consider
the experiment E-I where Tm is closest to T ∗. In the conduction state the hydrostatic
pressure is determined by

dp

dz
+ gρ = 0. (5.4)

Thus the hydrostatic pressure difference �p between the lower and the upper plate is
of the order of gdρm � 2.5 × 10−6 bars which is very small compared to the average
pressure Pis � 40 bars. The pressure drop �p is associated with a difference �ρ > 0
of the density between the lower and the upper plate. Using the data for kT,m and
ρm from table 2 one finds �ρ � kT,mρm�p � 1.5 × 10−4ρm. This pressure-induced
variation of ρ is negligible compared to that introduced by the critical temperature
difference �Tc which is of the order of ρmαm�Tc ∼ 0.25ρm.

While ρ determines the buoyancy force in the momentum balance, the energy
balance (see e.g. Landau & Lifshitz 1987) requires the analysis of the temperature
and pressure dependences of the entropy S(T , p). With the use of

T dS = CpdT + Tρ−1αdp, (5.5)

the estimate Cp,m�Tc ≈ 104 J kg−1 of the first term on the r.h.s. of (5.5) is much larger

than the estimate Tρ−1α�p ≈ 2 J kg−1 of the second one. Moving away with Tm

from T ∗ (E-II → E-V), the relative importance of the pressure dependence is further
reduced. Thus in the case of a small cell thickness d and not in the immediate vicinity
of T ∗ as in the present experiments the pressure dependence of ρ and a fortiori of
the other material parameters can be safely neglected.

5.2. Basic equations and linear properties

We deal with a viscous fluid layer of thickness d and large lateral dimension L, i.e.
of large aspect ratio Γ = L/d � 1. We use a Cartesian coordinate system with the
horizontal directions x, y perpendicular to gravity g which in turn is antiparallel to
the z direction, i.e. g = g(0, 0, −1). The position vector r will appear in the following
notations: r ≡ (x, y, z) ≡ (x, z) ≡ (x1, x2, x3).

The fluid velocity u = (u1, u2, u3) is determined by the Navier–Stokes equation,
supplemented by the bulk force from gravity:

∂t (ρui) + ∂j (ρujui) = −∂ip − ρgδi3 + ∂jτ i,j (5.6)

with the pressure p and the stress tensor

τ i,j = η(∂iuj + ∂jui) + ηvδi,j ∂kuk, (5.7)

where δij denotes the Kronecker delta and ηv the bulk viscosity. We assume the
Einstein summation convention throughout the paper.

Mass conservation leads to the continuity equation

∂tρ + ∂j (ρuj ) = 0. (5.8)

Starting from the entropy balance and neglecting the pressure dependence as discussed
before we obtain finally the governing equation for the temperature T (see e.g. Landau
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& Lifshitz 1987):

∂tT + uj∂jT =
1

ρCp

∂j (λ∂jT ). (5.9)

As usual we have omitted viscous heating. The coupled system of the partial
differential equations (PDE) (5.6), (5.8), (5.9) has to be solved after implementing
the explicit Padé approximants (5.3) for the material properties as functions of the
temperature T . We are mainly interested in the stationary solutions of the PDEs,
where the momentum density v = ρu is a solenoidal field (see (5.8)). Thus v can be
represented in the standard poloidal–toroidal decomposition by two velocity potentials
f, ψ:

v = δf + ζψ with

δ =
(
∂x∂z, ∂y∂z, −∂2

x − ∂2
y

)
, ζ = (∂y, −∂x, 0).

(5.10)

One big advantage of this representation is that one gets rid of the pressure p and
the contribution of the volume viscosity ηv by operating on the velocity equation (5.6)
with δ and ζ (5.10), respectively.

It is very common in the literature (anelastic approximation, see e.g. Gough 1969)
to neglect the time derivative ∂tρ in the continuity equation (5.8) not only for the
steady state but also in the case of slow dynamics. This assumes for instance that
velocities are much smaller than the sound velocity, i.e. that the Mach number is
small. For our problem this is always the case. Thus, in line with Busse (1967), the
introduction of velocity potentials remains possible and permits the elimination of
the pressure.

In our analysis we adopt periodic boundary conditions in the plane, which are
appropriate for large-aspect-ratio systems. Consequently, we can switch in explicit
calculations from position space (x, y) to the two-dimensional Fourier space with
wave vector q = (q, p). At the top and bottom plates we choose realistic no-slip
boundary conditions for the velocity field u and keep the temperatures fixed:

u = 0 at z = ±d

2
, (5.11)

T = Tm +
�T

2
at z = −d

2
,

T = Tm − �T

2
at z = +

d

2
. (5.12)

Here, as before, Tm denotes the mean temperature and �T > 0 the temperature
difference across the layer.

Let us first calculate the basic state solution T = Tcond(z) where u =0. According to
(5.9), one has to solve the equation

λ̂(δ0)
dδ0(z)

dz = C1 with

δ0(z) =
Tcond(z) − Tm

�Tc,OB

. (5.13)

The constant C1 has to be adjusted to guarantee the boundary condition

δ0(z = ±d/2) = ±1

2

�T

�Tc,OB

= ±1

2

R

Rc,OB

, (5.14)
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where we have used again the definition R = �T/Ts (2.1) and consequently
Rc,OB = �Tc,OB/Ts .

With the use of the Padé approximant for λ̂δ(z0) in (5.13) one obtains z(ε0)
analytically by direct integration. The inversion of z(δ0) leading to δ0(z) is done

numerically. For the present experiments the temperature dependence of λ̂ is rather
weak and Tcond(z) may be represented to an accuracy of better 0.01 % by

Tcond(z)/Ts = Tm/Ts + RZ(z),

Z(z) = −z/d + w(z), (5.15)

w(z) = (z/d)2 − 1/4)
[
t0 + t1(z/d) + t2(z/d)2

]
.

After insertion of Tcond into (5.13) we arrive at

δ0(z) =
RZ(z)

Rc,OB

, (5.16)

where obviously the boundary conditions (5.14) are fulfilled. The
coefficients ti are small: for the experiment E-I we obtain, for instance,
t0 = −0.026, t1 = 0.108, t2 = 4.7 10−3. Thus the temperature Tm corresponds to the
midplane of the cell (z = 0) up to an error of less than 1 %.

In the presence of convection Tcond (5.16) is modified by a convective temperature
contribution Θ(x, z) = Tsθ(x, z). Thus in general we have to replace the temperature
variable δ̃ in the Padé approximants (5.3) for the material parameters by

δ̃(x, z) =
T − Tm

�Tc,OB

= δ0(z) + θ(x, z)/Rc,OB. (5.17)

We are interested in the onset of convection and in the weakly nonlinear regime,
where we keep as usual the field amplitudes up to cubic order. Since in this
approximation the poloidal velocity potential ψ does not contribute, only θ and
f have to be considered. Thus we have to expand the material parameters collected
in X (see (5.3)) up to second order in θ except for the density ρ where we need
the cubic contribution as well in the buoyancy term. For instance, the result for the
reduced density ρ̂(δ̃) = ρ(δ̃)/ρm, keeping the leading terms, becomes

ρ̂[δ̃(x, z)] = ρ0(z) + θ(x, z)ρ1(z) + θ2ρ2(z) + θ3ρ3(z) (5.18)

with

ρ0(z) = ρ̂[δ0(z)], ρn(z) =
1

n!

∂nρ̂ [δ0(z)]

∂δn
0

1

[Rc,OB]n
for n > 0. (5.19)

Analogous expansions with respect to θ are used for the other members of X (see
(5.3)) which yield the expansion coefficients αi(z), ηi(z), . . . , i = 0, 1, 2. With the use
of (5.2), (2.2) the coefficients α0(z) and ρ1(z) are related by

ρ1(z) = −αmTsρ
0(z)α0(z). (5.20)

To render the hydrodynamic equations dimensionless we use the usual scales for
the length (d), time (d2/κm), velocity (κm/d), pressure (νmκmρm/d2) and temperature
(Ts). Then the non-dimensionalized members of the material parameter set X (see
(5.3)) come into play, which are expanded in terms of θ as indicated before.

It is convenient to introduce a symbolic notation of the hydrodynamic equations
(5.6) and (5.9), the ‘non-Boussinesq equations’ (NBE), as used in this paper:

∂tB̂(∂x, ∂z, z)V̂ (x, z, t) = L̂(∂x, ∂z, z; R)V̂ (x, z, t) + N, (5.21)
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with the symbolic vector V̂ (x, z, t)= (f, θ). The nonlinearity N contains the
components of V̂ and their spatial derivatives up to cubic order. The following
boundary conditions for θ, f have to be satisfied:

θ(x, ±1/2) = f (x, ±1/2) = ∂zf (x, ±1/2) = 0. (5.22)

They follow from (5.11), (5.12).
For our purpose it is not illuminating to show the bulky expressions for the

nonlinearity N (5.21), which are handled by using Mathematica. For definiteness,

however, we show explicitly the linear operators B̂, L̂ which determine the linear
part of (5.21):

1

σ
∂t∇2�2f = −α0(z)ρ0(z)�2θ + δi∂jτ i,j ,

ρ0(z)C0
p(z)∂tθ = RC0

p(z)vz∂zZ(z) + ∂j (λ
0(z)∂j θ) + R∂z

[
λ1(z)θ∂zZ(z)

]
(5.23)

with the Prandtl number σ = ν0/κ0 and the two-dimensional Laplacian �2 = ∂2
x + ∂2

y .
The linearized stress tensor is τ i,j given as

τ i,j = η0(z)
[
∂i(vj/ρ

0(z)) + ∂j (vi/ρ
0(z))

]
. (5.24)

The contribution ∝ ρ0(z) of the buoyancy term has been combined with the
pressure, which is then eliminated by exploiting δi∂i = 0. Note that the main control
parameter R appears not only explicitly in (5.23) but also implicitly via δ0(z) (see
(5.16)) in the material parameters. It is obvious that one will return to the OB
equations by neglecting the z dependence of the material parameters by choosing
ρ0, α0, η0, C0

p, λ0 = 1 and λ1 = 0. In the NOB analysis of Busse, only the corrections
linear in z of the material parameters are kept.

Switching to Fourier space in (5.23) by the ansatz V̂ = eΛteiq·xU(q, z) leads to the
eigenvalue problem

ΛB(q, ∂z, z)U(q, z) = L(q, ∂z, z; R)U(q, z), (5.25)

where the operators B, L derive from B̂, L̂, respectively by substituting ∂x → iq.
The discrete set of the eigenvalues of Λi(q, R), i = 0, 1, 2, . . . of the eigenvalue

problem (5.25) are assumed to be ordered in decreasing order with respect to their
real parts: �Λ0 � �Λ1 � �Λ2 . . . . When for increasing R the growth rate �Λ0(q, R)
crosses zero at R0(q) (neutral surface) and becomes positive, the homogeneous basic
state becomes unstable to convection. The minimum of R0(q) defines the critical
wave vector qc and the threshold Rc = R0(qc). In the present case the bifurcation is
stationary, since �Λ0(qc, Rc) = 0. Furthermore, because of the isotropy of the present
RBC system the eigenvalues Λi and the corresponding eigenvectors U i depend only
on |q|.

To solve the eigenvalue problem (5.25) we use the standard Galerkin approach to
guarantee the boundary conditions (5.22). Thus we expand θ, f with respect to the z

dependence in terms of Sn(z) =
√

2 sin[nπ(z + 1/2)] and the Chandrasekar functions
Cn(z), n = 1, 2, . . . , ncut , respectively, which are both normalized to 1. In this way
(5.25) is mapped to a finite-dimensional algebraic eigenvalue problem, from which
we obtain numerically via Λ0(q, R) the critical Rayleigh number Rc and the critical
wavenumber qc. By monitoring the effect of increasing the cutoff ncut we found
that the choice ncut = 8 is sufficient to obtain an accuracy of 0.1 % for Rc, qc. All
calculations in this paper were performed with the use of Mathematica.
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In table 3 we already presented the resulting theoretical critical temperature
differences �Tc = RcTs normalized by �Tc,OB . For comparison we included �Tc,exp as
well in that table. As already discussed in § 4, the theoretical �Tc match the �Tc,exp

surprisingly well considering some uncertainties in the experimental data and in the
precise knowledge of the material parameters. These uncertainties are presumably
more pronounced for the runs E-I and E-V, where we find, in contrast to the very
good agreement for E-II, E-III, E-IV, a difference of about 8 % for E-I and 10 % for
E-V.

Now we are in the position to put our conjecture in § 2 to capture the NOB
effects responsible for the differences between �Tc,OB and �Tc on a sound basis.
There we proposed to replace αm and Cp,m by their averages Cp and α. If we
solve the linear eigenvalue problem (5.25) which determines Rc in the so called
one-mode approximation by truncating the Galerkin expansion at the leading term
n= 1, we obtain in the OB limit qc =3.098, Rc =1728.4 which deviates from the
actual value Rc = 1707.8 by only 1 %. Inspection of (5.23) shows that in the one-
mode approximation we return to the OB problem except that α0(z), C0(z), λ0(z) are
replaced, more precisely than speculated in § 2, by the weighted averages

〈α〉 =

∫ 1/2

−1/2

dzS1(z)α
0(z)C1(z),

〈Cp〉 =

∫ 1/2

−1/2

dzS1(z)C
0
p(z)C1(z),

〈λ〉 =

∫ 1/2

−1/2

dzC1(z)λ
0(z)C1(z). (5.26)

The other functions ρ0(z) and η0(z), which are odd in z, are replaced by their OB
values (ρ0(z) = η0(z) = 1). Thus, except that the control parameter R in (5.25) is
replaced by

R̃ =
〈α〉〈Cp〉

〈λ〉 �T/Ts , (5.27)

we have returned to the standard OB problem. Then R̃c = Rc,OB holds and we obtain
the approximation

�Tc,app =
〈λ〉

〈α〉〈Cp〉�Tc,OB, (5.28)

for the critical temperature difference, consistent with the discussion in § 2. The ratios
�Tc,app/�Tc,OB for the five experimental runs already have been included in table 3,
where they compare quite well with the exact �Tc/�Tc,OB .

6. Weakly nonlinear analysis of non-Boussinesq effects
The exploration of the fully nonlinear regime requires a demanding numerical

treatment of the basic hydrodynamic equations discussed in § 5.2, which is outside the
scope of this paper. In the vicinity of the onset (ε ≈ 0), however, the problem can be
treated in the framework of the standard weakly nonlinear analysis to describe rolls
and hexagons and their competition. The starting point is the following ansatz (see
e.g. Ciliberto et al. 1988 and references therein) for the solutions V̂ of the NBE (5.21)
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in the cubic approximation:

V̂ (x, z, t) =
1√
2

3∑
i=1

Ai(t)e
iqi ·xU0(|q i |, z) + c.c, (6.1)

where U0(q, z) is the eigenvector associated with the growth rate Λ0(q) of the
eigenvalue problem (5.25). The wave vectors q i present a resonant triad:

q1 + q2 + q3 = 0; |q i | = qc. (6.2)

Following the standard convention, U0(q i , z), which is non-zero for −1/2 � z � 1/2,
is chosen to be real and positive.

Expanding (5.21 ) up to cubic order in the amplitudes Ai (for some details, see
Appendix B) one arrives at the following well-known ODE for the amplitude A1:

τ0∂tA1 = εA1 − aA∗
2A

∗
3 − bA1

(
|A2|2 + |A3|2

)
− cA1|A1|2 (6.3)

with the correlation time τ0. The equations for A2, A3 are obtained by cyclic
permutations of the indices 1, 2, 3. The coefficients a, b, c are real with b, c > 0 and
b > c in our case. It is well known that the stationary solutions of (6.3) can be chosen to
be real as well. Besides the trivial (ε-independent) solution Ai = 0, which corresponds
to the heat conduction state, we have first roll solutions A1 = Ar, A2 =A3 = 0 with
Ar =

√
ε/c if ε > 0, which are stable for ε � εr . Furthermore stable hexagons

(A1 = A2 =A3 ≡ Ah) with

Ah = − a

2(2b + c)
− sgn(a)

(
a2

4(2b + c)2
+

ε

2b + c

)1/2

(6.4)

exist in an interval εa � ε � εb. The explicit expressions for εa, εh, εr as well as the
coexistence points εT , εT ′ defined in § 2 are given in Appendix A. Note, that inspection
of (6.1), (6.4) shows that the case a > 0 is associated with θ < 0 , i.e cold downflow in
the centre of the hexagon.

For clarity it should be mentioned, that the normalization of the eigenvector U0 is
not standardized in the literature. A transformation U0 → Ũ0 = cuU0 leads according
to (6.1) to redefined amplitudes Ãi = (cu)

−1Ai . They fulfil again the amplitude equation
(6.3) but with the redefined coefficients ã = cua, b̃ = c2

ub, c̃ = c2
uc. Note that quantities

εa, εh, etc. given in Appendix A are invariant under this transformation, as they must
be. We follow the normalization convention of Ciliberto et al. (1988), according to
which the non-dimensional convective heat flow N is given as

N ≡ (Nu − 1)R

Rc

=

3∑
i=1

|Ai |2, (6.5)

where Nu denotes the Nusselt number, the ratio between the total heat flow and the
conduction heat flow.

The amplitudes Ai are directly accessible in convection experiments since near ε = 0
the shadowgraph intensity I (x) is proportional to the vertical average of θ(x, z) (see
Trainoff & Cannell 2002). Thus the Fourier coefficients of I (x) must be proportional
to the amplitudes Ai . In fact the understanding of NOB patterns and their instabilities
near onset have been greatly enhanced by using the concepts of amplitude equations
(see e.g. Ciliberto et al. 1988; Bodenschatz et al. 1991).
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6.1. Busse revisited

To obtain quantitative insight into the weakly nonlinear regime the coefficients
a, b, c in (6.3) have to be calculated. In the approach of Busse (1967) the scaling
γi, Ai ∼ O(ε1/2) was implicitly assumed. Consequently it is sufficient to expand NBE
(5.21) up to second order in θ, f and to linear order in the γi . Thus (5.21) simplifies
as follows:

B̂∂t V̂ =

(
L̂0 +

4∑
k=0

γkL̂γ
k

)
V̂

−N0(V̂ , V̂ ) −
4∑

k=0

γk Nγ
k (V̂ , V̂ ). (6.6)

Here we have split the various terms of (5.21) into their OB part (superscript 0) and
the contributions linear in the γi (superscript γ ). The explicit expressions are, for
instance, given in Busse (1967) or in Madruga, Riecke & Pesch (2007). All terms in
(6.6) can be classified with respect to their symmetry properties under reflections at
the midplane (z → −z). A symbolic vector V̂ has the parity p = 1(−1) if it is even

(odd) in z. The application of L̂0 to V̂ with parity p conserves the parity, while the

application of the operators L̂γ
k reverses the parity. Similarly, the nonlinearities are

also characterized by a definite symmetry against reflections at the midplane: The

term N0(V̂ 1, V̂ 2) evaluated for V̂ 1, V̂ 2 with parities p1, p2, respectively, has the parity
p = −p1p2, while the corresponding parity of the Nγ

k operators is given as p =p1p2.
The coefficients a, b, c have been calculated following the general procedure

presented in Appendix B, where the extensive use of Mathematica has been very
helpful. Our calculational scheme is equivalent to the original approach of Busse
(1967), who used, however, a more tedious double expansion in the amplitudes Ai

and the coefficients γi . Exploiting the symmetry properties of L̂0, L̂γ
k and N0, Nγ

k , it
is easy to see that the cubic coefficients b, c are given by their well-known OB values
up to corrections O(γ 2

i ). They read as follows (see e.g. Busse 1967; Pampaloni et al.
1992):

c = 0.69946 − 0.00472/σ + 0.008325/σ 2,

b = 0.99069 + 0.07675/σ + 0.097645/σ 2. (6.7)

In contrast the quadratic coefficient a, which vanishes in the OB case, is of order γi .
It is determined by the Busse parameter Q as follows:

a =
3

Rc,OB

Q, (6.8)

where Q according to (2.9) is determined by the material properties via the γi and the
coefficients Pi . In Busse (1967), the coefficients Pi have been calculated in the limit
σ → ∞ for rigid boundary conditions. They agree very well with our results in (2.10)
except that P3 = 2.9197 as given by Busse is much smaller than our value P3 = 9.54.
The discrepancy can be traced back to a book-keeping error in Busse (1967). The
corrections ∝ 1/σ were only given for free boundary conditions by Busse and they
have been assumed in the literature to be approximately equal to those for the rigid
case. This is in fact not correct, since they differ by up to 100 %. Furthermore it can
be proven rigorously both for rigid and free boundary conditions (F. Busse, private
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δε(i, j ) × 102 0 1 2 3 4

0 1.876
1 −0.732 −0.760
2 10.543 4.994 −5.159
3 2.470 −13.396 1.494 6.697
4 0.366 −3.037 2.250 6.699 −0.190

Table 6. Coefficients δε(i, j ) determining the NOB corrections of Rc from (6.9); 0 � j � 4
(column index) and 0 � i � j (row index).

δq (i, j ) × 103 0 1 2 3 4

0 −4.711
1 −0.945 3.337
2 8.395 −5.472 −4.508
3 3.351 −11.110 2.960 5.553
4 0.473 7.374 −2.736 −5.545 0.834

Table 7. Coefficients δq (i, j ) (arranged as in table 6) determining the NOB corrections of qc

from (6.9).

communication, 2008) that the correction term ∝ 1/σ in P3 vanishes identically. This
is confirmed in (2.10), while in Busse the 1/σ correction to P3 is not vanishing.

The analysis presented so far is strictly valid only in the limit γi → 0, but the resulting
expressions are commonly used for finite γi as realized in the experiments. Thus we
will briefly discuss the corrections at larger γi . Let us start with the γi dependence

of the critical Rayleigh number Rc on the basis of (6.6). Since the L̂γ
k have the

opposite parity of L̂0, the leading corrections to the OB values Rc,OB = 1707.8 and
qc,OB = 3.117 are of the order O(γ 2

i ) and have the following general representations:

Rc − Rc,OB

Rc,OB

=

4∑
i=0

i∑
j=0

δε(i, j )γiγj ,

qc − qc,OB

qc,OB

=

4∑
i=0

i∑
j=0

δq(i, j )γiγj .

(6.9)

The expansion coefficients δε(i, j ), δq(i, j ) are available from (6.6) by solving the
corresponding linear eigenvalue problem in the framework of a standard second-
order approximation with respect to the γi . But to be consistent one has in addition

to expand the linear operator L̂ (5.21), (5.23) to second order in the γi . The resulting

expression L̂γ γ , which is a bilinear form in the γi , is quite lengthy and will not
be shown here. Since Lγ γ is of even parity, the corresponding corrections to Rc,OB

and qc,OB , which can be represented as in (6.9), can be captured already by a first-

order perturbation analysis with respect to L̂γ γ . In fact the resulting corrections
compensate to a large extent the quadratic ones from Lγ . The whole analysis can
be performed quasi-analytically and requires only the evaluation of certain matrix
elements with the help of Mathematica. The final coefficients are listed in the tables 6
and 7.

To give an impression of the order of magnitude of the NOB-corrections we
consider as a representative example the experiment described by Bodenschatz et al.
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(1991) (see also Bodenschatz et al. 2000, p. 744). Here CO2 is used as fluid for a cell
of thickness d = 52.5 μm, with a pressure of 23.2 bars and Tm = 27.35 ◦C. We obtain
σ = 0.874, γ0 = 0.1512, γ1 = −0.2137, γ2 = 0.2366, γ3 = 0.0769, γ4 = − 0.0810. Since
Q =3.8 the NOB corrections were large enough to resolve the stability limits εa, εr ,
etc. in the experiment.

The corrections to Rc,OB and qc,OB are in fact very small. With ncut =8 we obtain the
values Rc,OB = 1707.8, qc,OB = 3.117 for γi = 0, compared to Rc = 1708.89, qc = 3.1195
from (5.23) for the finite γi . The differences �R = Rc − Rc,OB and �q = qc − qc,OB are
described by (6.9) and the coefficients in tables 6 and 7 to an accuracy of better than
0.01 %. Even if we would multiply, as an example, all γi by a factor of 5, the analytical
correction formula describes the modifications of Rc,OB, qc,OB to an accuracy of about
2 %. Note that disregarding the contribution of Lγ γ to the coefficients in tables 6
and 7 would instead produce a discrepancy of more than 20 % in this case.

Let us now address the coefficients a, b, c in (6.3) at finite γi , which determine
the various stability limits εa, εb, εr , etc. as given in Appendix A . The coefficients
can be obtained only numerically by performing a weakly nonlinear analysis
on the full NBE (5.21) as described in § 6. As a test the γi for CO2 given
above have been reduced at first by a factor of 10. Then they should be
small enough that the analytical expressions a, b, c (defined in (6.8), (6.7))
apply, where Q is given by (2.9). According to Appendix A we arrive thus at
εa = −2.038 × 10−5, εb = 2.6434 × 10−3, εr =7.12 × 10−4, εT = 1.002 × 10−3. In fact
the corresponding numerical stability limits fit these values to an accuracy of better
than 0.05 %. This excellent agreement serves also as a convincing test for the
correctness of the coefficients Pi (2.10), which determine via (2.9), (6.8) the coefficient
a.

If we return to the unmodified γi of CO2, we obtain instead on the basis of (5.21) the
stability limits εa = −2.14 × 10−3, εb = 2.907 × 10−1, εr =7.87 × 10−2, εT =1.11 × 10−3.
These values agree with the corresponding analytical ones, where again the coefficients
(6.8), (6.7) are used in Appendix A, up to an accuracy of about 10 %.

In conclusion, we have shown that for situations, where the material properties are
well described by keeping only the linear corrections (2.7), the critical values qc, Rc

are practically identical with the OB values. Moreover, the nonlinear properties are
also well described by the closed expressions for the stability boundaries in Appendix
A with the use of explicit coefficients given in (6.7, 6.8).

6.2. Strong NOB corrections

In the case of strong NOB effects as in a fluid near its critical point we have
already demonstrated in § 5.2 that considerable modifications of Rc take place. These
cannot be obtained by restricting the analysis to the linear corrections of the material
properties in terms of the γi as in § 6.1. In this section we study the weakly nonlinear
aspects of SF6 in the framework of amplitude equations (6.3), where the NOB effects
are strong compared to the classical Busse approach in § 6.1. For that purpose we
have determined the coefficients a, b, c fully numerically from (5.21) by using the
procedure described in Appendix B. For the material properties we use the Padé
approximants discussed in § 5.1.

It is obvious, that the strong NOB effects do not only modify the coefficient a

(defined in (6.8)) given in the previous section, but lead also to changes of the other
coefficients b, c (defined in (6.7)), which all determine the stability limits according
to Appendix A. We have not disentangled the various contributions to the stability
limits listed in table 8, which depend also indirectly on the shifts of Rc.
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Experiment E-I E-II E-III E-IV E-V

103εa −0.18 −0.08 −0.01 −3.17 −11.12
103εr 12.40 2.80 0.60 308.4 (2997)
103εT ′ 17.1 3.94 0.82 424.3 (43594)
103εb 43.2 10.44 2.06 (1047) (7360)

Table 8. Fully numerical stability limits εa, εr , εT ′ , εb for the experiments E-I, E-II, etc. The
data in parentheses are of low accuracy (see § 4.1).

A detailed comparison between theory and the experiments was presented already
in § 4. It shows that the Busse parameter Q continues to be a valuable measure
for describing a strong NOB system in the weakly nonlinear regime, though the
quantitative deviations are not small in some of the experimental runs. In any
case the nonlinear properties have been captured only within an amplitude-equation
approximation. Fully nonlinear analyses for the present system would be important
to estimate the range of validity of weakly nonlinear analysis, by which only the
amplitude instability of rolls and hexagons can be tested. In fact the importance
of additional sideband instabilities has been emphasized in a recent fully nonlinear
analysis in the case of weak NOB effects (Madruga et al. 2007; Madruga & Riecke
2007).

7. Conclusion
In this paper we discussed strong NOB effects that occur in RBC for instance

of a fluid slightly above the critical point where the properties depend strongly and
nonlinearly on the temperature. There the conventional OB approximation fails and
the usual weakly nonlinear treatment of the NOB effects as given by Busse (1967)
had to be replaced by a more sophisticated treatment.

The material properties of the fluid can be divided into two disjoint parts that differ
with respect to the reflection symmetry about the midplane of the fluid layer. The odd
part, if present, yields near-negligible shifts of the critical Rayleigh number Rc and
wavenumber qc and is responsible for the classical NOB scenario characterized by a
transcritical bifurcation to hexagons near onset, with the hexagons replaced by rolls
at larger R. The impact of the even part, on the other hand, to our knowledge had
not been analysed in the literature. Although it preserves the supercritical bifurcation
to rolls of the Boussinesq system, it leads to a significant shift of Rc.

For SF6 the properties near the critical point are relatively well known. Thus this
fluid was used for measurements, and in parallel its properties were used for specific
calculations of the corresponding NOB effects. Very small changes of the average
temperature Tm and the pressure Pis are sufficient to tune the system with respect to
the even and odd NOB terms. The latter become very small if the average density ρm

of the fluid is kept equal to the critical density ρ∗, leading to a bifurcations to rolls
(as opposed to hexagons) near onset and to a sizable shift of �Tc.

In general the experimentally observed patterns and bifurcation points that we
report in the present paper were convincingly confirmed by the theoretical analysis.
We note that we did not observe the bifurcation sequence hexagons-rolls-hexagons
(‘re-entrant hexagons’) with increasing ε that was described by Roy & Steinberg
(2002) for experiments using SF6. We find it doubtful that compressibility effects,
which should not be relevant according to § 5.1, can be advocated (as they were by
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Roy & Steinberg 2002) to explain this scenario. In contrast to the present work, where
pressure and temperatures (and via the equation of state thus also the density) were
externally controlled, it seems likely to us that one or more of these parameters were
not strictly kept fixed by the experimental procedure used by Roy and Steinberg. In
that case for instance the parameter a in (6.3), which measures the odd NOB effects,
could effectively depend on ε and non-generic bifurcation sequences might become
possible since the stability limits εa, εb, εr would depend, via a, on ε as well (see
(A 1)). Note that alternatively the phenomenon of reentrant hexagons was predicted
theoretically on the basis of a fully nonlinear analysis of Busse’s classical NOB model
(Madruga et al. 2007; Madruga & Riecke 2007). However, this theoretical work
predicts wavenumbers smaller than the experimental ones (Roy & Steinberg 2002)
for the reentrant hexagons at larger ε.

As a byproduct we also re-examined the classical weak NOB effects which had
been studied most systematically by Busse (1967). Apart from a difference for one of
the Busse coefficients we confirmed his results for infinite Prandtl number σ and in
addition calculated the correction terms for finite σ .

The experimental work was supported by the US National Science Foundation
through Grant DMR07-02111. One of the authors (W. Pesch) is very grateful to
Professor Busse for many fruitful discussions about NOB convection. G. Ahlers
acknowledges also the support of the Alexander von Humboldt Foundation, as well
as the kind hospitality of the physical institute of the University of Bayreuth and the
Max Planck Institute for Dynamics and Self-organization, Göttingen, where part of
this work was performed.

Appendix A. Stability limits
The stability boundaries of hexagons and rolls are determined by the coefficients

a, b, c of the amplitude equations (6.3) (see e.g. Busse 1967; Ciliberto et al. 1988;
Malomed, Nepomnyashchy & Tribelsky 1990; Bodenschatz et al. 1991):

εa = − a2

4(2b + c)
; εb =

a2(b + 2c)

(b − c)2
; εr =

a2c

(b − c)2
. (A 1)

The equations for the amplitudes Ai are associated with a Lyapunov functional F.
Coexistence of the various states (rolls, hexagons, conduction state) imply equal values
of the corresponding Lyapunov functionals. For ε = εT ′ hexagons and the basic state
coexist (F(0) = F(Ah)), while for ε = εT hexagons and rolls coexist (F(Ar ) = F(Ah)).
The explicit expressions for εT ′, εT read as follows (see e.g. Malomed et al. 1990):

εT ′ =
8

9
εa, (A 2)

εT =
a2

[√
c(2(b + c))3/2 + 2c(3b + c)

]
4(2b + c)(b − c)2

. (A 3)

Note that εT given by (A 3) can be transformed into the expression given
by Bodenschatz et al. (1991).
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Appendix B. General formalism
In this appendix we present our method to calculate the amplitude equations. Up

to minor technical modifications, we follow in great detail the calculational scheme
used by Cross (1980).

Since the linear operators B̂, L̂ in the general NOB problem (5.21) are not self-
adjoint we have to consider the adjoint eigenvalue problem as well. We use a standard
hermitian scalar product, � · | · � in position space, which simplifies for symbolic

vectors X̂(x, z), Ŷ (x, z) of the form eiq1·x X(z), eiq2·xY (z) as follows:

� X̂ |Ŷ �≡ δq1,q2
〈X |Y〉, (B 1)

where δq1,q2
denotes the Kronecker symbol.

The scalar product 〈X |Y〉 in Fourier space is defined as

〈X |Y〉 =
2

π

∫ 1/2

−1/2

dzX†(z)Y (z). (B 2)

Thus the adjoint operator O† of an operator O is defined as follows:

〈X |OY〉 = 〈O† X |Y〉, (B 3)

where X, Y correspond to the same wave vector q.
Inspection of the linear problem (5.25) shows that the eigenvectors U†

i (q, z) of the
adjoint problem, which are determined by

Λ∗
i (q, R)B†U†

i (q, z) = L†(q, R)U†
i (q, z), (B 4)

obey the boundary conditions (5.22) as well. Since in our case all eigenvalues Λi turn
out to be real, the U†

i can be chosen to be real as well.
The following orthogonality conditions hold:

〈U†
i |BU j 〉 = 〈U†

i |LU j 〉 = 0 if i �= j. (B 5)

The normalization of the U†
i is fixed by 〈U†

i |BU i〉 =1. The correlation time τ0 is
defined as

Λ0(qc, R) = < U0(q i , R)|LU0(q i , R)) = τ−1
0

(R − Rc)

Rc

(B 6)

for ε = (R − Rc)/Rc ≈ 0. Thus the expansion coefficients Ai(t) of the solution V̂ of
(5.21) are obtained as

Ai(t) = 〈U0(q i)|Be−iqi x V̂ 〉. (B 7)

Up to the redefinition of the scalar product the further steps to expand (5.21) in
terms of the Ai(t) up to cubic order can be taken over from Cross (1980). One has, for
instance, to calculate nonlinear solutions quadratic in the amplitudes Ai and Aj (A

∗
j )

with the wave vectors q i ± qj , i, j = 1, 2, 3 by inserting (6.1) into (5.21). Note, that
these solutions have to be restricted to the subspace spanned by the eigenvectors U i

with i �= 0 (see also Haken 1996; Plaut & Pesch 1999).
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