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Abstract We have determined the dynamic critical properties of a binary blend
of the two polymers poly(dimethyl siloxane) (PDMS) and poly(ethyl-methyl silox-
ane) (PEMS), and we have investigated experimentally and theoretically patterning
and structure formation processes above and below the spinodal in the case of a
spatially varying temperature. Ising-like scaling is found for the asymptotic critical
regime close toTc in the range 6×10−4 ≤ ε ≤ 0.2 of the reduced temperatureε and
a mean field behavior for large values ofε. The thermal diffusion coefficientDT is
thermally activated but does not show the critical slowing down of the Fickian diffu-
sion coefficientD, which can be described by crossover functions forD. The Soret
coefficientST = DT /D diverges at the critical point with a critical exponent−0.67
and shows a crossover to the exponent−1 of the structure factor in the classical
regime. Thermal activation processes cancel out and do not contribute toST . The
divergence ofST leads to a very strong coupling of the order parameter also tosmall
temperature gradients, which can be utilized for laser patterning of thin polymer
films. For a quantitative numerical model all three coefficientsD, DT , andST have
been determined within the entire homogeneous phase and areparameterized by a
pseudospinodal model. It is shown that equilibrium phase diagrams are no longer
globally valid in the presence of a temperature gradient, and systems with an upper
critical solution temperature (UCST) can be quenched into phase separation by local
heating. Below the spinodal there is a competition between the spontaneous spin-
odal demixing patterns and structures imposed by means of a focused laser beam
utilizing the Soret effect. Elongated structures degrade to spherical objects due to
surface tension effects leading to pearling instabilities. Grids of parallel lines can be
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stabilized by enforcing certain boundary conditions. Phase separation phenomena
in polymer blends count to the universality class of patternforming systems with a
conserved order parameter. In such systems, the effects of spatial forcing are rather
unexplored and, as described in this work, spatial temperature modulations may
cause via the Soret effect (thermal diffusion) a variety of interesting concentration
modulations. In the framework of a generalized Cahn-Hilliard model it is shown that
coarsening in the two-phase range of phase separating systems can be interrupted
by a spatially periodic temperature modulation with a modulation amplitude beyond
a critical one, where in addition the concentration modulations are locked to the pe-
riodicity of the external forcing. Accordingly, temperature modulations may be a
useful future tool for controlled structuring of polymer blends. In the case of a trav-
eling spatially periodic forcing, but with a modulation amplitude below the critical
one, the coarsening dynamics can be enhanced. With a model ofphase separation,
taking into account thermal diffusion, essential featuresof the spatio-temporal dy-
namics of phase separation and thermal patterning observedin experiments can be
reproduced. With a directional quenching an effective approach is studied to create
regular structures during the phase separation process. Inaddition, it is shown that
the wavelength of periodic stripe patterns is uniquely selected by the velocity of a
quench interface. With a spatially periodic modulation of the quench interface itself
also cellular patterns can be generated.

1 Introduction

When a binary liquid mixture approaches the consolute critical point, the equilib-
rium restoring forces vanish, the correlation length diverges and the amplitude of
the fluctuations of the order parameter grow according to characteristic power laws.
Very close to the critical point the correlation length exceeds by far all microscopic
length scales. The fluctuations can be observed macroscopically as critical scatter-
ing phenomena like the well-known critical opalescence. Atthe same time there is
a critical slowing down of the diffusion dynamics [1, 2, 3] and the system becomes
increasingly susceptible to external perturbations.

After crossing the spinodal the mixture immediately becomes unstable and even
arbitrarily small composition fluctuations grow exponentially in time. Eventually,
the fluid decomposes into two phases that form a labyrinthinespinodal pattern with
a characteristic length scale determined by the wave vectorat the maximum of the
growth rate of small inhomogeneous perturbations. As time proceeds the pattern
coarsen and the maximum of the structure factor is shifted towards larger length
scales, corresponding to smaller values of the wave vector.Eventually, a new equi-
librium is reached with a horizontal meniscus that separates the two phases with the
lighter liquid on top of the denser one.

Compared to binary mixtures of low molecular fluids, the critical behavior of
polymer blends has been much less explored so far. However, anumber of inter-
esting static and dynamic critical phenomena in polymer blends attract increasing
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attention [4, 5]. Neutron, X-ray, and static light scattering experiments belong to the
major techniques for characterizing the static propertiesof polymer blends. Photon
correlation spectroscopy (PCS) has traditionally been themethod of choice for the
investigation of the dynamics of critical [6, 7, 8, 9] and non-critical [10, 11, 12]
polymer blends.

The vast majority of experimental and theoretical investigations on critical or
off-critical polymer blends or solutions has been carried out under isothermal con-
ditions and only a few of them were focusing on the effect of spatially varying
temperature fields [13, 14, 15, 16, 17]. In all these studies there is no direct effect of
a temperature gradient besides the positioning of the different parts of the sample at
different locations in the phase diagram. The coupling between the order parameter
and the temperature gradients due to the Ludwig-Soret effect – also termed thermal
diffusion, thermodiffusion or, briefly, Soret effect – has not been taken into account.
While this effect is only weak in most cases of low molecular mixtures away from a
phase transition, it can, as will be shown below, become a substantial and sometimes
dominating effect in critical polymer blends. The Soret coefficient, which is a mea-
sure for the change of the composition induced by a given temperature difference,
even diverges at the critical point.

Including the Soret effect, the diffusive mass flow in a multicomponent system
contains two contributions, the Fickian diffusion currentthat is driven by the gradi-
ent of the chemical potential and the thermal diffusion current driven by the temper-
ature gradient. To account for this additional transport process, the thermal diffusion
coefficientDT is introduced in addition to the Fickian diffusion coefficient D. Ex-
periments have shown that the direction of the thermal diffusion current is not easily
predicted and in contrast toD, the coefficientDT can be both positive and negative,
and it can change its sign as a function of composition [18, 19, 20, 21, 22], temper-
ature [23, 24, 25, 26], molar mass [27, 28] or solvent composition [29]. The station-
ary composition distribution is determined by a competition between thermal and
Fickian diffusion, and the Soret coefficientST = DT /D can roughly be interpreted
as the relative composition change sustained in the stationary state by a prescribed
temperature difference of 1 K. Typical numbers for small molecules are only of the
order ofST ≈ 10−3K−1 and the effect generally causes only a minor perturbation
for most practical situations. For larger diffusing species, such as polymers in dilute
solution [30, 31, 32, 33] or colloids [34, 35, 36, 37, 38, 39, 40, 41], significantly
higher values ofST ≈ 0.1. . .1K−1 have been reported.

The Soret effect near a consolute critical point of a simple liquid mixture
was first investigated by Thomaes [42] and later by Giglio andVendramini [43].
Giglio and Vendramini observed a critical divergence of thethermal diffusion factor
kT = ST T c(1− c) ∼ (T − Tc)

ν with the critical exponentν = 0.63 of the corre-
lation lengthξ . These results, obtained with an optical beam deflection technique
for the aniline/cyclohexane system, have later been confirmed by Wiegand utiliz-
ing a transient holographic grating technique [44]. Similar transient gratings had
been used for the first time by Pohl to demonstrate qualitatively the divergence of
the signal at the critical point of a 2,6-lutidine/water mixture [45]. Buil et al. and
Delville et al. have employed transient holographic gratings [46] and focused laser
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beams [47] for the investigation of first order phase transitions in multicomponent
liquids. While there have been a few such studies of the Soret effect in critical low
molecular weight liquid mixtures, there were no data available for critical polymer
blends. Hence, one of the goals was the investigation of the critical properties re-
lated to non-isothermal transport, in particular the crossover from the mean field to
the asymptotic critical regime, for a UCST polymer blend.

Besides the selection of a characteristic wavelength during spinodal decomposi-
tion at a constant temperature, the strong coupling betweeninhomogeneous temper-
ature fields and the order parameter opens entirely new routes for pattern formation
processes in critical polymer blends. Pattern formation inpolymer blends via phase
separation is an important research topic not only in polymer physics or physical
chemistry but also as an interdisciplinary research involving nonequilibrium studies
of complex fluids [48, 49], where it became a prototype for pattern forming systems
with a conserved order parameter. The phase separation of such systems commonly
leads to an isotropic, disordered morphology, such as interconnected domain struc-
ture or isolated clusters. These domains grow continuouslyin space and time and
finally become macroscopic. An important research topic regarding phase separa-
tion in polymer blends is to fabricate regular structures for their potential application
for nanotechnology in diverse fields, ranging from bioactive patterns [50] to poly-
mer electronics [51]. In fact, polymer mixtures can undergodramatic changes in
response to externally applied perturbations. Some previous studies have consid-
ered the application of external fields, e.g., shear flow [52,53], concentration gra-
dient [54], patterned surface [55], temperature inhomogeneity [56], et al., to break
the symmetry of the phase separation in polymer blends and toproduce ordered
structures with widely varying morphologies and length scales. Different strategies
have been explored to tailor domain patterns of polymer mixtures and obtain new
ordered structures. The spontaneous emergence of structures within an initially ho-
mogeneous blend and the possibility to generate patterns ina controlled way are not
only of interest from the view of basic research but may also lead to technological
applications.

Traditional techniques for structuring of polymer films utilize irradiation with
UV light, X-rays or electron beams in combination with some kind of cross-linking
photo reaction. Fytas and coworker have shown that isolatedlinear structures and
periodic gratings can be generated by laser irradiation of homogeneous polymer
solutions [57, 58]. B̈oltau et al. have used patterned surfaces to drive an incompatible
polymer blend into pre-defined demixing morphologies [55].Filler particles can
induce composition waves in thin films of demixing polymer blends [59].

Spinodal decomposition in binary liquid mixture or polymerblends belongs to
the universality class of pattern forming systems with aconserved order parameter
[48]. A variety of interesting effects of spatially varyingcontrol parameters in pat-
tern forming systems withnon-conserved order parameters has been explored dur-
ing the recent years [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,71, 72, 73],but the ef-
fects of spatially or temporally varying temperature fieldsin spinodal decomposition
has been investigated only recently. Tanaka and Sigehuzi have periodically driven
the system across the spinodal and observed two characteristic superimposed length
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scales with and without coarsening [74]. Lee et al. performed computational studies
on spinodal decomposition with superimposed temperature gradient [17, 16]. Ku-
maki et al. observed a 20 K shift of the phase boundary after applying a temperature
gradient to a ternary polymer mixture [75].

Except for Kumaki, all these authors did not take into account the coupling be-
tween temperature gradients and concentration due to the Soret effect. In the second
part of the present work an overview of the structure formation processes is given
that occur during spinodal decomposition in the presence ofspatially inhomoge-
neous and/or time dependent temperature fields. It will be shown that the Soret ef-
fect may lead to entirely different pattern formation and evolution scenarios in crit-
ical and near-critical polymer blends. Introducing a spatially periodic temperature-
modulation in a model of phase separation in a polymer blend above a critical mod-
ulation amplitude the coarsening dynamics can be interrupted and a stripe pattern
is locked to the periodicity of the external modulation. Similar locking effects are
found in the case of a traveling, spatially periodic temperature modulation. In the
parameter range where the decomposition is not locked to theexternal forcing, the
coarsening processes can be enhanced by the traveling modulation. With directional
quenching a further forcing method is presented. This method turns out to be an
effective selection mechanism for the wavelength of the periodic pattern behind the
moving quenching interface, where the selected wavelengthof the pattern can be
uniquely selected by the chosen velocity of the quench interface.

2 Transport coefficients in a critical polymer blend

2.1 Diffusion in critical systems with a temperature gradient

At first we treat diffusion processes within the homogeneousphase. The presence of
a temperature gradient in binary fluid mixtures and polymer blends requires an ex-
tension of Fick’s diffusion laws, since the mass is not only driven by a concentration
but also by a temperature gradient [76]:

J = Jm +JT = −ρ (D∇c+ c(1− c)DT ∇T ) . (1)

c is the concentration (mass fraction),cρ the density, andJ the mass flow of one
component.D andDT are the mass and the thermal diffusion coefficient, respec-
tively. Since the total mass flow vanishes in the mass-fixed frame of reference, the
flow of the second component of concentration 1− c of the mixture is not inde-
pendent and needs not be considered separately. In the case of vanishing reference
velocities and/or small temperature gradients, the continuity equation takes the fol-
lowing form [77, 78]

∂c
∂ t

= −∇ · J
ρ

. (2)
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Combining Eqs. (1) and (2), the evolution equation for the concentration is

∂c
∂ t

= ∇ · (D∇c+ c(1− c)DT ∇T ) . (3)

All currents vanish in the stationary state, where the amplitude of the induced con-
centration gradient is determined by the Soret coefficientST = DT /D:

∇c = −ST c(1− c)∇T (4)

The temperature distribution is determined by the heat equation

∂T
∂ t

= Dth∇2T +S(r , t) , (5)

including the source termS(r , t). Dth = κ(ρcp)
−1 is the thermal diffusivity,κ the

thermal conductivity, andcp the specific heat of the solution.
The formal description of thermodiffusion in the critical region has been dis-

cussed in detail by Luettmer-Strathmann [79]. The diffusion coefficient of a critical
mixture in the long wavelength limit contains a mobility factor, the Onsager coef-
ficient α = αb + ∆α, and a thermodynamic contribution, the static structure factor
S(0) [79, 7]:

D(q = 0) =

(

αb +∆α
S(0)

)

= Db +∆D . (6)

αb is the background contribution and∆α the critical enhancement. Within the
random phase approximation the static structure factor of abinary A-B polymer
blend is given by [8, 4, 80]

S(q = 0) =

(

1
φANA

+
1

φBNB
−2χ

)−1

. (7)

φk andNk are the volume fraction and the degree of polymerization of polymer k,
with k = A,B. χ is the Flory-Huggins interaction parameter. Introducing the reduced
temperature

ε =
T −Tc

Tc
, (8)

the critical temperature dependences ofS(0) and the static correlation lengthξ are
expressed as scaling lawsS(0) ∼ ε−γ andξ ∼ ε−ν . Close to the critical point, in
the asymptotic critical region, the scaling exponents takethe valuesγ = 1.24 and
ν = 0.63. The mean field values for larger distances fromTc areγ = 1.0 andν = 0.5.
The transition from the classical mean field regime to the asymptotic critical regime
is marked by the Ginzburg criterion for the static correlation length,ξ ≈ RgN1/2,
and occurs atε = Gi. Gi is the Ginzburg number andRg the polymer radius of
gyration. Following the arguments in Ref. [79], the background diffusion coefficient
scales likeDb ∼ εγ = ε and the critical enhancement like∆D ∼ εν(1+zη ) ≈ ε0.67,
wherezη = 0.063 is the critical exponent of the viscosity. Because of thelarger
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absolute temperature excursions in the mean field regime, the thermal activation of
the Onsager coefficient with an activation temperatureTa additionally needs to be
taken into account. Hence, we end up with the following temperature dependence
of the diffusion coefficient:

D ≈ ∆D ∼ ε0.67 for ε ≪ Gi (9)

D ≈ Db ∼ ε exp(−Ta/T ) for ε ≫ Gi (10)

As discussed in Ref. [79], there is no critical enhancement of the thermal diffusion
coefficientDT , which retains its background valueDb

T throughout the asymptotic
critical regime. It appears reasonable to assume the same activation temperatureTa

both forαb andDb
T :

DT = Db
T = D0

T exp(−Ta/T ) . (11)

Combining Eqs. (9), (10), and Eq. (11), the critical scalingof the Soret coefficient
in the asymptotic critical (ε ≪ Gi) and in the mean field regime (ε ≫ Gi) is

ST ≈ Db
T

∆D
∼ ∆D−1 ∼ ε−ν(1+zη ) ∼ ε−0.67 for ε ≪ Gi (12)

ST ≈ Db
T

Db =
Db

T

αb/S(0)
∼ S(0) ∼ ε−1 for ε ≫ Gi (13)

Since there had not been any measurements of thermal diffusion and Soret coeffi-
cients in polymer blends, the first task was the investigation of the Soret effect in
the model polymer blend poly(dimethyl siloxane) (PDMS) andpoly(ethyl-methyl
siloxane) (PEMS). This polymer system has been chosen both because of its conve-
niently located lower miscibility gap with a critical temperature that can easily be
adjusted within the experimentally interesting range between room temperature and
100◦C by a suitable choice of the molar masses [81, 82]. Furthermore, extensive
characterization work has already been done for PDMS/PEMS blends, including
the determination of activation energies and Flory-Huggins interaction parameters
[7, 8, 83, 84].

2.2 The transient grating technique

The transport coefficients have been measured by the transient holographic grating
technique of Thermal Diffusion Forced Rayleigh Scattering(TDFRS), that has al-
ready been described in more detail in previous works [85, 86, 87] and will only
briefly be sketched in the following (Fig. 1).

An argon ion laser operating at 488 nm is split into two beams of equal intensi-
ties that are brought to intersection within the sample under an angleθ to create a
holographic interference grating with a period
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d =
2π
q

=
λ

2sin(θ/2)
. (14)

Energy is absorbed from the light field by an inert dye (quinizarin) that is added to
the polymer blend in minute quantities. Neither the phase behavior nor the critical
temperature are influenced by the dye. The temperature grating and the secondary
concentration grating both couple to the refractive index grating due to the contrast
factors(∂n/∂c)p,T and(∂n/∂T )p,c. The resulting phase grating is read by Bragg
diffraction of a readout laser beam (HeNe, 633 nm). The diffracted signal beam is
mixed with a coherent reference wave derived from a local oscillator in order to
create a heterodyne signal for increased sensitivity at lowdiffraction efficiencies.
Electro-optic modulators are used for switching of the phase of the grating and a
piezo-mirror serves for phase stabilization. Details of the stabilization and switching
procedure and the separation of heterodyne and homodyne signal components have
been described in Ref. [88]. A photo multiplier tube operating in photon counting
mode is used for detection. It is connected to a counter with atime resolution of
1µs. For a good signal to noise ratio typically 104 to 105 individual exposure cycles
are averaged.

Taking the absorbed optical power density as source termS = αλ I(ρcp)
−1 in the

heat equation (5), an analytical expression for the normalized heterodyne diffraction
efficiency can be derived as a cascaded linear response [88, 89]:

ζhet(t) = 1−e−t/τth − ζc

τ − τth

[

τ
(

1−e−t/τ
)

− τth

(

1−e−t/τth

)]

, (15)

Fig. 1 The setup for transient holographic grating measurements is shown. The electro-optic mod-
ulators (EOMs) are used for 180◦-phase shifts of the holographic grating. The piezo mirror serves
for phase matching between the diffracted beam and the coherent reference wave generated by the
local oscillator. The setup is a modified version of the one described in Ref. [87].
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ζc =

(

∂n
∂c

)

p,T

(

∂n
∂T

)−1

p,c
ST c0(1− c0) . (16)

αλ is the optical absorption coefficient,cp the specific heat, andI(x, t)= Iq(t)exp(iqx)
the periodic intensity of the light field. The thermal diffusivity and the diffusion
coefficient are obtained from the relaxation time constantsof the temperature and
the concentration grating, which are treated as fit parameters: τth = (Dthq2)−1 and
τ = (Dq2)−1. The description becomes more complex in case of very thin samples,
where heat conduction into the walls becomes important [90].

The contrast factors have been measured interferometrically [87] and with an
Abbe refractometer, respectively. The sample was contained in a fused silica spec-
troscopic cell with 200µm thickness (Hellma). The sample holder is thermostated
with a circulating water thermostat and the temperature is measured close to the
sample with a Pt100 resistor. The amplitude of the temperature modulation of the
grating is well below 100µK and the overall temperature increase within the sample
is limited to approximately 70mK in a typical experiment [91], which is sufficiently
small to allow for measurements close to the critical point.

2.3 Measurements on PDMS/PEMS blends

The measurements near the critical point have been performed with a PDMS/PEMS
blend with molar masses ofMw = 16.4kg/mol (PDMS,Mw/Mn=1.10) andMw =
22.8kg/mol (PEMS,Mw/Mn =1.11). The corresponding degrees of polymerization
are N = 219 andN = 257, respectively. The phase diagram shows a lower mis-
cibility gap with a critical composition ofcc = 0.548 (weight fractions of PDMS),
which was determined according to the equal volume criterion. This value is in good
agreement with the critical volume fractionφc calculated from the Flory-Huggins-
model [91]. The critical temperature isTc = 38.6◦C. For some measurements also
off-critical mixtures of varying molar masses have been employed. The relevant
numbers will be given where appropriate.

As predicted by the expressions for the critical divergenceof the Soret coeffi-
cient in Eq. (12) and Eq. (13), the heterodyne diffraction efficiency of the induced
concentration grating dramatically increases on approachof the critical point. Fig.
2 shows normalized heterodyne diffraction efficiencies that have been recorded for
different distancesT −Tc. A few hundred milli-Kelvin away fromTc, the modulation
depth, which is proportional to the heterodyne signal, exceeds the values typically
found for small molecules and off-critical mixtures already by nearly four orders of
magnitude.
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Fig. 2 Typical heterodyne
diffraction signals measured
for a critical PDMS/PEMS
mixture for different distances
T −Tc to the critical point. All
curves have been normalized
according to Eq. (15). The
dashed line indicates the
nearly constant initial slope
of the concentration signal
(an exponential function in
the logarithmic plot) caused
by the almost constant value
of DT . The inset shows, for
comparison, a considerably
smaller signal for an off
critical PDMS/PEMS mixture
(860 and 980 g/mol).
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2.4 The diffusion coefficient

The diffusion coefficientD is plotted in Fig. 3 as a function of the reduced tempera-
tureε. The upperx-axis shows the correlation lengthξ = ξ0ε−0.63 with ξ0 = 1.5nm.
The short downward arrow marks the approximate locus of the transition from the
asymptotic Ising to mean field behavior atξ ≈ N1/2Rg [4]. Below this value, at

Fig. 3 Mass and thermal
diffusion coefficientsD and
DT as functions of reduced
temperatureε. Literature PCS
data forD taken from Meier
[8] and Sato [92] (scattering
angle 60◦ (⋄) and 130◦ (�)).
See text for a discussion of
the fit functions. Also shown
DT (upper curve, righty-axis)
for the same temperature
range together with fit func-
tion containing only thermal
activation (dotted line). Open
diamonds: data with unclear
error bars due to very long
equilibration times. Note the
different units of the two
y-axes.
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smaller values ofε and larger correlation lengths, the data are compatible with the
asymptotic scaling law of Eq. (9). For large values ofε the slope continuously in-
creases due to the transition to the mean field exponent and the growing influence
of thermal activation [81].

Data ofD as measured previously by photon correlation spectroscopy(PCS) on
comparable polymer blends have also been included in Fig. 3.Generally, both the
data of Meier [8] and Sato [92] show an excellent agreement with our results. Close
to Tc (below ε ≈ 0.01), however, the PCS data level off and no longer follow the
asymptotic scaling law. This transition from a diffusive,Γ = Dq2 ∝ q2, to a non-
diffusive behavior withΓ ∝ q3, occurs when the correlation length exceeds the in-
verse scattering vector,ξ > q−1. Theq-dependence of theapparent diffusion coef-
ficient is evident from the two measurements performed by Sato et al. at different
scattering angles.

Since TDFRS works at much lowerq-values than PCS, in our caseq ≈ 3×
10−3nm−1 compared toq ≈ 3× 10−2nm−1, the critical point can be approached
much closer on theε-axis, thereby still observing scaling behavior and critical slow-
ing down ofD. The crossover corresponding toq−1ξ ≈ 1 is marked with an arrow
at ε ≈ 2×10−4.

An analytical description of the crossover from a diffusiveto a non-diffusive
behavior at a finiteq-value has been given by Kawasaki [93]:

D(qξ ) = D(q → 0)K(qξ ) , (17)

K(x) =
3

4x2

(

1+ x2 +
(

x3− x−1)arctanx
)

. (18)

A fit of D taking the Kawasaki function (18) into account is included in Fig. 3 (see
next paragraph). It shows the expected significant deviation from the scaling law
just outside theε-range of our TDFRS data.

The problem of the dynamic crossover from the Ising to the mean field regime has
been treated by Jacob [94] and by Kostko [95]. Kostko et al. derived a decomposition
of D = Db +∆D into a background contributionDb and an enhancement∆D of the
form

Db =
kBT (1+(qξ )2)

6πηbξ
1

qDξ
, (19)

∆D =
kBT

6πηξ
K(qξ )

[

1+
qξ
2

]zη /2

· 2
π

arctan(qDξ ) . (20)

ηb is the background contribution of the viscosity andq−1
D a characteristic cutoff-

length.K(x) is the Kawasaki function defined in Eq. (18). The solid line inFig. 3,
which interpolates our data quite reasonably, is a fit of the sum of Eqs. (19) and (20).
The correspondingly labeled dashed lines show the decomposition into the two con-
tributionsDb and∆D. The viscosity was assumed to be thermally activated with the
same activation temperature ofTa = 1460K as the thermal diffusion coefficient (see
below). The weak critical divergence of the viscosity has been neglected. Details
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Fig. 4 Arrhenius plot of
the ratioDT /D0

T accord-
ing to Eq. (11) for critical
(16.4/22.8) and a number of
off-critical PDMS/PEMS
blends of various molar
masses and concentrations
c = 0.5. The legends give
the PDMS and PEMS molar
masses in kg/mol. Also shown
is a line corresponding to the
activation energy of the vis-
cosity according to Ref. [92].
Fig. according to Ref. [96].
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of the analysis and questions associated with the proper choice of the correlation
length are discussed in more detail in Ref. [81].

2.5 The thermal diffusion coefficient

The data forDT in Fig. 3 clearly show, in contrast to the data forD, no critical
scaling but only thermal activation. A fit of the expression in Eq. (11) to the data
in Fig. 3 gives a prefactorD0

T = 1.82× 10−7cm2(sK)−1 and an activation tem-
perature ofTa = 1460K. Fig. 4 shows an Arrhenius plot of the thermal diffusion
coefficient according to Eq. (11) not only for theDT data from Fig. 3 but also for a
number of off-critical PDMS/PEMS blends of different molarmasses and PDMS-
concentrations ofc = 0.5. Only the critical mixture has a slightly different con-
centration ofcc = 0.548. Independent of the criticality of the system, all activa-
tion energieskBTa are identical. A common fit yields an activation temperatureof
Ta = 1415K, which is almost identical to the value of 1460K obtained for the critical
mixture alone [96]. Also shown in Fig. 4 is a dashed line with the slope correspond-
ing to an activation temperature of 2285 K as reported in Ref.[92] for the viscosity.
The reason for the pronounced difference between these two activation temperatures
is not clear, and a definite answer would require additional viscosity measurements
for PDMS/PEMS blends as described in this work. A detailed analysis of DT of
PDMS/PEMS mixtures of equal weight fractions has shown thatthe prefactorD0

T
can be decomposed into a molar mass independent part plus contributions from the
end-groups, which vanish for longer chain lengths [96, 97].
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Fig. 5 Soret coefficientST as
function of the reduced tem-
peratureε. For comparison
D−1 with arbitrary multiplica-
tive factor (both lefty-axis)
and the static structure factor
S(0) (◦) are shown for a simi-
lar blend taken from Ref. [8].
Note the identical dynamical
range of bothy-axes. Fig.
according to Ref. [81].
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2.6 The Soret coefficient

According to Eqs. (12) and (13) the Soret coefficientST = DT /D diverges on ap-
proach of the critical point. This scenario is plotted in Fig. 5. SinceDT is constant to
good approximation within this narrow temperature range ofonly a few Kelvin, the
scaling law in the asymptotic critical regime,ST ∝ ε−0.67, is determined by the expo-
nent of the diffusion coefficient. At largerε > Gi the Soret coefficient diverges with
the mean field exponent of the structure factorS(0), since the thermal activation,
which appears both inD andDT , cancels out. In order to illustrate this crossover of
the divergence ofST from the mean field to the asymptotic critical regime, we have
included in Fig. 5 besides our own data onD−1 also data from previous works on
the static structure factorS(0) of a comparable PDMS/PEMS (19.4/30.1) blend [8].
The straight line with a slope of -1 has been included in Fig . 5to demonstrate that
the mean field scaling exponentγ = 1 can be found forST rather than forD, which
shows a stronger temperature dependence due to the additional thermal activation
of the Onsager coefficientαb.

Additional insight into the nature of the Soret coefficient and its critical diver-
gence is obtained from Eq. (13) for the classical regime:

ST ≈ DT

Db =
DT

αb S(0) = K(T ) S(0) . (21)

Since bothDT andαb are thermally activated with the same activation temperature
and with prefactorsD0

T andαb,0 , the dominating contribution of the temperature
dependence cancels out in the ratio and we are left with an only weakly temperature
dependent function

K(T ) =
DT

αb =
D0

T

αb,0 . (22)
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Fig. 6 Left: Soret coefficientST for a number of PDMS/PEMS blends. The red bullets correspond
to the critical blend with a critical temperature ofTc = 38.6◦C. Right: Same data as left normalized
to mean field static structure factorS(0). The legends give the PDMS and PEMS molar masses in
kg/mol. Figs. according to Ref. [96].

Experiments have shown that, at least for PDMS/PEMS blends of equal weight
fraction,K(T ) indeed depends only weakly on temperature and is independent of
the molar mass of the constituents [96]. Consequently, the different values of the
Soret coefficient in the classical mean field regime are almost exclusively caused by
the variation of the static structure factor.

Fig. 6 shows the respective data plotted according to Eq. (21) for a number of
blends with different degrees of polymerization. The left plot shows the Soret co-
efficients as measured and the right one after normalizationto the mean field static
structure factor calculated from the Flory Huggins model, cf. Eq. (7). Although the
structure factors and the Soret coefficients of the different samples vary by more
than two orders of magnitude – even at the highest temperature of almost 100◦ C
– all curves collapse onto one single master curve for a high temperatureT . At
lower temperatures there is the pronounced deviation from the common curve for
the (16.4/22.8) blend in the asymptotic critical regime with the critical divergence of
ST . The slight deviations of two other blends might be first hints of phase transitions
at lower temperatures [96].

3 Laser-thermal patterning of the homogeneous phase

Structuring of polymer films attracts considerable attention, and various radiation
sources have been employed to selectively crosslink suitable polymers for e.g.
waveguide fabrication [98]. Incompatible polymer blends have been forced into cer-
tain demixing morphologies along pre-patterned surfaces [55]. Persistent structures
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Fig. 7 Phase diagram of
PDMS/PEMS (16.4/48.1).
The cloud points that mark the
binodal (squares) have been
obtained by turbidimetry.
Pseudo-spinodal points as
explained in the text. The
color encodes the modulus
of the Soret coefficient. Fig.
from Ref. [99].

could be formed by laser radiation in various non-absorbingpolymer solutions, such
as polyisoprene in n-hexane [58, 57].

In the following we will describe a novel photothermal patterning technique that
relies on the Soret effect. The diverging Soret coefficient in a polymer blend close
to the critical point leads to a very strong coupling of the order parameter, the lo-
cal composition, to an externally prescribed inhomogeneous temperature field. This
opens an interesting route to the formation of arbitrary composition patterns within
an initially homogeneous polymer film. Since there is no photochemistry involved,
the whole process is fully reversible and structures can easily be erased by local or
global heating of the sample.

Our goal was, to provide a detailed experimental characterization and numerical
modeling of the photothermal structure formation in a critical polymer blend. Since
the transport coefficients, and in particular the Soret coefficient, strongly depend on
temperature and concentration, the structure formation isa highly nonlinear pro-
cess that requires a detailed knowledge of all relevant coefficients within a broad
parameter range. Since useful data on Soret coefficients forpolymer blends were
not provided by previous works, we started with measurements of Soret coefficients
for our model system PDMS/PEMS within the entire one-phase regime above the
binodal [99].

3.1 Phase diagram and transport coefficients

To be able to measure also off-critical mixtures down to the binodal within a con-
venient temperature range, a mixture with a higher criticaltemperature has been
chosen than for the previous investigation of the critical behavior. The system cho-
sen was PDMS (Mw = 16.4kg/mol, Mw/Mn=1.10) and PEMS (Mw = 48.1kg/mol,
Mw/Mn=1.19). It has a critical composition ofcc ≈ 0.6 and a critical temperature
of Tc ≈ 354K. The phase diagram of this mixture is shown in Fig. 7. Thecloud
points (squares in Fig. 7), which separate the homogeneous from the phase sep-
arated regime, define the binodal and have been determined byturbidimetry. The
spinodal and the color-coded Soret coefficient will be discussed later on.
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The diffusion, thermal diffusion, and Soret coefficients for nine different PDMS
concentrations fromc = 0.09 to c = 0.9 have been measured between the binodal
temperature and approximately 368 K. Fig. 8 shows on the leftside the diffusion
and thermal diffusion coefficients. The temperature dependences of the latter are
very well described as thermally activated processes according to Eq. (11) with a
common activation temperatureTa = 1395K, which is very close to the 1460 K
obtained for the critical blend in section 2.

Within the pseudo-spinodal concept [100, 11] the diffusioncoefficient of an off-
critical mixture is still described in a similar way as the diffusion coefficient of the
critical mixture. Only the critical temperature is now replaced by the temperature
Tsp of the spinodal:

D = a0
T −Tsp

T
exp(−Ta/T ) . (23)

In contrast to the critical temperatureTc, the spinodal temperatureTsp is well below
the binodal temperature for off-critical mixtures and can hardly be reached due to
prior phase separation. The diffusion coefficients in the upper left part of Fig. 8 have
been fitted by Eq. (23) with a fixed activation temperature determined fromDT . The
binodal points in Fig. 8 mark the boundary of the homogeneous phase at the binodal.
The spinodal temperaturesTsp are obtained as a fit parameter for every concentration
and together define the (pseudo)spinodal line plotted in thephase diagram in Fig. 7.
The Soret coefficient is obtained from Eqs. (11) and (23) as

ST =
DT

D
=

D0
T

a0

(

T −Tsp

T

)−1

(24)

and diverges at the spinodal temperature (Fig. 8, right).
Although the asymptotic critical regime with the Ising-like scaling exponents has

been neglected in this description, the fit curves in Fig. 8 are a reasonable parameter-
ization for all three coefficients in the one-phase regime. This parameterization then
serves as input for the numerical model. A more detailed discussion of the whole
procedure can be found in Ref. [99].

3.2 Writing patterns into polymer films by local laser heating

The huge Soret coefficient near the critical point can be taken advantage of for the
creation of compositional patterns by local heating. Fig. 9shows a setup that has
been used in experiments for writing compositional patterns in polymer blends. It
consists of an inverted phase contrast microscope equippedwith a CCD camera.
A Laser beam (λ = 515nm) can be coupled in via a telecentric lens system and
a galvano scanner, which allows for arbitrary computer controlled positioning of
the laser focus within the sample. The laser is focused down to r0 = 0.8µm and
its power can be adjusted between 0.1 and 100 mW. The sample cell is temperature
controlled and mounted on axyz-stage. The polymer layer ofLs = 100µm thickness
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Fig. 8 Diffusion (D) and thermal diffusion (DT ) coefficient of PDMS/PEMS (16.4/48.1) (left) and
Soret coefficient (right) for different PDMS mass fractions given in the legends.Binodal points
mark the intersection with the binodal. The dashed line segments are extrapolations into the two-
phase regime. Figs. from Ref. [99].

Fig. 9 Inverted phase contrast microscope equipped with a CCD camera anda laser. Galvano
mirrors allow for scanning of the laser focus across the sample.

is sandwiched between two 1 mm thick sapphire windows that are sealed with a two
component epoxy resin (Torr Seal). A small amount of dye (quinizarin) is added for
optical absorption. It does not change the critical temperature noticeably.

Pattern writing experiments have been performed with an almost symmetric
PDMS/PEMS (16.4/15.9) blend having a critical compositioncc = 0.48 and a con-
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venient critical temperatureTc = 290.15K. It has been shown in Ref. [99] in de-
tail that the parameterization of the transport coefficientdetermined for the higher
PEMS molar mass still yields a good description also for thisblend after adjusting
the critical concentration and taking(T −Tsp)/T as dimensionless temperature.

The focused laser beam is scanned along an arbitrary path within thexy-plane as
sketched in Fig. 10. The perspective view with the cross section through the scan
path shown in Fig. 10a) visualizes the color-coded concentration change due to the
Soret effect according to the numerical simulation discussed later on. On the right
hand side a phase contrast micrograph is shown where the wordSoret has been
written into the polymer blend.

For a quantitative analysis a short line segment has been written at two different
distances∆T = 1K and 11.5K aboveTc, cf. Fig. 11. Because of the positive phase
contrast, a darker gray value translates into a higher refractive index. Hence, the
polymer with the lower refractive index (PDMS) is enriched within the bright central
region. Consequently, PEMS migrates into the opposite direction and causes a dark
fringe around the bright lines. These effect also leads to the darker halos around
the letters in Fig. 10. This observation is in agreement withthe negative sign ofST

reported in Fig. 5 for PDMS/PEMS.
The initial linear growth is proportional toDT and identical for both distances

from Tc, cf. Fig. 11 A and D. At longer times the line written at∆T = 11.5K quickly
saturates, whereas the line written close toTc continues to grow in intensity due to
the much larger Soret coefficient, as indicated in Fig. 11 C and F.

The gray values in Fig. 10 and in Fig. 11 are two-dimensional projections into
thexy-plane. Because of the phase contrast technique, they are approximately linear
functions of the integral over the refractive index along the z-direction. The temper-
ature and concentration distribution and, hence, also the refractive index are fully
three-dimensional objects. The high thermal conductivityof the sapphire windows
enforces a constant temperature boundary condition at the top and bottom windows.

µmz=50
100 µm

100 µm

c)

b)
x

z=−50 mµ z
laser

16 mmsection plane scan path

30 mm

y

xlaser

a)

z
y

x

Fig. 10 a) 3d-sketch of the cell. The laser beam is scanned along they-direction (c); cross-section
according to Fig. 12. b) Sketch of laser focus. Right: arbitrary pattern written into critical sample.
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Fig. 11 Phase contrast micrographs of line segment written 1K (upper row)and 11.5K (lower
row) aboveTc into PDMS/PEMS blend of critical composition. Images in columnstaken after 100,
300, and 2000 seconds. Fig. from Ref. [99].

3.2.1 Numerical model

A more detailed picture of the three-dimensional temperature and concentration dis-
tribution can be obtained by an appropriate numerical model. Besides the diffusion
equations for heat and mass, convection caused by both thermal and solutal expan-
sion needs to be taken into account.

The temperature profile evolves according to the heat equation (Eq. 5) with the
heat source supplied by absorption of the focused laser beam. An additional advec-
tion term accounts for the influence of convection:

∂T
∂ t

+(v ·∇)T = ∇ · (Dth∇T )+
α

ρcp
I . (25)

The heating Gaussian laser beam is scanned along they-direction. It enters the sam-
ple atz = −Ls/2 and creates an intensity distribution

I =
P0

A
exp

[

−2{x2 +(y− s(t))2}
r2

]

exp

[

−α
(

Ls

2
− z

)]

, (26)

A = πr2/2 ,

r2 = r2
0

[

1+

(

λ z

πr2
0

)2
]

.

The temporally periodic scanning of the laser is described by s(t), which changes
from−Lline/2 to+Lline/2 linearly in time. For coordinate axes see Fig. 10.

As in case of the heat equation, an advection term must be added to the diffusion
equation (3):

∂c
∂ t

+(v ·∇)c = ∇ · [D∇c+DT c(1− c)∇T ] . (27)
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Convection is accounted for by the Navier-Stokes equation in the Boussinesq ap-
proximation

ρ0

[

∂v
∂ t

+(v ·∇)v
]

= −∇p+η0∇2v−ρgez (28)

with the incompressibility condition

∇ ·v = 0 . (29)

The density changes because of both thermal and solutal expansion with expansion
coefficientsβT = −(1/ρ)(∂ρ/∂T )c andβc = (1/ρ)(∂ρ/∂c)T , respectively:

ρ = ρ0[1−βT (T −T0)+βc(c− c0)] . (30)

ρ0 is the mean density at temperatureT0.
Since the extension of the induced concentration profile in Fig. 11 along the

y-axes is much longer than along the other two directions, we assume translation
symmetry and restrict our description to a two-dimensionalmodel within thexz-
plane. The intensity of the laser beam is obtained by averaging Eq. (26) over the
scan period:

I = (P0/A)exp

[

−2x2

r2

]

exp

[

−α
(

Ls

2
− z

)]

, (31)

A =

√

π
2

rLline

erf(Lline/
√

2r)
,

r2 = r2
0

[

1+

(

λ z

πr2
0

)2
]

.

The high thermal conductivity of the sapphire windows ensures a fixed temperature
T = T0 at the boundariesz = ±Ls/2 and atx = ±Lx/2. The boundary condition for
the diffusion equation is a vanishing flux at the walls (normal vectoren):

en · [D∇c+DT c(1− c)∇T ] = 0. (32)

For the velocity one has a non slip boundary condition at the walls: v = 0). The
initial conditions areT = T0, c = c0, andv = 0.

An expression for the transmitted light in ideal phase contrast imaging can be
found in Refs. [101, 102]. For a more detailed treatment it isalso necessary to take
the finite width of the phase object into account [103], resulting in

ITr − ITr0

ITr0
= K

[

1+ p2 + t2−2p(cosφ + t sinφ)

1+ p2 + t2−2p
−1

]

,

φ =
2πLs

λhal

∂n
∂c

(c̄− c0) . (33)
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Fig. 12 Vertical cuts (perpendicular toy-axis) through a linear structure written by the laser. (A)
temperature profile. (B, D) concentration profilesc(x,z) for a starting temperature of∆T = 1K
above the critical temperature after 100 s and 2000 s. Part (C) visualizes like in Part (D) the tem-
perature and concentration for∆T = 11.5K. The arrows are for visualization of the flow fields.
Fig. from Ref. [99].

p2 = 1 andt2 = 0.4 are the relative amplitude transmittance of the polymer layer
and the microscope objective, respectively.φ = φ(x) is the phase shift induced in the
layer due to the concentration change,λhal = 550 nm is the wavelength of probing
light, ∂n/∂c =−2.3×10−2 is the contrast factor of the PDMS/PEMS mixture, and ¯c
is the concentration averaged over the layer thickness.K is treated as a fit parameter
[99]. The material parameters like viscosity, density, andexpansion coefficients are
given in Ref. [99].

Fig. 12 shows the result of the numerical solution of the model above. The images
are cross sections through a written line perpendicular to the scan direction of the
laser. The vertical dimension, thez-direction, corresponds to a sample thickness of
100µm. The stationary temperature distribution shown in Fig. 12A is reached very
rapidly. Fig. 12B shows the concentration profile after 100 seconds. This image is
shown for a distance of∆T = 1K above the critical temperature. The early-stage
concentration profile does, however, not depend significantly on the absolute tem-
perature because of the almost constant thermal diffusion coefficient. During the
initial linear growth period the concentration profile remains very sharp and resem-
bles the profile of the focused Gaussian laser beam. This seems surprising at a first
sight, since the driving temperature profile is already rather broad. It is, however,
understood from Eq. (27), which takes for short times the form

∂c
∂ t

|t→0 = DT c(1− c)∇2T . (34)

Hence, the early stage of the concentration profile is proportional to the Laplacian
of T (r , t) rather than the temperature field itself. ¿From the stationary solution of
Eq. (25) it can be seen that∇2T (r , t) is proportional to the laser intensity, neglecting
temperature dependences of the coefficients and convectionin a first approach.

At longer times the concentration profile broadens and becomes more intense.
The two images att = 2000s clearly show the much stronger effect close to the
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critical point, cf. Fig. 12D. Convection causes an asymmetry of the profile and a
detailed analysis shows, that the main effect of convectionis the solutal rather than
the thermal expansion of the mixture. Radiation pressure effects due to the laser en-
tering from below are approximately one order of magnitude smaller and negligible.

Due to the optical volume heating and the high thermal conductivity of the sap-
phire, the strongest temperature gradient develops directly at the window surface.
Consequently, PEMS enriches mainly at the windows above andbelow the heated
channel rather than to the left and right, as one might first guess from the two-
dimensional projection with the dark halos of Fig. 11. PEMS-rich regions appear
darker in Fig. 12.

The color-coding of the hot/cold colormap used in Fig. 12 forthe concentration
profile can also be interpreted in terms of a refractive indexmap. The refractive
indices of the PDMS/PEMS mixtures are such that the bright channel in the cen-
ter, which corresponds to a PDMS enrichment, has a lower refractive index and
the PEMS-rich layers at the windows have a higher refractiveindex than the aver-
age mixture. However, there may exist other polymer blends where the sign change
of the refractive index is in the opposite direction. In thiscase, the channel-like
structures could be used as re-writable optical waveguides. The cladding layers,
which automatically form at the windows, would then be of lowrefractive index
and shield the channel from the high refractive index of the window material. Such
a structure is sketched in a perspective view in Fig. 13. Written structures are fully
reversible and can locally or globally be erased by heating.Long term stability
might be achievable with blends of a polymer with a low and a high glass tran-
sition temperature, where the dynamics comes to rest duringthe demixing process
[105]. As has been shown for concentrated polymer solutions, the Soret coefficient
is not influenced by the increasing viscosity in the vicinityof a glass transition
[106, 107, 108, 109].

As a direct consequence of the strong temperature and composition dependence
of the Soret coefficient near the critical point,ST (andD) become position depen-
dent within the polymer layer. When the initially homogeneous sample of critical
composition is kept slightly aboveTc, the very high value ofST leads to strong con-
centration changes even for small temperature gradients. When a volume element

Fig. 13 Perspective view of
the channel-like structure of
Fig. 12D. A different color
coding has been chosen for
a better discrimination of the
various regions. The PDMS-
rich channel in the center
(red) is sandwiched between
two PEMS-rich layers (blue).
Fig. from Ref. [104]. x

y

z
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is moved away from the critical point in the phase diagram,ST decreases and the
further excursion along the composition axis is efficientlylimited.

In order to illustrate this nonlinear mechanism we have plotted the part of the
phase diagram occupied by the sample from Fig. 12D in Fig. 14 as a gray region.
The red bullet marks the initial position of the homogeneoussample just above the
critical point. The dashed curve is a trajectory that corresponds to a vertical cut
through the cell along the optical axis of the laser beam. Negative values of (c− c0)
correspond to PEMS, positive values to PDMS enrichment. TheSoret coefficient
plotted along this trajectory shows a characteristic double peak structure. The two
maxima are very close to the position where the concentration crosses the average
valuec = c0.

Fig. 15 shows an example, where the temperature profile has not been created by
direct laser heating of the absorbing dyed polymer blend in the volume but rather by
optical heating of a colloidal gold particle of 200nm in diameter [110]. Such a col-
loid then serves as a microscopic heat source that directly modifies the composition
of the surrounding polymer blend. The bright region around the colloid, correspond-
ing to PDMS enrichment, is surrounded by a faint darker ring where PEMS, that is
displaced from the immediate surrounding of the gold particle, accumulates.

3.3 Quenching of an off-critical blend by local heating

Important consequences of the strong coupling between inhomogeneous tempera-
ture fields and local composition arise for situations whereequilibrium phase dia-
grams are applied to nonequilibrium systems [111]. Such scenarios have been re-

Fig. 14 Trajectory in the
phase diagram for a verti-
cal cut through the sample
corresponding to Fig. 12D.
z = −50µm andz = −50µm
correspond to the lower and
upper window, respectively.
All volume elements of the
sample reside inside the gray
region. The insert shows the
modulus of the Soret coeffi-
cient plotted along the dashed
trajectory.
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Fig. 15 Phase contrast mi-
crograph of laser-heated gold
colloid (center) with PDMS
enrichment in the surrounding
volume (bright) and PEMS
accumulation at larger dis-
tance (dark). Only the middle
one of the three colloids is
heated with a focused laser
[110].

ported by a number of authors. Lee et al. studied spinodal decomposition in the
presence of a temperature gradient [16, 17]. Tanaka et al. investigated the influ-
ence of periodically driving the polymer mixture above and below the instability
point [74]. Meredith et al. employed a combinatorial methodwith perpendicular
temperature and concentration gradients in order to determine entire polymer phase
diagrams in a single experiment [112]. In the following it will be shown that rather
unexpected effects can occur in the presence of temperaturegradients and that equi-
librium phase diagrams do not necessarily give a valid approach to nonequilibrium
conditions.

The experiments reported here have been performed with a PDMS/PEMS (16.4/
48.1) blend. The mixture is an UCST mixture with a critical composition of
cc = 0.61. The diffusion, thermal diffusion and Soret coefficientsof this system
are shown in Fig. 8. Samples of two different off-critical compositions (c = 0.3
andc = 0.9) were prepared. The temperature was set to a value of a few degrees
above the binodal. Hence, the sample was entirely within thehomogeneous phase

Fig. 16 Forced demixing of
an initially homogeneous off-
critical PDMS/PEMS blend
for c = 0.3 (upper row) and
c = 0.9 (lower row). µm70

c(PDMS)=0.9g/g

µ

c(PDMS)=0.3g/g

140 m
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Fig. 17 Phase diagram of
a PDMS/PEMS (16.4/48.1)
blend. The dashed lines are
the binodal and the spinodal.
The phase contrast micro-
graphs show typical demixing
patterns for spinodal decom-
position and nucleation and
growth in the respective re-
gions. The bullets mark the
initial sample positions. See
text for details. Fig. from Ref.
[111].

and one would expect that heating could only drive the blend further into the stable
one-phase region.

This assumption is indeed true for equilibrium scenarios with a homogeneous
temperature distribution. Due to the coupling between heatand mass transport, laser
heating gives rise to completely different behavior and caneven drive a UCST-
mixture locally from the homogeneous into the phase separated state.

The result of such laser writing experiments is shown in Fig.16, where the fo-
cused laser beam has been scanned along simple paths, a line and a circle. The upper
two images correspond to the sample withc = 0.3 (left of the binodal), the lower
two to c = 0.9 (right of the binodal). The initial location of either sample in the
phase diagram is marked in Fig. 17 with bullets. All four images in Fig. 16 show
two distinct features. First, there is smooth variation of the gray values with lighter
values along the scan path. This reflects the writing with a concentration change due
to the Soret effect, similar to the scenario discussed for the critical sample. Addi-
tionally, there are localized droplets, which are characteristic for a nucleation and
growth type demixing scenario. These droplets are bright and appear in the center
of the written line, corresponding to the hottest region, for c = 0.3. Forc = 0.9 they
are darker than the average gray value and located at the periphery of the line. In
either case their number increases with exposure time.

The occurrence of demixing morphologies characteristic for the metastable
regime between the binodal and the spinodal can be understood from Fig. 17. The
red dot marks the initial position of the sample withc = 0.3. Upon laser heating the
temperature within the laser focus rises byδT and the distance to the binodal first
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increases. A stationary temperature distribution is rapidly reached and the Laplacian
of the temperature fieldT (r , t) is obtained from the stationary solution of the heat
equation (5) with the power absorbed from the laser as sourceterm:

∇2T = −α
κ

I (35)

Inserting this into the diffusion equation (3) gives an expression for the initial linear
growth rate of the concentration profile, where∇2c ≈ 0:

∂c
∂ t

= −α
κ

DT c(1− c)I (36)

Due to the negative Soret coefficient of PDMS/PEMS, the composition in the center
of the focus evolves towards higher PDMS concentrations and, hence, towards the
two phase region. The mixture crosses the binodal after a time

δ t =
δc
∂tc

= −δc0 +δT (d Tbin/dc)−1

DT c(1− c)Iα/κ
(37)

δc0 is the initial distance to the binodal as defined in Fig. 17. (d Tbin/dc) is the
slope of the binodal.δT = 2.5K has been obtained from a full 3d-simulation of the
thermal part of the problem. Details of this estimation, including estimations for all
missing parameters, are discussed in Ref. [111]. The estimated timeδ t ≈ 13s turned
out to be much shorter than the seven minutes until first droplets could be observed.
Possibly, the much longer waiting time is owed to the metastability of the region
between the binodal and the spinodal.

The arrow pointing from the initial location atc = 0.3 to the left indicates the
evolution of the concentration away from the center of the heated line and at the
window surfaces, corresponding to the blue cladding layersin Fig. 12. These regions
represent the cold side with a reduced PDMS and increased PEMS concentration
that are shifted further into the stable region, away from the phase boundary.

The situation is different forc = 0.9, where the PDMS-enriched central part is
stabilized and shifted away from the binodal. But now, the regions outside the central
area, where PEMS accumulates, cross the phase boundary intothe metastable range.
The demixing by nucleation and growth is visible in the lowertwo micrographs in
Fig. 16 in form of a halo of dark droplets around the written structures.

Due to the phase contrast technique, PDMS- and PEMS-rich areas can easily be
distinguished, as shown in the three micrographs inserted in Fig. 17. They show
characteristic demixing scenarios observed for samples homogeneously quenched
into the two-phase region. The image in the middle corresponds to a symmetric
spinodal demixing pattern. The image on the left side shows droplet formation char-
acteristic for the metastable region to the critical concentration, where PDMS-rich
droplets form the minority phase. They appear as bright spots with a dark back-
ground. Clearly, the forced demixing of the samples withc = 0.3 in Fig. 16 corre-
sponds to this scenario.
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For samples with high PDMS concentrationsc > cc the situation is the other way
around. The droplets of the PEMS-rich minority phase appeardark in front of a
bright background. The right micrograph in Fig. 17 and the samples withc = 0.9 in
Fig. 16 correspond to this situation.

As a consequence of these experiments one has to realize thatcare is required
in situations where equilibrium phase diagrams are appliedto nonequilibrium situa-
tions [112]. Due to the coupling of heat and mass transport, the local concentration
may change. An excursion along the temperature axis unavoidably leads to a si-
multaneous excursion along the concentration axis. Due to the large Lewis number,
these two effects are characterized by very different characteristic relaxation times.

4 Model for phase separation including thermodiffusion

A modified Cahn-Hilliard (CH) model [113] is used for the theoretical analysis of
the impact of thermal diffusion on phase separation, by taking into account an in-
homogeneous temperature distribution which couples to a concentration variation
via the Soret effect. We use the Flory-Huggins model for the free energy of binary
polymer-mixtures. The composition is naturally measured in terms of volume frac-
tion φ of a componentA, which can be related to the weight fractionc by

c =
φρA

φρA +(1−φ)ρB
, (38)

whereρA and ρB are the densities of the two polymers. For all polymer blends
considered in this study, the densities of the two components are assumed to be
similar and, therefore, volume and weight fractions can be considered to be identical
for all practical purposes. For an incompressible binaryA/B mixture (ρ = const)
the continuity equation relates the spatial and time dependence of the local volume
fraction φ(r , t) to the total mass currentJ(r , t), and expresses the conservation of
mass in the system

∂φ(r , t)
∂ t

= −∇ · J(r , t)
ρ

, J = JD +JT . (39)

Here JD is the mass current related to gradients of the chemical potential µ(=
µA − µB), andJT is the mass current due to the Soret effect in a inhomogeneous
temperature fieldT [76]

JD(r , t) = −ρM(∇µ)T , JT (r , t) = −ρDT φ(1−φ)∇T (r , t) , (40)

whereM is the “mobility” of speciesA with respect toB, andDT is the thermal
diffusion coefficient. Both are often treated as a constant although they are concen-
tration dependent in general.
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In a Ginzburg-Landau model the chemical potentialµ is related to the free energy
functionalF [φ(r , t)] via the expression

µ =
δF [φ ]

δφ
,

F [φ ]

kBT
=

1
v

∫

dr
[

f [φ ]

kBT
+κ(φ)(∇φ)2

]

, (41)

with the Boltzmann constantkB. The Flory-Huggins (FH) expression for the mixing
energy of an incompressible binary polymer blend has the following form [80]

f [φ ]

kBT
=

φ
NA

lnφ +
(1−φ)

NB
ln(1−φ)+ χφ(1−φ) , (42)

whereNA andNB describe the degree of polymerization (“chain lengths”) oftheA
andB sort of molecules, respectively.χ is the Flory interaction parameter that de-
scribes the interaction strength between the two speciesA andB and positive values
of χ favor phase separation. This contribution to the free energy has a double-well
structure in the two-phase region and the temperature dependence of the coefficient
χ is commonly described by the following phenomenological expression,

χ = α +βT−1 , (43)

with two empirical constants,α andβ [114].
For positive values ofκ(φ) the gradient term in Eq. (41) expresses the energy

required to create an interface betweenA-rich andB-rich domains and this energy
contribution is reduced by removing interfaces during the coarsening process in the
two phase region. For the coefficient of the gradient term in Eq. (41) we use the de
Gennes’ random phase approximation

κ(φ) =
1
36

[

σ2
A

φ
+

σ2
B

1−φ

]

, (44)

whereσA andσB are the monomer sizes (Kuhn lengths) of theA andB components,
respectively.

Since we have in mind polymer blends subjected to an inhomogeneous tempera-
ture field (produced, e.g., by light absorption), the heat equation

∂T (r , t)
∂ t

= Dth∇2T (r , t)+
αλ
ρcp

I(r , t) (45)

has to be taken into account, whereDth is the thermal diffusivity. The heat source
term is proportional to the light intensityI that corresponds to the local illumination
of the polymer film. Hereαλ is the optical absorption coefficient,ρ is the density,
andcp the specific heat at constant pressure. For typical polymer blends the Lewis
number, describing the ratio between the temperature diffusion time and the mass
diffusion time, is of the order of 10−3. Therefore, one can treat the heat equation
(45) in the stationary limit (neglect the time derivative ofthe temperature).
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A mixture of compositionφ0 is unstable against phase separation whenf [φ ] has
negative curvature atφ = φ0. The critical point of spinodal decomposition in model
(42) is given by

φc = N1/2
B /(N1/2

A +N1/2
B ) , χc = [N1/2

A +N1/2
B ]2/(2NANB) , (46)

such that the system is miscible forχ < χc and immiscible forχ > χc at the critical
concentration. Close to(φc,χc) the expression for the free energy in (42) can be
approximated by a Taylor expansion with respect to the composition fluctuation
ϕ(r , t) = [φ(r , t)−φc] leading to the Ginzburg-Landau functional in terms of powers
of ϕ (an irrelevant term linear inϕ has been omitted)

FGL[ϕ]

kBTc
=

1
v

∫

dr
[

1
2

bϕ2 +
1
4

uϕ4 +
1
2

K(∇ϕ)2
]

, (47)

where the coefficients are defined as

b = 2(χc −χ) ≈ 2β
T 2

c
(T −Tc) , u =

4
3

χ2
c

√
NANB ,

K =
1
18

[σ2
A(1+

√

NA/NB)+σ2
B(1+

√

NB/NA)] . (48)

Eq. (39) and Eq. (45) in combination with Eq. (40) and Eq. (47)define our model
close to the critical point:

∂tϕ(r , t) =
MkBTc

v
∇2[

b(T )ϕ +uϕ3−K∇2ϕ
]

+DT φc(1−φc)∇2T , (49)

Dth∇2T = − αλ
ρcp

I(r , t) . (50)

ST = DT /D is the Soret coefficient with the diffusion coefficientD = (MkBTc|b|)/v.
In the absence of thermal diffusion, Eq. (49) reduces to the well known Cahn-
Hilliard equation, which is also known as modelB [3]). In fact, Eq. (49) gives a
universal description of a system in the vicinity of a critical point leading to spin-
odal decomposition.

5 Temperature modulations in the two-phase regime

We will demonstrate in this section how spinodal decomposition pattern in the two
phase region can be locally manipulated in a controlled way by heating a polymer
blend PDMS/PEMS by a focused laser beam. It is also shown, that the essential
spatial and temporal phenomena, as observed in the experiments, can only be repro-
duced in numerical simulations when thermodiffusion (Soret effect) is taken into
account in the basic equations.
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The polymer blend PDMS/PEMS with molar masses ofMw = 16.4 and 22.3
kg/mol, respectively, was similar to the one which has previously been used for
the investigation of transport properties in the critical regime [81] and a laser with
515 nm and 20 mW has been used for local heating. The blend of with a PDMS
weight fraction ofc = 0.536 was almost critical with a critical temperature of
Tc = 37.7 ◦C. A minute amount of an inert dye (quinizarin) was added for optical
absorption at wavelength of the laser. The thickness of the sample was 200µm, the
beam waist approximately 30µm, the optical density 0.1 and the temperature rise
within the beam center was estimated to be approximately 5 K.Images of the sam-
ple were recorded by a microscope objective (7×) and a CCD camera, whose image
sensor was, without additional optical elements, within the image plane 50 cm be-
hind the objective. The horizontally oriented sample was illuminated with slightly
divergent white light from a cold light source, which produces an observable ampli-
tude image from a pure phase object. This method of imaging ofspinodal decom-
position patterns in mixtures of non-absorbing liquids of different refractive indices
has been discussed in detail in Ref. [115].

The sample was quenched into the two-phase region 0.5 ◦C belowTc and 120 min
later,where also Fig. 18(A) was taken, the laser beam was turn on att = 0. At this
moment the spinodal decomposition has already reached a progressed stage, and
the Fourier transform of Fig. 18(A) gives a characteristic length scale of the order
of 10 µm. At the time= 200 sec the laser beam has been turn of and Fig. 18(B) was
taken att = 300 sec. Since the spatial concentration distribution of the two polymers
cannot be extracted quantitatively by direct imaging techniques, the gray scales of
the experimental images in Fig. 18 have been equalized for optimum contrast.

The spinodal pattern completely disappears in the area, where the material was
heated by the laser beam beyondTc. After the laser is switched off, this circular
pattern again survives for a long time [Figs. 18(B),(C)], before in this area a some-
what irregular structure develops, which slowly grows in diameter [Fig. 18(C)] and
moves away from the central spot like a spherical wave.

To analyze this phenomenon further, two-dimensional numerical simulations of
Eq. (49) and Eq. (50) were performed using a central finite difference approxi-
mation of the spatial derivatives and a 4-th order Runge-Kutta integration of the
resulting ordinary differential equations in time. Details of the simulation tech-
nique can be found in Ref. [113, 116]. The material parameters of the polymer
blend PDMS/PEMS were used and the spatial scaleξ = (K/|b|)1/2 and time scale
τ = ξ 2/D were established from the experimental measurements of thestructure
factor evolution under a homogeneous temperature quench.

The results of the simulations, including the Soret-effect, are shown in Fig. 18(a)-
(c) for parameters comparable to the experimental conditions. The dark and bright
areas correspond according to the basic equations to the A- and B-rich phase,
whereas the experimental images are generated by an opticalimaging technique,
from which only characteristic patterns and length scales are directly compara-
ble. For comparison simulations were also performed without the Soret effect, cf.
Fig. 18(α)-(γ)], by settingDT = 0 in Eq. (49). All other parameters of the model
were kept constant and the same initial conditions were usedin Fig. 18(a) and
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A B

b c

γβα
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a

Fig. 18 Temporal development of a pattern in a polymer blend atT = 37.2 ◦C < Tc which was
exposed locally to laser light during the period 0< t < 200 s. Images are taken att = 0 (A), t = 300
s (B), andt = 700 s (C). The corresponding images (a-c) are obtained by simulations with and the
images (α – γ) without taking the Soret effect into account. Fig. from Ref. [116].

Fig. 18(α). In this case the laser heated spot is driven into the one-phase regime
during the laser light exposure, but the characteristic features of the experimentally
observed demixing pattern do not show up without the Soret effect.

Our simulations clearly demonstrate that without thermally driven mass diffusion
the spatial variation of the control parameterb(T ) due to the local laser heating does
not provide the typical pattern evolution observed in the experiments. It is crucial
to take the Soret effect in the basic equations into account in order to reproduce the
experimentally phenomena observed by local heating.

We have demonstrated that in the two-phase region the spinodal demixing pattern
can locally be manipulated on a mesoscopic length scale by local heating. We expect
the smallest achievable structures to be in the region of thediffraction limit of the
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laser beam. These new effects are not limited to the cylindrical geometries discussed
here and may possibly open a new route towards the structuring of polymer blends
and towards the creation of gradient materials and embeddedgradient structures.

6 Spatially periodic forcing of phase separation

A number of interesting effects occur in spatially periodically forced pattern form-
ing systems with an non-conserved order parameter, which have been investigated
during the recent years [60, 61, 62, 63, 64, 65, 66, 67, 117, 68, 69, 70, 71, 72, 73].
Here we focus on nearly unexplored effects of spatially periodic forcing in system
with a conserved order parameter, as they occur in phase separating systems which
are forced by spatial temperature modulations and where thermodiffusion plays a
crucial role.

Such forced phase separating systems can be realized, for instance, in optical
grating experiments on polymer blends with a spatially periodic light intensity
I(r , t) = I0cos(qx) [44, 87]. A spatially periodic light intensity leads with Eq. (50),
to the following equation

∇2T = −δT0q2 cos(qx) , δT0 =
αλ

ρcpDth

I0
q2 , (51)

which determines the spatially periodic temperature field.The contribution∇2T in
Eq. (49) can be replaced with this equation and one obtains anadditive spatially
periodic forcing contribution in Eq. (49). On this route we introduce dimensionless
variables by choosing the temperatureT0 in the two-phase region as our reference
temperature (T0 < Tc) and we write

r = r ′ξ , ξ = (K/|b|)1/2 ; t = t ′τ , τ = ξ 2/D ; ϕ = ψ(u/|b|)−1/2 , (52)

where all quantities are evaluated atT0. Then we obtain the rescaled equation for
the order parameterψ(x, t) of the following form (primes are omitted)

∂tψ(r , t) = ∇2[

−εψ +ψ3−∇2ψ +acos(qx)
]

, (53)

where

ε =
Tc −T
Tc −T0

, a =
DT

D

(

u
|b|

)1/2

φc(1−φc)δT0 . (54)

Equation (53) describes the dynamics of phase separation inthe presence of a spa-
tially periodic forcing following a quench from the stable one-phase region (ε < 0)
to a reference temperature in the two-phase region (ε > 0). In the following we will
consider only the case of a symmetric quench with

∫

drψ = 0 as initial condition at
t = 0.
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In the absence of the forcing (a = 0) the homogeneous solutionψ = 0 becomes
unstable forε > 0 against linear perturbations∼ exp(σt + ik · r) with wave number
k ∈ (0,

√
ε) and the growth rateσ = k2(ε −k2). The most unstable (fastest growing)

mode is characterized bykm =
√

ε/2 with σm = ε2/4. If a two-dimensional sys-
tem phase separating system the spatial extension in one direction is smaller than
the wavelength of the fastest growing mode, it can be considered as a quasi one-
dimensional systems.

6.1 Spatially periodic solutions and their stability

For positive values of the control parameterε, stationary, spatially periodic solutions
ψs(x) = ψs(x+2π/q) of Eq. (53) may be found with and without forcing. However,
in the case of a vanishing forcing amplitude (a = 0) in Eq. (53) this equation has a
±ψ-symmetry and therefore one has a pitchfork bifurcation from the trivial solution
ψ = 0 to finite amplitude periodic solutions as indicated in Fig.19. However, in the
unforced case periodic solutions of Eq. (53) are for any wavenumberq unstable
against infinitesimal perturbations that induce coarsening processes [118, 113].
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Fig. 19 Part (a) shows the bifurcation diagram for spatially periodicsolutions at a forcing wave
numberq = 0.5 and modulation amplitudesa = 0 (dotted),a = 0.01 (dashed) anda = 0.03 (solid).
Parts (b), (c) and (d) show the three solutionsψs(x) over one period corresponding to the different
branches of the bifurcation diagram fora = 0.03 andε = 1. Fig. from Ref. [119].

For finite values of the modulation amplitudea the broken±ψ-symmetry is in-
dicated in Fig. 19 fora = 0.01 by the dashed line and fora = 0.03 by the solid
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line. While we have in the unmodulated case a trivial solutionψ = 0 and two fi-
nite solutions with identical amplitudes but of opposite sign, one finds in the forced
case three periodic solutions,A1, A2 andA3, of different amplitude as shown for
one period in Fig. 19(b)-(d). These three different solutions have been determined
by solving Eq. (56) by a Galerkin method, namely by expandingthe solutionψs(x)
with respect to periodic functions (Fourier series) and by solving the resulting non-
linear equations for the amplitudes of the periodic expansion functions by a Newton
method. TheA3- andA2-solutions are in phase with the external modulation and
the preferredA1-solution is shifted by half a period. One should also note, that the
A1 solution exists already in the rangeε < 0 and therefore in the one phase region
without forcing.

Besides the existence of the periodic solutionsψs(x) of Eq. (53) one is also in-
terested in their stability. For this purpose we use as ansatz a superposition of the
stationary periodic solutionψs(x) and a time-dependent perturbationψ1(x, t)

ψ(x, t) = ψs(x)+ψ1(x, t) , ψ1(x, t) = eσtφ(x) , (55)

whereψs(x) satisfies the equation

−εψs +ψ3
s −∂xxψs +acos(qx) = 0 (56)

with periodic boundary conditionsψs(0)= ψs(2π/q). Substituting (55) into Eq. (53)
and linearizing this equation with respect to the perturbation ψ1 we arrive at a linear
eigenvalue problem

σφ = ∂xxL φ , L = −ε +3ψ2
s −∂xx , (57)

whereφ(x) can be represented in Floquet form

φ(x) = eisxφF(x) . (58)

Heres is the Floquet exponent andφF(x) is 2π/q-periodic. For a givenε > 0 and
q we are interested in the largest real part ofσ(s,a) and therefore in the growth
rate of the small perturbationψ1(x, t) with respect to each stationary periodic so-
lution A1, A2 or A3. The neutral stability conditionσ(a,s,q) = 0, which separates
the parameter range where the periodic solutions are stablefrom the unstable range,
is a condition to determine the critical forcing amplitude ˜a(s,q). For forcing ampli-
tudes larger than this the growth rate of the perturbation isnegative and therefore
the stationary periodic solutionsψs are stable with respect small perturbationsψ1.

In the limit with wave numbers of the forcing small compared to the wave num-
ber of the fastest growing mode of the unforced system,q/km ≪ 1, the stationary
solutionψs can be determined and the neutral stability conditionσ(a,s,q) = 0 can
be solved analytically in a perturbative way (see [113] for details). With the resulting
analytical solution forA1 the following expression for the critical forcing amplitude
is obtained:
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as(s,q) = [1+cos(πs/q)]ε3/232(km/q)e−2πkm/q
[

1+
(πq/km)2

24

]

. (59)

Since the amplitudeas takes its maximum in the limits → 0, the periodic solution
A1 becomes at first unstable for long wavelength perturbations.

Similar asψs(x) also φF(x) is calculated by solving Eq. (57) by a Galerkin
method and in general the neutral stability condition has tobe solved numerically.
We find in general, that the stationary solutionsA2 andA3 are always unstable with
respect to small perturbations. In Fig. 20 the forcing amplitudeas(q), as given by
Eq. (59) fors = 0, is plotted (solid line) together with the corresponding numerical
results (solid circles) and the deviations between both aretiny.

Fig. 20 The forcing am-
plitude as above which the
periodic solutionA1 is lin-
early stable. The solid line is
the approximate analytical re-
sult according to Eq. (59) and
the solid circles are obtained
numerically. The critical am-
plitude ac above which the
evolution of the initially ho-
mogeneous system after the
quench is locked to the 2π/q-
periodicity of the forcing. The
results are given forε = 1.
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The stability of two-dimensional stripe patterns that are periodic along the same
direction (here thex direction) as the forcing has been investigated numerically. For
this purpose we have chosen a similar ansatz as in one dimension,

ψ1(x,y, t) = eσtei(sx+py)φF(x) , (60)

but which depends now on two Floquet exponents:s (x-direction) andp (y-direction).
The linear stability analysis shows, that additional transversal degrees of freedom
do not influence the stability boundaryas, cf. Fig. 20, as obtained in the case of the
one-dimensional model.

As mentioned above, for finite forcing amplitudes one has already periodicA1

solutions in the rangeε < 0. But, when the system is quenched into the two-phase
region withε > 0, where one may choose for reasons of simplicityε = 1, the spin-
odal decomposition sets in and the late stage of the phase separation process depends
on the forcing amplitudea. It is an interesting question, for which parameter com-
binations and independent of the initial conditions beforethe quench, the systems
ends up in aA1 solution, that is locked to the periodicity of the external forcing?
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The question has been investigated by numerical simulations of Eq. (53) in one
spatial dimension with a typical system sizeL = 512. In order to test the results
depend on their independence of the system size, we also madeselected runs for
L = 1024 and 2048. As initial condition we took small fluctuations around the ho-
mogeneous (single phase) stateψ = 0 by assigning to each lattice site a random
number uniformly distributed in the interval±0.01. In order to average over random
initial configurations 100 runs were performed for each parameter combination. Our
simulations show that there is a well-defined critical amplitudeac = ac(q), above
which the time evolution of the system always ends up in the stationaryA1 solution
that is locked to the wavelength 2π/q of the external forcing, independent of the
initial conditions. In Fig. 20 the critical amplitudeac(q) is shown (solid squares) as
obtained from the numerical simulations (ε = 1).

Since linear stability of the periodic solution of typeA1 is a necessary condition
for it being an attractor one hasac(q)≥ as(q). Forq approaching the fastest growing
wave numberkm =

√

ε/2 one hasac(q) ≈ as(q) (see Fig. 20), which is actually
not surprising, and this value gives a reasonable estimate for ac(q) also for smaller
values ofq.

6.2 Traveling spatially periodic forcing

A spatiotemporal periodic forcing is a rather recent and interesting development for
exploring various facets of pattern formation in systems with nonconserved order
parameters [69, 70, 71, 72, 73]. A forcing traveling with thevelocity v is also in
systems with a conserved order parameter a further interesting possibility to ex-
plore various properties of phase separation dynamics. In particular, we consider
the effects of traveling spatially periodic forcing in the framework of our extended
Cahn-Hilliard model with thermodiffusion [see Eqs. (49), (50)]. Using dimension-
less variables, as introduced by (52), the modified CH equation is given by

∂tψ(r , t) = ∇2{

−εψ +ψ3−∇2ψ +acos[q(x− vt)]
}

. (61)

The forcing termacos[q(x− vt)] is caused by an interplay between a traveling tem-
perature modulation and thermodiffusion (Soret effect). Such a traveling spatially
periodic temperature modulation could be created for instance in optical grating ex-
periments [44, 87] with a light intensity of the formI(r , t)∼ cos[q(x−vt)]. Another
possibility is to move a sample with a velocityv across a modulated temperature
field. The control parameterε in Eq. (61) corresponds to a dimensionless distance
to the critical temperature of the binary mixture. Transformation of Eq. (61) in the
frame comoving with the traveling forcingx → x− vt gives

∂tψ(r , t) = ∇2[

−εψ +ψ3−∇2ψ +acos(qx)
]

+ v∂xψ . (62)

As it was shown before, if phase separation is forced by a stationary and spatially
periodic temperature modulation then the coarsening dynamics is interrupted above
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some critical value of the forcing amplitudea and it is locked to the periodicity of
the external forcing. However, if this forcing is “pulled” by a velocityv 6= 0, the
traveling periodic solutions of Eq. (61) exist only in a certain range ofv depending
on a.

Thus we are interested in the conditions of the existence andstability of the
spatially periodic solutionsψs(x) = ψs(x+2π/q) of Eq. (62) in the comoving frame.
The nonlinear solutions and the bifurcation diagram as given in Fig. 19 are only
slightly changed by a small traveling velocity. However, with increasing values of
v a phase shift∆φ between the periodic forcing∼ cos(qx) and the solutionψs(x)
occurs. The maximum phase shift that can be achieved is about∆φm = π/2 at a
certain velocityvex above which the solution does not exist. Considerψs(x) being a
2π/q-periodic solution of the following equation

∂xx
[

−εψs +ψ3
s −∂xxψs +acos(qx)

]

+ v∂xψs = 0 . (63)

Equation (63) can be integrated twice and using the periodicity of ψs an integration
of the resulting equation with respect to the interval(0,2π/q) gives

aq

2π/q
∫

0

sin(qx)ψs(x)dx− v

2π/q
∫

0

ψ2
s (x)dx = 0 . (64)

Clearly the maximum velocityvex, at which the periodic solutionψs still exists,
corresponds to the solution which is shifted byπ/2 with respect to the forcing, i.e.,
for ψs ∼ sin(qx).

The linear stability analysis of periodic solutionsψs(x) of Eq. (63) with respect
to small perturbations have been performed numerically (see [119] for details). It
has been found that the solutionsA2 andA3 are again always unstable, whereas the
A1-solution can be stable in a certain range of the parameters.For given values ofε
andq the modulation amplitudea has to exceed a certain valueas(q) (see Fig. 20)
to stabilize theA1-solution. If the traveling velocityv is smaller than a critical one
vc(ε,a,q) the A1 solution remains stable. The critical velocityvc(ε,a,q) is given
by the solid line in Fig. 21 and forv > vc(ε,a,q) the spatially periodic solution is
linearly unstable. The onset of instability occurs for small values of the Floquet ex-
ponents → 0, i.e., it belongs to a long-wave perturbation as in the caseof v = 0.
In Fig. 21 also the boundary of the existence range of periodic solutionsvex(ε,a,q)
is shown as obtained approximately from Eq. (64) (dashed line) and by a full nu-
merical simulation (dotted line). Since the stability boundary (solid line) always lies
belowvex the periodic solution always becomes unstable before the existence range
is reached.

The temporal evolution ofψ(x, t) in the laboratory frame, as described by
Eq. (61) in the 1D case, is shown in Fig. 22 for three regimes ofthe traveling forc-
ing starting with the initial conditionψ = 0 and superimposed with small noise. In
Fig. 22(a) the velocity is sufficiently small and belongs to the range where the so-
lution is locked to the traveling forcing. In Fig. 22(b) the velocity is chosen in the
rangevc < v < vex, where the solution locked to the traveling forcing still exists,
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Fig. 21 Above the solid line
the spatially periodic solution
is unstable. The dashed line
marks the existence boundary
above which the spatially
periodic solution does not
exist due to the criterion given
by Eq. (64). The dotted curve
marks the existence boundary
obtained numerically from
Eq. (63). The parameters are
ε = 1 andq = 0.5.
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but where it is linearly unstable. In this parameter range the solution is locked dur-
ing the initial period of phase separation before coarsening takes over. In Fig. 22(c)
the temporal evolution of phase separation is shown forv > vex where the locked
solution does not exist anymore. At this velocity an interesting pinning-depinning
behavior can be observed during the initial stage of phase separation. One still has
a traveling periodic solution with the same wave number as the forcing but with a
velocity smaller than the velocity of the forcing. Due to thevelocity mismatch the
phase shift between the solution and the forcing is slowly increased before it reaches
about half of the forcing period. ¿From that moment the periodic solution practically
stops moving (pinning) until the forcing shifts over the next half of the period. After
that the solution starts moving again (depinning) and the process repeats itself a few
times. Later on the wavelengths of the solution and the forcing become different and
the coarsening takes place.
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Fig. 22 Temporal evolution of phase separation forv = 0.015< vc (a),vc < v = 0.0185< vex (b)
andv = 0.02> vex (c). The other parameters areε = 1, q = 0.5, anda = 0.04. Fig. from Ref. [119].
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6.3 Periodic patterns in 2D

In two spatial dimensions phase separation can become more complex due to ad-
ditional degrees of freedom and their consequences are investigated by extended
simulations of Eq.(53) in two spatial dimensions and we havecharacterized the
simulated patterns by the structure factor

S(k, t) = |ψ̂(k, t)|2 , ψ̂(k, t) =
∫

dreik·r ψ(r , t) , (65)

which can be also measured experimentally and allows directcomparison between
experimental and theoretical results. For the unforced case (standard Cahn-Hilliard
equation) the structure factor is isotropicS = S(|k|, t) and possesses at long times
the universal scaling behaviorS(k, t)∼ l(t)dG[kl(t)], where the characteristic length
of the domains evolves in time asl(t) ∼ t1/3 (for d ≥ 2) [120]. By the spatially
periodic forcing the rotational symmetry is broken in the plane and one may expect
an anisotropy of the structure factor. The average domain length in thex and y
directions can be related to the characteristic length scales

lx(t) = [〈kx〉(t)]−1 , ly(t) = [〈ky〉(t)]−1 , (66)

where

〈kx〉(t) =

∫

dkxS(kx,0, t)kx
∫

dkxS(kx,0, t)
, 〈ky〉(t) =

∫

dkyS(0,ky, t)ky
∫

dkyS(0,ky, t)
. (67)

Numerical simulations of Eq. (53) were performed using central finite difference
approximation of the spatial derivatives with 4-th order Runge-Kutta integration of
the resulting ordinary differential equations in time. Thetypical system size was
Lx = Ly = 256. Some test runs were made withLx = Ly = 512 and 1024. We used a
uniform mesh sizeδx = δy = 1 and time stepδ t = 2×10−2. The accuracy of calcu-
lations was checked by choosingδx = δy = 0.5 andδ t = 2×10−3. The dynamics
of spinodal decomposition was computed over 6−7 decades in time, which allows
monitoring the late stages of the phase separation process.Starting with random ini-
tial conditions with|ψ| < 0.01, the characteristic length dynamics was calculated
by averaging over 100 runs.

Without driving (a = 0) one has the typical scenario of spinodal decomposition
and there is no anisotropy in the behavior oflx andly (Fig. 23). Thus, small pertur-
bations grow exponentially and at aboutt ∼ 15 (not shown) a nonlinear saturation of
the fastest growing mode becomes important and sharp domainboundaries form. At
aboutt ∼ 30 the late stage coarsening starts and we observe the well-known scaling
lx ∼ ly ∼ t1/3. In Fig. 24 snapshots of the phase separation process are presented for
a particular run.

We have found that in the 2D case, similar to 1D, there exists acritical driving
amplitudeac above which the spinodal decomposition ends up in the stationary
periodic solution with the period of the forcing, i.e., striped structure. The critical
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Fig. 23 Dynamics of the
characteristic length scales
lx(t) andly(t) without forcing
(a = 0). System sizeLx =
Ly = 256,ε = 1.
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Fig. 24 Snapshots of the phase separation process. The same parameters as in Fig. 23.

amplitude turned out to be about 3−5 times larger than in the one-dimensional case.
In particular, forq = 6π/Lx with Lx = 256 one has in 2Dac = 0.014 whereas for
1D ac = 0.0045. Thus, for 2D the upper curve in Fig. 20 moves slightly upward (the
linear stability curveas remains unchanged).

In Fig. 25 the dynamics of the characteristic length scaleslx andly is presented
for the casea = 0.05> ac and in Fig. 26 typical snapshots are shown. The pecu-
liar non-monotonic behavior oflx at early times can be understood as follow: in
the linear range the noise-initiated fastest mode grows exponentially asψ0exp(t/4)
and the forced modulation with wave numberq grows linearly asat (its exponen-
tial growth is small), see Eq. (53). Thus, shortly after the quench the fastest mode
determines the average domain size. At a timet1 = (ψ0/a)exp(t1/4) ∼ ψ0/a = 0.2
there is a crossover, beyond which the anisotropy becomes strong andlx reaches a
plateau that is controlled by the wave number of the forcing.Eventually, beyond
t2 = (ψ0/a)exp(t2/4)≈ 18, the exponential growth of the fastest mode wins, which
leads to a drop oflx. Although at this time nonlinearities are already noticeable, the
suppression of the effect of the forcing remains. Subsequently one has essentially
isotropic coarsening untillx saturates at 1/q. After this (t > 500) the ordering in the
y direction becomes exponentially fast. Actually the late stage remains essentially
unchanged if the forcing is turned on as late ast ∼ 80 where the average domain size



Thermal diffusion in polymer blends: criticality and pattern formation 41

Fig. 25 Dynamics of the
characteristic length scales
lx(t) andly(t) for the driving
amplitudea = 0.05 well
above the critical. System
sizeLx = Ly = 256,ε = 1,
q = 6π/Lx.
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has reached half the driving period. At a later time a forcingamplitudea = O(1) is
needed to generate the periodic state.

Fig. 26 Snapshots of the phase separation process. The same parameters as in Fig. 25.

In Figs. 27, 28 we also show the dynamics of the characteristic length scales and
snapshots for a driving amplitude slightly below the critical. One can see that att ∼
103 there is a competition between the influence of the forcing and the coarsening
process, which finally wins.

The situation considered should be applicable to experiments on spinodal de-
composition in sufficiently thin polymer films with small periodic temperature
modulations created by means of optical grating technique or local laser heat-
ing. Then, for polymer blend layers of thickness less than a few micrometers the
temperature variation across the film can be neglected for sufficiently small un-
der cooling. Fig. 29(I) shows the time evolution of one single line written into
a PDMS(16.4 kg/mol)/PEMS (22.0 kg/mol) blend (c = 0.512g/g, Tc = 314.7K,
α ≈ 500m−1) at a temperature 1.3 K belowTc and a laser power of 1 mW. The
width of the laser focus is about 1.6µm, the length of the line is almost 140µm.
Obviously, it is not possible to write a stable line into the sample. After approxi-
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Fig. 27 Dynamics of the
characteristic length scales
lx(t) andly(t) for the driving
amplitudea = 0.01 slightly
below the critical. System
sizeLx = Ly = 256,ε = 1,
q = 6π/Lx.
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Fig. 28 Snapshots of the phase separation process. The same parameters as in Fig. 27.

mately 1000 s surface tension effects lead to a pearling instability that eventually
dominates the structure formation.

Fig. 29(II) shows the result if multiple parallel lines are written instead of a sin-
gle one. A grid pattern evolves with a period comparable to the length scale of the
already coarsened spinodal pattern. This grid pattern is stable as long as the writing
process continues (A). Turning the laser off for 360 s leads to a beginning degra-
dation (B), but continued writing again stabilizes the imposed structure (C). After
turning the laser off again, some deformations due to bulging of the left- and right-
most grid lines is observable (D). Continued writing of onlythe outermost (longer)
lines allows for a continued stabilization of the central grid pattern (E). After switch-
ing the laser off, surface tension takes over and all parallel lines eventually decay
into spherical structures.

7 Directional quenching

With directional quenching we present an effective mechanism to induce periodic
stripe patterns in phase separating systems, where the wavelength of the patterns
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bound
ary
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off

off

A(II)

(I)

Fig. 29 Temporal evolution of one single line (I) (written fromt = 0s until t = 2074s at 1.3 K
belowTc, laser-power 1mW). 21 parallel lines (II) (written fromt = 0s with 8 mW at 1.5 K below
Tc; “on” and “off” refer to switching of the laser; “boundary” means that only the outermost lines
are written in order to stabilize the central part of the pattern; see text for details).

is uniquely selected by the velocity of a quench interface. If in addition a spatially
periodic modulation of the quench interface is introduced also cellular patterns can
be generated.

We choose again the generic Cahn-Hilliard model in one spatial dimension for
describing phase separation [121, 122]

∂tψ = ∂xx(−εψ +ψ3−∂xxψ) , (68)

where the real order parameterψ(x, t) is a measure for the difference of the con-
centration of one component from its value at the critical point andε is the control
parameter. Here, in our first approach as in Ref.??, thermodiffusion effects are ne-
glected.

Directional quenching is achieved by changingε from a negative value atx < xq

to a positive one forx > xq, where the pointxp(t) moves in the laboratory frame
with the velocityv.

ε(x, t) =

{

−ε , x < −vt ,
+ε , x > −vt .

(69)
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By this moving jump of the control parameter the system is divided into a sta-
ble and unstable region. Numerical simulations of the one-dimensional model in
Eq. (68) and with the directional quenching (69) show that a periodic solution de-
velops behind the quench interface in the unstable region. Typical examples for
large and small values of the velocityv of the quench interface are shown in Fig. 30.
For v above some critical valuev⋆, the periodic solution detaches from the moving
quench interface and the wavelength of the solution becomesindependent ofv, cf.
Fig. 30(a). In contrast, forv < v⋆ the solution remains attached to the quench in-
terface and the wavelength is uniquely determined byv. Decreasingv the solution
develops into a periodic kink lattice (sharp changes between ψ = ±

√
ε) where new

kinks are continuously generated atx = xq(t) = −vt [Fig. 30(b)]. The period of the
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Fig. 30 Solutions of Eq. (68) forε = 1 with the quench interface (69) in the comoving frame at
x = 0 for v = 2 > v⋆ in part (a) and forv = 0.02≪ v⋆ in part (b). Only a part of the system of the
total lengthlx = 4096 is shown. Figs. according to Ref. [123].

solution,Λ , turns out to be uniquely defined by the velocity of the quenchinterface,
which is shown in Fig. 31. Forv → 0 one hasΛ ∼ 1/v whereas forv > v⋆ one finds
Λ = 2π/q⋆. Although the periodic solutions far away from the moving quench inter-

Fig. 31 Kink separation
length Λ = 2π/q multi-
plied by the velocityv of the
quench interface as a function
of v (solid circles with a solid
line as a guide to the eye);
v⋆ = 1.622 from Eq. (71).
The dashed line corresponds
to Eq. (72).ε = 1 and Fig.
according to Ref. [123].

0.001 0.01 0.1 1 10
v

1

10

100

Λ
v

v
*

face are in principle unstable against period doubling, thecoarsening is extremely
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slow for patterns generated withq ≪ km [see Eq. (70)]. Thus the extensionLp of
the (quasi-ideal) periodic solution behind the quench interface can be estimated as
Lp = v∆ tp ≈ v/σp whereσp is the growth rate of the unstable period doubling mode
given as [113, 118]:

σp = ε216exp(−2πkm/q)/(πkm/q) . (70)

The two limiting cases of large and small values of the velocity v of the quench
interface can be determined analytically. For largev we consider for instance the
initial conditionψ = 0 everywhere except a humpψ > 0 localized nearx = 0. Then
the time evolution of this initial perturbation is governedby the motion of wave
fronts to the left and to the right with a well-defined velocity v⋆ and wave number
q⋆. These quantities can be calculated by a linear stability analysis of the leading
edge of the front in the comoving frame [123]

v⋆ =

√
7+2
3

(

2
3
(
√

7−1)

)1/2

ε3/2 , q⋆ =
3(
√

7+3)3/2

8
√

2(
√

7+2)
ε1/2 . (71)

The phase velocity and the wave number of the propagating periodic solutions, as
obtained from the numerical simulations of Eq. (68), are in the rangev > v⋆ inde-
pendent onv and agree perfectly withv⋆ andq⋆ as given by Eq. (71). In the opposite
limit v → 0 our starting point is a stationary solution of Eq. (68) forv = 0 interpo-
lating betweenψ = 0 atx < 0 andψ =

√
ε at x > 0 and which is characterized by

a sharp front atx ≈ 0. If the quench interface according to Eq. (69) starts to move,
the sharp front will follow at first. But since the spatial average〈ψ〉 is conserved,
regions withψ < 0 have to be generated in the regionx > xq, which leads to the for-
mation of a kink lattice [Fig. 30(b)]. The kink-lattice formation can be understood in
terms of a fast switching stage and slow pulling stage: first anew kink is generated
in a short time atx ≈ xq. During the slow stage this kink is pulled by the quench
interface whereby its amplitude and the distance to the nextkink behind increase
until it exceeds some limiting value and then a new kink is generated. Repeating
this process a regular kink lattice develops in the wake of the quench interface with
the periodΛ , which is uniquely determined by the velocityv of the moving quench
interface (Fig. 31). The equilibrium periodΛ can be calculated in the framework of
boundary layer problem that gives [123]

Λ =
4
√

6
9

ε
v
≈ 1.088

ε
v

, (72)

in perfect agreement with the results of numerical simulations in the limitv → 0
(Fig. 31).

The generalization of the analysis to the off-critical quench,〈ψ〉 6= 0, is straight-
forward and the expressions (71) forv⋆ and q⋆ hold with the replacementε →
ε − 3〈ψ〉2. In the limit v → 0 the distanceλ+ between two kinks in the range
ψ > 0 becomes different compared to the kink-distanceλ− for ψ < 0. We find
λ+ −λ− = 〈ψ〉Λ/

√
ε and for the resulting periodΛ of the kink lattice,
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Λ ≡ λ+ +λ− =
2
v

[

2

√
6

9
ε +(8−25

√
6

9
)〈ψ〉2

]

. (73)

Similar as in case〈ψ〉 6= 0, we have confirmed by numerical simulations of Eq. (68)
the results in Eq. (73) for〈ψ〉 6= 0 in limit v → 0.

Let us consider the 2D caseψ(x,y, t) where we study numerically the 2D version
of the CH equation (68):

∂tψ = ∇2(−εψ +ψ3−∇2ψ) (74)

with the moving quench interface (69). Zero flux boundary conditions have been
used atx = 0, lx and periodic boundary conditions aty = 0, ly. Initially the quench
interface is located atxq = lx moving from right to left. The system size waslx = 512,
ly = 256 and we start with the homogeneous solutionψ = 〈ψ〉 with small superim-
posed noise of the strengthδψ whereδψ ≪

√
ε andδψ ≪ 〈ψ〉. Thus the well-

known Ginzburg criterion, necessary for the validity of a mean-field description of
a phase separation process [5], is satisfied: in fact, the dynamics does not depend on
the particular choice ofδψ.

In the case of the critical quench〈ψ〉= 0, the orientation of the domains depends
on the velocity of the quench interface [Fig. 32(a)-(c)]. Atsmallv periodic patterns
with domains perpendicular to the quench interface are formed [Fig. 32(a)]. Then
for v abovevc ≈ 0.45 the 1D stripe patterns parallel to the quench interface appear
[Fig. 32(b)-(c)]. Finallyv > v⋆ leads eventually to irregular patterns similar to the
case of a spatially homogeneous quench.

(a) (b) (c)

(d) (e) (f)

Fig. 32 Snapshots of the phase separation in 2D at the time when the quenchinterface (69) (ε = 1)
almost reaches the left boundary.〈ψ〉 = 0: v = 0.01 (a),v = 0.47 (b), andv = 1 (c). 〈ψ〉 = 0.1:
v = 0.02 (d),v = 0.1 (e), andv = 1 (f).

In contrast, for the off-critical quench〈ψ〉 6= 0 whenv < v⋆ always regular stripe
patterns with domains parallel to the quench interface werefound [Fig. 32(d)-(f)].
This situation is covered by an 1D analysis presented beforewhere the period of
the structure is uniquely determined by the velocity of the quench interface. In the
limit v → 0 the period of the patterns found in our numerical simulations agree
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with (73). Forv > v⋆ irregular coarsening patterns similar to the case of a spatially
homogeneous quench have been observed.

Finally we have studied the influence of a periodic modulation of the quench
interface which reads as follows:

ε(x,y, t) =

{

−ε , x < lx +acos(py)− vt ,
+ε , x > lx +acos(py)− vt .

(75)

In the case of a critical quench we found that the velocityvc at which the transition
from perpendicular stripe patterns [Fig. 33(a)] to parallel ones [Fig. 33(c)] occurs,
depends on the modulation amplitudea. This dependence is very strong for values
a of the order of the typical domain size at the initial stage ofphase separation (a ∼
λm = π/km). Furthermore,vc decreases with decreasing modulation wavenumberp.
For p smaller than the wavenumberkm of the fastest growing mode patterns with a
cellular morphology forming behind the moving quench interface have been found
[Fig. 33(b)].

(a) (b) (c)

(d) (e) (f)

Fig. 33 Snapshots of the phase separation in 2D at the time when the modulated quench interface
(75) (ε = 1, a = 4, p = π/16) almost reaches the left boundary.〈ψ〉 = 0: v = 0.01 (a),v = 0.05
(b), andv = 1 (c).〈ψ〉 = 0.2: v = 0.05 (d),v = 0.2 (e), andv = 1 (f).

In the case of an off-critical quench we found that〈ψ〉 6= 0 favors the formation
of regular cellular planforms [Fig. 33(e)] at intermediatevelocities of the quench
interface, in analogy to the transition from perpendicularto parallel stripes for〈ψ〉=
0.

Thus we have demonstrated that directional quenching in CH model leads to
the formation of periodic solutions with the wavelength uniquely selected by the
velocity of quench interface. Controlling phase separation by directional quenching
turns out to be a promising tool to create regular structuresin material science.
Although slow coarsening cannot be avoided by directional quenching in principle,
long lived periodic patterns can be “frozen in”, e.g., by a deep quench, induced
polymerization, chemical treatment etc.
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8 Summary and Conclusions

For critical and off-critical PDMS/PEMS polymer blends with an upper critical
solution temperatureTc we investigated the coupling between an inhomogeneous
temperature field and the order parameter, describing the local composition. In the
asymptotic critical regime close toTc, for ε = (T −Tc)/Tc < 0.02, the system be-
longs to the three-dimensional Ising universality class. Farther away from the critical
point, for ε > 0.02, there is a crossover to the classical mean field behavior.Since
the employed transient holographic grating technique works at significantly smaller
q-values than typically encountered in photon correlation spectroscopy, the asymp-
totic critical scaling law of the diffusion coefficientD could be observed much closer
to Tc without a conflict between the increasing correlation length ξ and the length
scale defined byq−1. A consistent description ofD over a broad temperature range
is based on a crossover model developed by Jacob and Kostko with an activation
energy of the viscosity determined from the temperature dependence of the thermal
diffusion coefficientDT (Fig. 3). As predicted by Folk and Moser [124], the thermal
diffusion coefficientDT shows no critical slowing down and its temperature depen-
dence can be described by a simple Arrhenius law with identical activation energies
both for critical and off-critical mixtures. As a consequence of the insensitivity of
DT to the critical point and the critical slowing down ofD, the Soret coefficient
ST = DT /D of a critical blend diverges on approach ofTc with an exponent of
−0.67 in the asymptotic critical regime and with and exponent of−1, characteristic
for the structure factor, in the mean field regime (Fig. 5).

Close to the critical point, the mixture becomes very susceptible to external per-
turbations, and only moderate temperature gradients are sufficient to induce signifi-
cant concentration changes. The highest Soret coefficientsmeasured exceed the val-
ues typically found for mixtures of organic solvents, consisting of small molecules,
by four to five orders of magnitude. This high susceptibilityof the order param-
eter opens the possibility for writing almost arbitrary composition patterns into a
polymer blend by heating with a focused laser beam that can bescanned across the
sample. These patterns can then be visualized by phase contrast or differential inter-
ference contrast microscopy. Because of the excursions along both the temperature
and the concentration axes, a full numerical model requiresas input the knowledge
of both diffusion coefficientsD andDT over the entire concentration and temper-
ature range of the homogeneous phase. The measured data havebeen interpolated
within the framework of the pseudo-spinodal concept. Thesedata are shown in Fig.
8, and PDMS/PEMS is up to now the only polymer blend where these coefficients
are available not only for a critical composition but also for the entire one-phase
regime.

Numerical modeling shows that very sharp and localized structures are formed
during the initial linear growth regime, although the driving temperature profile has
already reached its broadened stationary shape. This at a first sight surprising ef-
fect can be rationalized by recalling that the evolution of the concentration profile is
driven by the Laplacian ofT (r , t) rather than the temperature itself. At later times,
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solutal convection largely exceeds thermal convection andleads to asymmetric ver-
tical cross sections of the patterns even for only 100µm thick samples (Fig. 12).

The coupling of the order parameter to the temperature gradient also leads to
unexpected excursions along the concentration axis in the case of off-critical mix-
tures. As a consequence, equilibrium phase diagrams loose their usual meaning in
thermal nonequilibrium situations, and even an off-critical blend with a temperature
above the binodal can be quenched into phase separation by local heating with a
laser beam.

After crossing the spinodal from the homogeneous into the two-phase regime,
spinodal decomposition sets in and leads to characteristicbicontinuous spinodal
patterns with a characteristic length scale that growths during the coarsening stage.
The strong Soret effect can not only be utilized to write composition patterns within
the homogeneous phase but also opens a route for a controlledlocal manipulation of
the spinodal decomposition patterns belowTc (Fig. 18). After switching the writing
laser off, such an enforced perturbation freely evolves in time in competition with
the coarsening dynamics of the unperturbed spinodal pattern.

Theoretically we have described in the frame work of a generalized Cahn-
Hilliard model effects of stationary and traveling spatially periodic temperature-
modulations as well as the effects of moving quench interfaces on spinodal decom-
position in binary fluid mixtures and polymer blends. In several phase separating
systems, such as in polymer blends as investigated in this work also experimentally,
thermodiffusion plays an important role in the presence of inhomogeneous temper-
ature distributions. Since the model takes thermal diffusion into account we were
able to reproduce the essential features of spatio-temporal dynamics observed in
experiments on thermal patterning of polymer blends in the two-phase regime.

In such systems spatial temperature modulations may cause,via the thermodiffu-
sion effect, concentration modulations in the compositionof polymer blend already
above the critical temperature, below which phase separation sets in. If the mean
temperature crosses the critical temperature from above, phase separation sets in.
However, a spatially periodic temperature modulation changes the phase separation
process in polymer blends considerably.

If the modulation amplitude of the temperature exceeds a critical value, the spa-
tially periodic forcing interrupts phase separation and the periodicity of the concen-
tration modulation is locked to the wavelength of the temperature modulation. In
the case of a traveling temperature-modulation the critical modulation amplitude re-
quired for locking the concentration modulation with respect to external forcing de-
pends on the traveling velocity. One observes in a certain parameter range transient
locking phenomena of the concentration modulations with respect to the external
forcing. If the modulation amplitude is smaller than the critical one, the coarsening
processes may be accelerated considerably by traveling temperature modulations in
the two-phase regime.

For systems where thermodiffusive effects can be neglected, we have presented
results on the effects of directional quenching where the control parameter jumps
from above the critical temperature to below and where the location of the jump is
moved by a finite velocityv. We have shown how by this method regular structures
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are created in the process of phase separation behind the moving quench interface.
Moreover, it was shown that the wavelength of periodic stripe patterns is uniquely
selected by the velocity of the quench interface. If in addition a spatially periodic
modulation of the quench interface is introduced also cellular patterns can be gen-
erated.

Acknowledgement

We thank G. Meier and I. Alig for inspiring discussions and T.Wagner and G.
Meier for providing part of the samples. The theoretical part of this work was orig-
inally initiated by L. Kramer (†). Essential parts of the work have been performed
during the PhD-theses of W. Enge, A. Voit, M. Hartung and F. Schwaiger and the
diploma theses of S. Frank and V. Weith. The work was supported by the Deutsche
Forschungsgemeinschaft via the Collaborative Research Center SFB481.

References

1. J.V. Sengers, Ber. Bunsenges. Phys. Chem.76, 234 (1976)
2. E.D. Siggia, B.I. Halperin, P.C. Hohenberg, Phys. Rev. B13, 2110 (1976). .
3. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys.49, 435 (1977)
4. K. Binder, Adv. Polym. Sci.112, 181 (1994)
5. K. Binder, J. Chem. Phys.79, 6387 (1983)
6. H. Sato, N. Kuwahara, K. Kubota, Phys. Rev. E50, R1752 (1994)
7. W. Theobald, G. Meier, Phys. Rev. E51, 5776 (1995).
8. G. Meier, B. Momper, E.W. Fischer, J. Chem. Phys.97, 5884 (1992)
9. W. Mayer, S. Hoffmann, G. Meier, I. Alig, Phys. Rev. E55, 3102 (1997)

10. S. Eckert, G. Meier, I. Alig, Phys. Chem. Chem. Phys.4, 3743 (2002)
11. S. Eckert, S. Hoffmann, G. Meier, I. Alig, Phys. Chem. Chem. Phys.4, 2594 (2002)
12. S. Eckert-Kastner, G. Meier, I. Alig, Phys. Chem. Chem. Phys.5, 3202 (2003)
13. H. Mao, C. Li, Y. Zhang, D.E. Bergbreiter, P.S. Cremer, J. Am.Chem. Soc.125, 2850 (2003)
14. M. Yamamura, S. Nakamura, T. Kajiwara, H. Kage, K. Adachi, Polymer 44, 4699 (2003)
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