Thermal diffusion in polymer blends: criticality
and pattern formation

W. Kohler, A. Krekhov, and W. Zimmermann

Abstract We have determined the dynamic critical properties of aryitdend
of the two polymers poly(dimethyl siloxane) (PDMS) and gebpyl-methyl silox-
ane) (PEMS), and we have investigated experimentally agat#tically patterning
and structure formation processes above and below thedadino the case of a
spatially varying temperature. Ising-like scaling is fdufior the asymptotic critical
regime close td; in the range 6 10~ < £ < 0.2 of the reduced temperatugend

a mean field behavior for large values&fThe thermal diffusion coefficieridt is
thermally activated but does not show the critical slowiogd of the Fickian diffu-
sion coefficienD, which can be described by crossover functiond¥oirhe Soret
coefficientSy = Dt /D diverges at the critical point with a critical exponen®.67
and shows a crossover to the exponerit of the structure factor in the classical
regime. Thermal activation processes cancel out and doamitiloute toSr. The
divergence of5r leads to a very strong coupling of the order parameter alsmtll
temperature gradients, which can be utilized for laserepaitig of thin polymer
films. For a quantitative numerical model all three coeffitsd, Dy, andSy have
been determined within the entire homogeneous phase anmhemeterized by a
pseudospinodal model. It is shown that equilibrium phasgm@ims are no longer
globally valid in the presence of a temperature gradierd,syistems with an upper
critical solution temperature (UCST) can be quenched ihttsp separation by local
heating. Below the spinodal there is a competition betwberspontaneous spin-
odal demixing patterns and structures imposed by means afuséd laser beam
utilizing the Soret effect. Elongated structures degradspherical objects due to
surface tension effects leading to pearling instabiliti®sds of parallel lines can be
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stabilized by enforcing certain boundary conditions. Rheeparation phenomena
in polymer blends count to the universality class of patferming systems with a
conserved order parameter. In such systems, the effecpatiékforcing are rather
unexplored and, as described in this work, spatial temperanodulations may
cause via the Soret effect (thermal diffusion) a varietyméiesting concentration
modulations. In the framework of a generalized Cahn-Hilimodel it is shown that
coarsening in the two-phase range of phase separatingrsy/stn be interrupted
by a spatially periodic temperature modulation with a matlah amplitude beyond
a critical one, where in addition the concentration modoiet are locked to the pe-
riodicity of the external forcing. Accordingly, temperatumodulations may be a
useful future tool for controlled structuring of polymeehbs. In the case of a trav-
eling spatially periodic forcing, but with a modulation alityrde below the critical
one, the coarsening dynamics can be enhanced. With a mogbhsé separation,
taking into account thermal diffusion, essential featwkthe spatio-temporal dy-
namics of phase separation and thermal patterning obsemegberiments can be
reproduced. With a directional quenching an effective apph is studied to create
regular structures during the phase separation processldition, it is shown that
the wavelength of periodic stripe patterns is uniquely el by the velocity of a
quench interface. With a spatially periodic modulationhaf uench interface itself
also cellular patterns can be generated.

1 Introduction

When a binary liquid mixture approaches the consolute alifioint, the equilib-
rium restoring forces vanish, the correlation length djesrand the amplitude of
the fluctuations of the order parameter grow according toacheristic power laws.
Very close to the critical point the correlation length ex@e by far all microscopic
length scales. The fluctuations can be observed macrosdlypés critical scatter-
ing phenomena like the well-known critical opalescenceth&tsame time there is
a critical slowing down of the diffusion dynamics [1, 2, 3]catihe system becomes
increasingly susceptible to external perturbations.

After crossing the spinodal the mixture immediately becsmmestable and even
arbitrarily small composition fluctuations grow exponaiiyi in time. Eventually,
the fluid decomposes into two phases that form a labyrinthimeodal pattern with
a characteristic length scale determined by the wave veattihe maximum of the
growth rate of small inhomogeneous perturbations. As timeegeds the pattern
coarsen and the maximum of the structure factor is shiftecrtds larger length
scales, corresponding to smaller values of the wave veetentually, a new equi-
librium is reached with a horizontal meniscus that separite two phases with the
lighter liquid on top of the denser one.

Compared to binary mixtures of low molecular fluids, theicait behavior of
polymer blends has been much less explored so far. Howevenrder of inter-
esting static and dynamic critical phenomena in polymendideattract increasing



Thermal diffusion in polymer blends: criticality and pattermrf@tion 3

attention [4, 5]. Neutron, X-ray, and static light scattgrexperiments belong to the
major techniques for characterizing the static properdfgsolymer blends. Photon
correlation spectroscopy (PCS) has traditionally beemtbthod of choice for the
investigation of the dynamics of critical [6, 7, 8, 9] and nanitical [10, 11, 12]
polymer blends.

The vast majority of experimental and theoretical investtans on critical or
off-critical polymer blends or solutions has been carrietiunder isothermal con-
ditions and only a few of them were focusing on the effect dadtigly varying
temperature fields [13, 14, 15, 16, 17]. In all these studiestis no direct effect of
a temperature gradient besides the positioning of therdifteparts of the sample at
different locations in the phase diagram. The coupling betthe order parameter
and the temperature gradients due to the Ludwig-Soretteffatso termed thermal
diffusion, thermodiffusion or, briefly, Soret effect — hast been taken into account.
While this effect is only weak in most cases of low moleculaxtories away from a
phase transition, it can, as will be shown below, become stanbal and sometimes
dominating effect in critical polymer blends. The Soretfliont, which is a mea-
sure for the change of the composition induced by a given éeatpre difference,
even diverges at the critical point.

Including the Soret effect, the diffusive mass flow in a nogdthponent system
contains two contributions, the Fickian diffusion currémt is driven by the gradi-
ent of the chemical potential and the thermal diffusion entrdriven by the temper-
ature gradient. To account for this additional transpastpss, the thermal diffusion
coefficientDt is introduced in addition to the Fickian diffusion coeffictdd. Ex-
periments have shown that the direction of the thermal siiffia current is not easily
predicted and in contrast @, the coefficienDt can be both positive and negative,
and it can change its sign as a function of composition [1820921, 22], temper-
ature [23, 24, 25, 26], molar mass [27, 28] or solvent contfmrs[29]. The station-
ary composition distribution is determined by a compaetitietween thermal and
Fickian diffusion, and the Soret coefficieBt = Dt/D can roughly be interpreted
as the relative composition change sustained in the statistate by a prescribed
temperature difference of 1 K. Typical numbers for small@cales are only of the
order of St ~ 103K~ and the effect generally causes only a minor perturbation
for most practical situations. For larger diffusing specmich as polymers in dilute
solution [30, 31, 32, 33] or colloids [34, 35, 36, 37, 38, 39, 41], significantly
higher values oBr ~ 0.1...1K~! have been reported.

The Soret effect near a consolute critical point of a simjdgidl mixture
was first investigated by Thomaes [42] and later by Giglio &addramini [43].
Giglio and Vendramini observed a critical divergence ofttiermal diffusion factor
kr =SrTe(l—c) ~ (T —Te)¥ with the critical exponenv = 0.63 of the corre-
lation lengthé. These results, obtained with an optical beam deflectiomnigoe
for the aniline/cyclohexane system, have later been coaflrby Wiegand utiliz-
ing a transient holographic grating technique [44]. Simitansient gratings had
been used for the first time by Pohl to demonstrate qualéhtithe divergence of
the signal at the critical point of a 2,6-lutidine/water moise [45]. Buil et al. and
Delville et al. have employed transient holographic giggifd6] and focused laser
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beams [47] for the investigation of first order phase tramsst in multicomponent
liquids. While there have been a few such studies of the Séfestten critical low
molecular weight liquid mixtures, there were no data awéddor critical polymer
blends. Hence, one of the goals was the investigation of rikieat properties re-
lated to non-isothermal transport, in particular the coss from the mean field to
the asymptotic critical regime, for a UCST polymer blend.

Besides the selection of a characteristic wavelength dugiinodal decomposi-
tion at a constant temperature, the strong coupling betimsemogeneous temper-
ature fields and the order parameter opens entirely newsdot@attern formation
processes in critical polymer blends. Pattern formatiopolymer blends via phase
separation is an important research topic not only in polyphgsics or physical
chemistry but also as an interdisciplinary research irmglwonequilibrium studies
of complex fluids [48, 49], where it became a prototype fotgratforming systems
with a conserved order parameter. The phase separatioglosgatems commonly
leads to an isotropic, disordered morphology, such asdoterected domain struc-
ture or isolated clusters. These domains grow continuauspace and time and
finally become macroscopic. An important research topiangigg phase separa-
tion in polymer blends is to fabricate regular structuregHtieir potential application
for nanotechnology in diverse fields, ranging from bioaeipatterns [50] to poly-
mer electronics [51]. In fact, polymer mixtures can undedgamatic changes in
response to externally applied perturbations. Some pusvétudies have consid-
ered the application of external fields, e.g., shear flow &, concentration gra-
dient [54], patterned surface [55], temperature inhomeggii56], et al., to break
the symmetry of the phase separation in polymer blends amioguce ordered
structures with widely varying morphologies and lengthesaDifferent strategies
have been explored to tailor domain patterns of polymer unég and obtain new
ordered structures. The spontaneous emergence of sgsetithin an initially ho-
mogeneous blend and the possibility to generate pattemsantrolled way are not
only of interest from the view of basic research but may aésallto technological
applications.

Traditional techniques for structuring of polymer filmslizg irradiation with
UV light, X-rays or electron beams in combination with sonvedkof cross-linking
photo reaction. Fytas and coworker have shown that isolatedr structures and
periodic gratings can be generated by laser irradiationoofidgeneous polymer
solutions [57, 58]. Bltau et al. have used patterned surfaces to drive an indilviea
polymer blend into pre-defined demixing morphologies [F5ller particles can
induce composition waves in thin films of demixing polymeerds [59].

Spinodal decomposition in binary liquid mixture or polyni#ends belongs to
the universality class of pattern forming systems wittbaserved order parameter
[48]. A variety of interesting effects of spatially varyimgntrol parameters in pat-
tern forming systems withon-conserved order parameters has been explored dur-
ing the recent years [60, 61, 62, 63, 64, 65, 66, 67, 68, 691,072, 73],but the ef-
fects of spatially or temporally varying temperature figtdspinodal decomposition
has been investigated only recently. Tanaka and Sigehwei periodically driven
the system across the spinodal and observed two charéctsdperimposed length



Thermal diffusion in polymer blends: criticality and pattermrf@tion 5

scales with and without coarsening [74]. Lee et al. perfatecmmputational studies
on spinodal decomposition with superimposed temperattaéient [17, 16]. Ku-
maki et al. observed a 20 K shift of the phase boundary afiglyaqy a temperature
gradient to a ternary polymer mixture [75].

Except for Kumaki, all these authors did not take into actdle coupling be-
tween temperature gradients and concentration due to te¢ &tect. In the second
part of the present work an overview of the structure fororaprocesses is given
that occur during spinodal decomposition in the presencgpafially inhomoge-
neous and/or time dependent temperature fields. It will logveithat the Soret ef-
fect may lead to entirely different pattern formation andlation scenarios in crit-
ical and near-critical polymer blends. Introducing a sgbtiperiodic temperature-
modulation in a model of phase separation in a polymer bl&ogeaa critical mod-
ulation amplitude the coarsening dynamics can be inteztuphd a stripe pattern
is locked to the periodicity of the external modulation. $amlocking effects are
found in the case of a traveling, spatially periodic tempeemodulation. In the
parameter range where the decomposition is not locked texteznal forcing, the
coarsening processes can be enhanced by the travelingatioduWith directional
quenching a further forcing method is presented. This ntetbhmns out to be an
effective selection mechanism for the wavelength of théopér pattern behind the
moving quenching interface, where the selected waveleofgthe pattern can be
uniquely selected by the chosen velocity of the quenchfaxter

2 Transport coefficients in a critical polymer blend

2.1 Diffusion in critical systems with a temperature gradien

At first we treat diffusion processes within the homogenqihase. The presence of
a temperature gradient in binary fluid mixtures and polymendss requires an ex-
tension of Fick’s diffusion laws, since the mass is not omlyeh by a concentration
but also by a temperature gradient [76]:

J=Jm+Jr =—p(DOc+c(1—c)DrOT) . 1)

c is the concentration (mass fractioigp the density, and the mass flow of one
componentD and Dt are the mass and the thermal diffusion coefficient, respec-
tively. Since the total mass flow vanishes in the mass-fixaohér of reference, the
flow of the second component of concentration & of the mixture is not inde-
pendent and needs not be considered separately. In thefozm@ghing reference
velocities and/or small temperature gradients, the caittirequation takes the fol-
lowing form [77, 78]

Jc 0 J

at o

(2)
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Combining Egs. (1) and (2), the evolution equation for thecemtration is

Jc
5 = - (BOc+c(1—c)DrT). (3)
All currents vanish in the stationary state, where the atoghéi of the induced con-
centration gradient is determined by the Soret coefficgnt Dt /D:

Oc=-Src(1-0)OT 4)
The temperature distribution is determined by the heattémua

5071— = DthD2T+S(rat)v (5)
including the source terr§(r,t). Dy = K(pcp) 1 is the thermal diffusivityk the
thermal conductivity, andp the specific heat of the solution.

The formal description of thermodiffusion in the criticagion has been dis-
cussed in detail by Luettmer-Strathmann [79]. The diffastoefficient of a critical
mixture in the long wavelength limit contains a mobility fag the Onsager coef-
ficienta = a®+ Aa, and a thermodynamic contribution, the static structuctofa
S(0) [79, 7]:

b
a’+Aa b
D(g=0) = <> =D"+AD. (6)
S(0)
a® is the background contribution anfia the critical enhancement. Within the
random phase approximation the static structure factor lohary A-B polymer
blend is given by [8, 4, 80]

1
S(q—O)—<1A+12x> . @)

@ andNg are the volume fraction and the degree of polymerizationobfmerk,
with k= A, B. x is the Flory-Huggins interaction parameter. Introducimgteduced

temperature Tt
— lc
e= 1, ®)
the critical temperature dependence$S@) and the static correlation lengéhare
expressed as scaling 1a®&0) ~ ¢ ¥ and& ~ V. Close to the critical point, in
the asymptotic critical region, the scaling exponents thieevaluesy = 1.24 and
v = 0.63. The mean field values for larger distances figrarey = 1.0 andv = 0.5.
The transition from the classical mean field regime to thergtgtic critical regime
is marked by the Ginzburg criterion for the static correatiength, ~ RgNl/Z,
and occurs at = Gi. Gi is the Ginzburg number angy the polymer radius of
gyration. Following the arguments in Ref. [79], the backgrd diffusion coefficient
scales likeD® ~ &Y = ¢ and the critical enhancement lileD ~ gV(1+%1) ~ £067,
wherez, = 0.063 is the critical exponent of the viscosity. Because oflénger
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absolute temperature excursions in the mean field regiragh#rmal activation of
the Onsager coefficient with an activation temperafiyradditionally needs to be
taken into account. Hence, we end up with the following terapee dependence
of the diffusion coefficient:

D~ AD~ g%  for e < Gi (9)
D~DP~cexp(—To/T) for &> Gi (10)

As discussed in Ref. [79], there is no critical enhanceméttitethermal diffusion
coefficientDt, which retains its background vaILEDPr throughout the asymptotic
critical regime. It appears reasonable to assume the sativatan temperaturd;,
both fora® andD®:

Dr = D% = D%exp(—Ta/T). (11)

Combining Egs. (9), (10), and Eq. (11), the critical scalifighe Soret coefficient
in the asymptotic criticald < Gi) and in the mean field regime ¢ Gi) is

o}

S~ E ~ AD*]- ~ g*V(:H“Z’l) ~ 570'67 for € < Gi (12)
Db Db
ST%D%:W&O)NS(O)NEfl for & > Gi (13)

Since there had not been any measurements of thermal diffasid Soret coeffi-
cients in polymer blends, the first task was the investigatibthe Soret effect in
the model polymer blend poly(dimethyl siloxane) (PDMS) gradly(ethyl-methyl
siloxane) (PEMS). This polymer system has been chosen leatiuise of its conve-
niently located lower miscibility gap with a critical temagure that can easily be
adjusted within the experimentally interesting range leetmwroom temperature and
100°C by a suitable choice of the molar masses [81, 82]. Furthexpextensive
characterization work has already been done for PDMS/PEM®&db, including
the determination of activation energies and Flory-Hugdineraction parameters
[7,8, 83, 84].

2.2 The transient grating technique

The transport coefficients have been measured by the traggraphic grating
technique of Thermal Diffusion Forced Rayleigh Scattel(RBPFRS), that has al-
ready been described in more detail in previous works [8588% and will only
briefly be sketched in the following (Fig. 1).

An argon ion laser operating at 488 nm is split into two beafrsgoal intensi-
ties that are brought to intersection within the sample vageangled to create a
holographic interference grating with a period
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2 A
d= q 2sin8/2)° (14)
Energy is absorbed from the light field by an inert dye (quaniiz) that is added to
the polymer blend in minute quantities. Neither the phasebier nor the critical
temperature are influenced by the dye. The temperaturaengratid the secondary
concentration grating both couple to the refractive indeatigg due to the contrast
factors(dn/dc)pr and(dn/dT)pc. The resulting phase grating is read by Bragg
diffraction of a readout laser beam (HeNe, 633 nm). Theatitied signal beam is
mixed with a coherent reference wave derived from a locaillaswr in order to
create a heterodyne signal for increased sensitivity atdiffraction efficiencies.
Electro-optic modulators are used for switching of the phafsthe grating and a
piezo-mirror serves for phase stabilization. Details efdtabilization and switching
procedure and the separation of heterodyne and homodyme sigmponents have
been described in Ref. [88]. A photo multiplier tube opergtin photon counting
mode is used for detection. It is connected to a counter wiiima resolution of
1us. For a good signal to noise ratio typically*10 1P individual exposure cycles
are averaged.
Taking the absorbed optical power density as source &swr) | (pcp)*l in the
heat equation (5), an analytical expression for the nomedlheterodyne diffraction
efficiency can be derived as a cascaded linear responseJB8, 8

() = 1-e - [r(1-e V) (1-e V)], 5)

beam expander

| ' -
+H . argon ion laser

breadboard

single mode fiber
reference wave l\
- —\—’\Y’\
sampleu\ low pass filter

local oscillator

EOM

PMT

piezo mirror

Fig. 1 The setup for transient holographic grating measurements is sitwerelectro-optic mod-
ulators (EOMs) are used for 18@hase shifts of the holographic grating. The piezo mirror serve
for phase matching between the diffracted beam and the cdhreference wave generated by the
local oscillator. The setup is a modified version of the one desdiiip Ref. [87].
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Z= (‘;Z)M (;’.?)_lsr co(1—co). (16)

p.c

a, is the optical absorption coefficiem}, the specific heat, arldx,t) = I4(t) exp(igx)
the periodic intensity of the light field. The thermal diffuisy and the diffusion
coefficient are obtained from the relaxation time constafithe temperature and
the concentration grating, which are treated as fit parasietg = (Diyg?) ~* and
T = (Dg?) L. The description becomes more complex in case of very thimpkss,
where heat conduction into the walls becomes important [90]

The contrast factors have been measured interferoméyri@i] and with an
Abbe refractometer, respectively. The sample was cordadima fused silica spec-
troscopic cell with 20um thickness (Hellma). The sample holder is thermostated
with a circulating water thermostat and the temperature éssured close to the
sample with a Pt100 resistor. The amplitude of the temperanodulation of the
grating is well below 10@K and the overall temperature increase within the sample
is limited to approximately 70 mK in a typical experiment [9dhich is sufficiently
small to allow for measurements close to the critical point.

2.3 Measurements on PDMS/PEMS blends

The measurements near the critical point have been pertbwite a PDMS/PEMS
blend with molar masses &f,, = 16.4kg/mol (PDMS,My,/Mp=1.10) andM,, =
22.8kg/mol (PEMS,My /M, =1.11). The corresponding degrees of polymerization
areN = 219 andN = 257, respectively. The phase diagram shows a lower mis-
cibility gap with a critical composition of. = 0.548 (weight fractions of PDMS),
which was determined according to the equal volume critefidis value is in good
agreement with the critical volume fractiag calculated from the Flory-Huggins-
model [91]. The critical temperature s = 38.6°C. For some measurements also
off-critical mixtures of varying molar masses have been leygd. The relevant
numbers will be given where appropriate.

As predicted by the expressions for the critical divergeoficthe Soret coeffi-
cient in Eq. (12) and Eq. (13), the heterodyne diffractidicifncy of the induced
concentration grating dramatically increases on approéthe critical point. Fig.

2 shows normalized heterodyne diffraction efficiencies tzve been recorded for
different distance¥ — Tc. A few hundred milli-Kelvin away fronTc, the modulation
depth, which is proportional to the heterodyne signal, edsahe values typically
found for small molecules and off-critical mixtures alrgdny nearly four orders of
magnitude.
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Fig. 2 Typical heterodyne
diffraction signals measured
for a critical PDMS/PEMS
mixture for different distances
T — T¢ to the critical point. All
curves have been normalized
according to Eqg. (15). The
dashed line indicates the
nearly constant initial slope
of the concentration signal
(an exponential function in
the logarithmic plot) caused
by the almost constant value
of Dr. The inset shows, for
comparison, a considerably
smaller signal for an off
critical PDMS/PEMS mixture
(860 and 980 g/mol).
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2.4 The diffusion coefficient

The diffusion coefficienD is plotted in Fig. 3 as a function of the reduced tempera-
turee. The uppex-axis shows the correlation lengfh= &g %63 with & = 1.5nm.
The short downward arrow marks the approximate locus ofrtngsition from the
asymptotic Ising to mean field behavior &t~ NY/?Ry [4]. Below this value, at

Fig. 3 Mass and thermal
diffusion coefficientsD and
Dt as functions of reduced
temperature. Literature PCS
data forD taken from Meier
[8] and Sato [92] (scattering
angle 60 (¢) and 130 (0O0)).
See text for a discussion of
the fit functions. Also shown
Dt (upper curve, righy-axis)
for the same temperature
range together with fit func-
tion containing only thermal
activation (dotted line). Open
diamonds: data with unclear
error bars due to very long
equilibration times. Note the
different units of the two
y-axes.
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smaller values o€ and larger correlation lengths, the data are compatiblie thi
asymptotic scaling law of Eq. (9). For large valuesdhe slope continuously in-
creases due to the transition to the mean field exponent angktiwing influence
of thermal activation [81].

Data ofD as measured previously by photon correlation spectros@epp) on
comparable polymer blends have also been included in FigeBerally, both the
data of Meier [8] and Sato [92] show an excellent agreemetfit @uir results. Close
to T¢ (below € ~ 0.01), however, the PCS data level off and no longer follow the
asymptotic scaling law. This transition from a diffusive, = Dg? 0 ¢, to a non-
diffusive behavior with™ [0 g%, occurs when the correlation length exceeds the in-
verse scattering vectof, > q 1. Theg-dependence of thapparent diffusion coef-
ficient is evident from the two measurements performed by 8aal. at different
scattering angles.

Since TDFRS works at much lowervalues than PCS, in our casex~ 3 x
10-3nm~1 compared tay ~ 3 x 102nm1, the critical point can be approached
much closer on the-axis, thereby still observing scaling behavior and cait&low-
ing down ofD. The crossover correspondingdo’é ~ 1 is marked with an arrow
ate ~2x 1074

An analytical description of the crossover from a diffusteea non-diffusive
behavior at a finitej-value has been given by Kawasaki [93]:

D(a¢) = D(q— O)K(qd), (17)
K(x) = % (14+%%+ (x*—x 1) arctarx) . (18)

A fit of D taking the Kawasaki function (18) into account is includedrig. 3 (see
next paragraph). It shows the expected significant devidtiom the scaling law
just outside the&-range of our TDFRS data.

The problem of the dynamic crossover from the Ising to themfiedd regime has
been treated by Jacob [94] and by Kostko [95]. Kostko et aiveld a decomposition
of D = DP + AD into a background contributioB® and an enhancemeAD of the
form

keT(1+(a8)?) 1

b .
b 6mE ¢’ .
T Zn /2 2
AD — 6k7$rlf K (G€) [1+ qzﬂ - arctarigpé) . (20)

Ny is the background contribution of the viscosity aqgjl a characteristic cutoff-
length.K(x) is the Kawasaki function defined in Eq. (18). The solid lind=ig. 3,
which interpolates our data quite reasonably, is a fit of tima ef Eqs. (19) and (20).
The correspondingly labeled dashed lines show the decatigrosito the two con-
tributionsDP andAD. The viscosity was assumed to be thermally activated wigh th
same activation temperaturef = 1460K as the thermal diffusion coefficient (see
below). The weak critical divergence of the viscosity hasrbaeglected. Details
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Fig. 4 Arrhenius plot of LA L L
the ratioDt /D accord-
ing to Eq. (11) for critical
(16.4/22.8) and a number of -4.0+ i -
off-critical PDMS/PEMS i

blends of various molar
masses and concentrations
¢ = 0.5. The legends give
the PDMS and PEMS molar
masses in kg/mol. Also shown
is a line corresponding to the
activation energy of the vis-
cosity according to Ref. [92].
Fig. according to Ref. [96]. 50

In(, /D,°)=-T, /T
A
o
T

0O X A%+ 0O

2.6 2.8 3.0 3.2 3.4 3.6
1000K/T

of the analysis and questions associated with the propecelod the correlation
length are discussed in more detail in Ref. [81].

2.5 The thermal diffusion coefficient

The data forDt in Fig. 3 clearly show, in contrast to the data 19y no critical
scaling but only thermal activation. A fit of the expressiargg. (11) to the data
in Fig. 3 gives a prefactob® = 1.82 x 10~7cm?(sK)~! and an activation tem-
perature ofT, = 1460K. Fig. 4 shows an Arrhenius plot of the thermal diffusio
coefficient according to Eq. (11) not only for tbg data from Fig. 3 but also for a
number of off-critical PDMS/PEMS blends of different motaasses and PDMS-
concentrations ot = 0.5. Only the critical mixture has a slightly different con-
centration ofc; = 0.548. Independent of the criticality of the system, all aativ
tion energiekg T, are identical. A common fit yields an activation temperatofre
Ta=1415K, which is almost identical to the value of 1460 K obéairor the critical
mixture alone [96]. Also shown in Fig. 4 is a dashed line wité slope correspond-
ing to an activation temperature of 2285 K as reported in R&i.for the viscosity.
The reason for the pronounced difference between thesectivation temperatures
is not clear, and a definite answer would require additiorsaosity measurements
for PDMS/PEMS blends as described in this work. A detailedlysis of Dt of
PDMS/PEMS mixtures of equal weight fractions has shown tiatprefactoD?
can be decomposed into a molar mass independent part plugations from the
end-groups, which vanish for longer chain lengths [96, 97].
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Fig. 5 Soret coefficientr as
function of the reduced tem-
peratures. For comparison

D~ with arbitrary multiplica-

tive factor (both lefty-axis)

and the static structure factor

S(0) (o) are shown for a simi- =
lar blend taken from Ref. [8]. N
Note the identical dynamical 3
range of bothy-axes. Fig. '
according to Ref. [81].
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2.6 The Soret coefficient

According to Egs. (12) and (13) the Soret coeffici€nt= Dt /D diverges on ap-
proach of the critical point. This scenario is plotted in.FigSinceDr is constant to
good approximation within this narrow temperature rangerdy a few Kelvin, the
scaling law in the asymptotic critical regin®y;, 0 e %57, is determined by the expo-
nent of the diffusion coefficient. At larger> Gi the Soret coefficient diverges with
the mean field exponent of the structure fac®), since the thermal activation,
which appears both iD andDrt, cancels out. In order to illustrate this crossover of
the divergence ofr from the mean field to the asymptotic critical regime, we have
included in Fig. 5 besides our own data Bn! also data from previous works on
the static structure fact@®(0) of a comparable PDMS/PEMS (19.4/30.1) blend [8].
The straight line with a slope of -1 has been included in Figa 8emonstrate that
the mean field scaling exponent= 1 can be found fo&r rather than foD, which
shows a stronger temperature dependence due to the addtitienmal activation
of the Onsager coefficiemt®.

Additional insight into the nature of the Soret coefficientats critical diver-
gence is obtained from Eq. (13) for the classical regime:

D D
St~ g5 = g5 S0 =K(T) S0). (21)
Since bottDt anda® are thermally activated with the same activation tempeeatu
and with prefactor©$ anda®0 | the dominating contribution of the temperature
dependence cancels out in the ratio and we are left with arveedhkly temperature
dependent function
Dt D-?—

K(T)= 2 = =55 - (22)
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Fig. 6 Left: Soret coefficien§r for a number of PDMS/PEMS blends. The red bullets correspond
to the critical blend with a critical temperatureof= 38.6°C. Right: Same data as left normalized
to mean field static structure facts{0). The legends give the PDMS and PEMS molar masses in
kg/mol. Figs. according to Ref. [96].

Experiments have shown that, at least for PDMS/PEMS blehdgal weight
fraction,K(T) indeed depends only weakly on temperature and is indepénflen
the molar mass of the constituents [96]. Consequently, iiferent values of the
Soret coefficient in the classical mean field regime are deadusively caused by
the variation of the static structure factor.

Fig. 6 shows the respective data plotted according to Eq.f(21a number of
blends with different degrees of polymerization. The léétgshows the Soret co-
efficients as measured and the right one after normaliz&tidime mean field static
structure factor calculated from the Flory Huggins modglEg. (7). Although the
structure factors and the Soret coefficients of the diffesamples vary by more
than two orders of magnitude — even at the highest temperafuslmost 100 C
— all curves collapse onto one single master curve for a reghperaturerl. At
lower temperatures there is the pronounced deviation flecommon curve for
the (16.4/22.8) blend in the asymptotic critical regimewtiie critical divergence of
Sr. The slight deviations of two other blends might be first fioit phase transitions
at lower temperatures [96].

3 Laser-thermal patterning of the homogeneous phase

Structuring of polymer films attracts considerable attamtiand various radiation
sources have been employed to selectively crosslink deitablymers for e.g.

waveguide fabrication [98]. Incompatible polymer blendsébeen forced into cer-
tain demixing morphologies along pre-patterned surfagBf Persistent structures
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Fig. 7 Phase diagram of 400
PDMS/PEMS (16.4/48.1). 380 -
The cloud points that mark the 360 -
binodal (squares) have been 340 -
obtained by turbidimetry.
Pseudo-spinodal points as
explained in the text. The 280 -
color encodes the modulus
of the Soret coefficient. Fig.
from Ref. [99].
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could be formed by laser radiation in various non-absorpimlgmer solutions, such
as polyisoprene in n-hexane [58, 57].

In the following we will describe a novel photothermal patiag technique that
relies on the Soret effect. The diverging Soret coefficiard polymer blend close
to the critical point leads to a very strong coupling of thdesrparameter, the lo-
cal composition, to an externally prescribed inhomogesgemperature field. This
opens an interesting route to the formation of arbitrary position patterns within
an initially homogeneous polymer film. Since there is no pbbemistry involved,
the whole process is fully reversible and structures caitydaes erased by local or
global heating of the sample.

Our goal was, to provide a detailed experimental charaetton and numerical
modeling of the photothermal structure formation in a catipolymer blend. Since
the transport coefficients, and in particular the Soretfaent, strongly depend on
temperature and concentration, the structure formatiantigghly nonlinear pro-
cess that requires a detailed knowledge of all relevanfficaefts within a broad
parameter range. Since useful data on Soret coefficiengsolgmer blends were
not provided by previous works, we started with measuresngiBoret coefficients
for our model system PDMS/PEMS within the entire one-phagéme above the
binodal [99].

3.1 Phase diagram and transport coefficients

To be able to measure also off-critical mixtures down to tmedal within a con-
venient temperature range, a mixture with a higher critiealperature has been
chosen than for the previous investigation of the criticgidvior. The system cho-
sen was PDMSN),, = 16.4kg/mol, My,/Mp=1.10) and PEMSN),, = 48.1kg/mol,
Mw/Mn=1.19). It has a critical composition @f ~ 0.6 and a critical temperature
of T ~ 354K. The phase diagram of this mixture is shown in Fig. 7. Tload
points (squares in Fig. 7), which separate the homogeneous the phase sep-
arated regime, define the binodal and have been determinéatigimetry. The
spinodal and the color-coded Soret coefficient will be diseud later on.
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The diffusion, thermal diffusion, and Soret coefficientsiiine different PDMS
concentrations frone = 0.09 toc = 0.9 have been measured between the binodal
temperature and approximately 368 K. Fig. 8 shows on thesld# the diffusion
and thermal diffusion coefficients. The temperature deperoés of the latter are
very well described as thermally activated processes dogpto Eq. (11) with a
common activation temperatufig = 1395K, which is very close to the 1460K
obtained for the critical blend in section 2.

Within the pseudo-spinodal concept [100, 11] the diffusgioefficient of an off-
critical mixture is still described in a similar way as théfaision coefficient of the
critical mixture. Only the critical temperature is now rapéd by the temperature
Tsp Of the spinodal:

D= m@ exp(—Ta/T). (23)

In contrast to the critical temperatufg, the spinodal temperatufig, is well below

the binodal temperature for off-critical mixtures and camdy be reached due to
prior phase separation. The diffusion coefficients in theeupeft part of Fig. 8 have
been fitted by Eq. (23) with a fixed activation temperaturedeined fromDt. The
binodal pointsin Fig. 8 mark the boundary of the homogeneous phase at thddiin
The spinodal temperaturés, are obtained as a fit parameter for every concentration
and together define the (pseudo)spinodal line plotted iphiase diagram in Fig. 7.
The Soret coefficient is obtained from Egs. (11) and (23) as

Dr D9 /T-Tp\ !
5= ao( . (24)

and diverges at the spinodal temperature (Fig. 8, right).

Although the asymptotic critical regime with the Isingdikcaling exponents has
been neglected in this description, the fit curves in FigeSareasonable parameter-
ization for all three coefficients in the one-phase regintes parameterization then
serves as input for the numerical model. A more detailedudsion of the whole
procedure can be found in Ref. [99].

3.2 Writing patterns into polymer films by local laser heagn

The huge Soret coefficient near the critical point can bertadyantage of for the
creation of compositional patterns by local heating. FighBws a setup that has
been used in experiments for writing compositional pagénnpolymer blends. It
consists of an inverted phase contrast microscope equipfbda CCD camera.

A Laser beam A = 515nm) can be coupled in via a telecentric lens system and
a galvano scanner, which allows for arbitrary computer rdied positioning of

the laser focus within the sample. The laser is focused dowg + 0.8um and

its power can be adjusted between 0.1 and 100 mW. The sanipie teenperature
controlled and mounted ongz-stage. The polymer layer & = 100um thickness
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Fig. 8 Diffusion (D) and thermal diffusion@r) coefficient of PDMS/PEMS (16.4/48.1) (left) and
Soret coefficient (right) for different PDMS mass fractionsegi in the legendsBinodal points
mark the intersection with the binodal. The dashed line segmeatsxérapolations into the two-
phase regime. Figs. from Ref. [99].
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Fig. 9 Inverted phase contrast microscope equipped with a CCD camera &sgr. Galvano
mirrors allow for scanning of the laser focus across the sample.

is sandwiched between two 1 mm thick sapphire windows tleesealed with a two
component epoxy resin (Torr Seal). A small amount of dyer(@arin) is added for
optical absorption. It does not change the critical temjpeeanoticeably.

Pattern writing experiments have been performed with arosinsymmetric
PDMS/PEMS (16.4/15.9) blend having a critical compositigr- 0.48 and a con-
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venient critical temperaturé = 290.15K. It has been shown in Ref. [99] in de-
tail that the parameterization of the transport coefficegtermined for the higher
PEMS molar mass still yields a good description also for ésd after adjusting

the critical concentration and takiri@ — Tsp)/T as dimensionless temperature.

The focused laser beam is scanned along an arbitrary pdtmliexy-plane as
sketched in Fig. 10. The perspective view with the cross@ethrough the scan
path shown in Fig. 10a) visualizes the color-coded conaéintr change due to the
Soret effect according to the numerical simulation diseddater on. On the right
hand side a phase contrast micrograph is shown where the Sgoetthas been
written into the polymer blend.

For a quantitative analysis a short line segment has bedtemwet two different
distanceAT = 1K and 115K aboveT, cf. Fig. 11. Because of the positive phase
contrast, a darker gray value translates into a higherafeindex. Hence, the
polymer with the lower refractive index (PDMS) is enricheithin the bright central
region. Consequently, PEMS migrates into the oppositetine and causes a dark
fringe around the bright lines. These effect also leads ¢odérker halos around
the letters in Fig. 10. This observation is in agreement withnegative sign dbr
reported in Fig. 5 for PDMS/PEMS.

The initial linear growth is proportional tBt and identical for both distances
from T, cf. Fig. 11 A and D. At longer times the line written&T = 11.5K quickly
saturates, whereas the line written clos@de@ontinues to grow in intensity due to
the much larger Soret coefficient, as indicated in Fig. 11 €RAn

The gray values in Fig. 10 and in Fig. 11 are two-dimensiomajggtions into
thexy-plane. Because of the phase contrast technique, they prexapately linear
functions of the integral over the refractive index alongztirection. The temper-
ature and concentration distribution and, hence, alsodfraative index are fully
three-dimensional objects. The high thermal conductieftthe sapphire windows
enforces a constant temperature boundary condition abphartd bottom windows.

z=50pum 4‘;“.‘ ,l —
W ! 1 laser [100 Hm
z=-50pm z 7 ‘. —
- - b)

30 mm

r‘ y
16 mm scan path

section plane

z
L} laser X

a) c)

Fig. 10 a) 3d-sketch of the cell. The laser beam is scanned alongdirection (c); cross-section
according to Fig. 12. b) Sketch of laser focus. Right: arbjtgattern written into critical sample.
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Fig. 11 Phase contrast micrographs of line segment written 1K (upper aod)115K (lower
row) aboveT; into PDMS/PEMS blend of critical composition. Images in colurtaken after 100,
300, and 2000 seconds. Fig. from Ref. [99].

3.2.1 Numerical model

A more detailed picture of the three-dimensional tempeesdnd concentration dis-
tribution can be obtained by an appropriate numerical magtesides the diffusion
equations for heat and mass, convection caused by bothdhand solutal expan-
sion needs to be taken into account.

The temperature profile evolves according to the heat ezuéiiq. 5) with the
heat source supplied by absorption of the focused laser .b&amdditional advec-
tion term accounts for the influence of convection:

oT a
E—i—(v-D)T_D-(DmDT)—&—p—%I. (25)

The heating Gaussian laser beam is scanned alongdtection. It enters the sam-
ple atz= —Lg/2 and creates an intensity distribution

R B )
A=m?/2,

r2=r3

Az\?
14 (_> ] |

g
The temporally periodic scanning of the laser is described(t), which changes
from —L,ine/2 to +Ljine/2 linearly in time. For coordinate axes see Fig. 10.

As in case of the heat equation, an advection term must beladdkee diffusion
equation (3):

Jc

ﬁ-i-(v-l])c:D-[DDC-I—DTC(l—C)l:lT}. (27)
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Convection is accounted for by the Navier-Stokes equatictihé Boussinesq ap-
proximation

0
Po H +(v- D)V} = —0Op-+ No0?v — pge, (28)

with the incompressibility condition
O.v=0. (29)

The density changes because of both thermal and solutahsipawith expansion
coefficientsBr = —(1/p)(dp/0T)c andBe. = (1/p)(dp/dc)T, respectively:

p = po[l—Br (T —To)+ Be(c—o)] - (30)

Po is the mean density at temperatUge

Since the extension of the induced concentration profileign F1 along the
y-axes is much longer than along the other two directions, seeirae translation
symmetry and restrict our description to a two-dimensianatlel within thexz-
plane. The intensity of the laser beam is obtained by avegagQ. (26) over the

scan period:
2
Ls
_a(z_)}, (31)

-~ o] Z]os
_ /T Tliine
A= \/;erf(l—line/\/ér) ’

Az\?
1+(2)L
g
The high thermal conductivity of the sapphire windows easu fixed temperature

T = Tp at the boundariez= +Lg/2 and atx = +L4/2. The boundary condition for
the diffusion equation is a vanishing flux at the walls (noruetorey):

r2=r3

&, - [DOc+Drc(1—¢)0T] =0. (32)

For the velocity one has a non slip boundary condition at thésw = 0). The
initial conditions arel = Tg, ¢ = cg, andv = 0.

An expression for the transmitted light in ideal phase @sitimaging can be
found in Refs. [101, 102]. For a more detailed treatmentétis® necessary to take
the finite width of the phase object into account [103], rasglin

It — o _\ [1+ p? +t2 — 2p(cosp+ tsing)
Itro 1+ p2+t2—2p

_ 2nlson _

-1

)
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Fig. 12 Vertical cuts (perpendicular tpaxis) through a linear structure written by the laser. (A)
temperature profile. (B, D) concentration profilgs, z) for a starting temperature &fT = 1K
above the critical temperature after 100 s and 2000 s. Parti¢Gahzes like in Part (D) the tem-
perature and concentration fAT = 11.5K. The arrows are for visualization of the flow fields.
Fig. from Ref. [99].

p? = 1 andt? = 0.4 are the relative amplitude transmittance of the polymgerna
and the microscope objective, respectively- @(x) is the phase shiftinduced in the
layer due to the concentration changg, = 550 nm is the wavelength of probing
light, dn/dc = —2.3x 10 ?is the contrast factor of the PDMS/PEMS mixture, and —
is the concentration averaged over the layer thicki€ssireated as a fit parameter
[99]. The material parameters like viscosity, density, argansion coefficients are
given in Ref. [99].

Fig. 12 shows the result of the numerical solution of the rhabeve. The images
are cross sections through a written line perpendiculanécstan direction of the
laser. The vertical dimension, tlzedirection, corresponds to a sample thickness of
100um. The stationary temperature distribution shown in FigA i2reached very
rapidly. Fig. 12B shows the concentration profile after 186osds. This image is
shown for a distance AT = 1K above the critical temperature. The early-stage
concentration profile does, however, not depend significamt the absolute tem-
perature because of the almost constant thermal diffusiefficient. During the
initial linear growth period the concentration profile réngvery sharp and resem-
bles the profile of the focused Gaussian laser beam. Thissseerprising at a first
sight, since the driving temperature profile is alreadyeatiroad. It is, however,
understood from Eq. (27), which takes for short times thenfor

dac
Splt-o=Dre(1-c) 02T . (34)

Hence, the early stage of the concentration profile is ptapw@l to the Laplacian
of T(r,t) rather than the temperature field itself. ¢ From the statyosalution of
Eq. (25) it can be seen th@fT (r,t) is proportional to the laser intensity, neglecting
temperature dependences of the coefficients and convewst#ofirst approach.

At longer times the concentration profile broadens and besomore intense.
The two images at = 2000s clearly show the much stronger effect close to the
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critical point, cf. Fig. 12D. Convection causes an asymynefrthe profile and a
detailed analysis shows, that the main effect of convedtidhe solutal rather than
the thermal expansion of the mixture. Radiation pressdeetsfdue to the laser en-
tering from below are approximately one order of magnitudelger and negligible.

Due to the optical volume heating and the high thermal cotidticof the sap-
phire, the strongest temperature gradient develops biratthe window surface.
Consequently, PEMS enriches mainly at the windows abovebalwv the heated
channel rather than to the left and right, as one might firgtsgurom the two-
dimensional projection with the dark halos of Fig. 11. PENS$ regions appear
darker in Fig. 12.

The color-coding of the hot/cold colormap used in Fig. 12tfe@ concentration
profile can also be interpreted in terms of a refractive ind&p. The refractive
indices of the PDMS/PEMS mixtures are such that the brigahokl in the cen-
ter, which corresponds to a PDMS enrichment, has a loweagtfe index and
the PEMS-rich layers at the windows have a higher refradtidex than the aver-
age mixture. However, there may exist other polymer blengsra/the sign change
of the refractive index is in the opposite direction. In tb&se, the channel-like
structures could be used as re-writable optical waveguitles cladding layers,
which automatically form at the windows, would then be of loefractive index
and shield the channel from the high refractive index of tiredaw material. Such
a structure is sketched in a perspective view in Fig. 13. @friitructures are fully
reversible and can locally or globally be erased by heatimjpg term stability
might be achievable with blends of a polymer with a low and ghtglass tran-
sition temperature, where the dynamics comes to rest dtlimgemixing process
[105]. As has been shown for concentrated polymer solutithresSoret coefficient
is not influenced by the increasing viscosity in the vicinifiya glass transition
[106, 107, 108, 109].

As a direct consequence of the strong temperature and cdiopatependence
of the Soret coefficient near the critical poi&; (andD) become position depen-
dent within the polymer layer. When the initially homogeneaample of critical
composition is kept slightly abovi, the very high value o$r leads to strong con-
centration changes even for small temperature gradientenvdhvolume element

Fig. 13 Perspective view of
the channel-like structure of
Fig. 12D. A different color
coding has been chosen for
a better discrimination of the
various regions. The PDMS-
rich channel in the center
(red) is sandwiched between
two PEMS-rich layers (blue).
Fig. from Ref. [104].
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is moved away from the critical point in the phase diagr&ndecreases and the
further excursion along the composition axis is efficietitiyited.

In order to illustrate this nonlinear mechanism we havetgtbthe part of the
phase diagram occupied by the sample from Fig. 12D in Fig.sld gray region.
The red bullet marks the initial position of the homogenesarsple just above the
critical point. The dashed curve is a trajectory that cqroesls to a vertical cut
through the cell along the optical axis of the laser beam atieg values of¢ — cp)
correspond to PEMS, positive values to PDMS enrichment. Stret coefficient
plotted along this trajectory shows a characteristic deydaak structure. The two
maxima are very close to the position where the concentratiosses the average
valuec = cg.

Fig. 15 shows an example, where the temperature profile hid®ra created by
direct laser heating of the absorbing dyed polymer blendén/blume but rather by
optical heating of a colloidal gold particle of 200nm in dieter [110]. Such a col-
loid then serves as a microscopic heat source that directifias the composition
of the surrounding polymer blend. The bright region arounadolloid, correspond-
ing to PDMS enrichment, is surrounded by a faint darker rilgre PEMS, that is
displaced from the immediate surrounding of the gold piiteccumulates.

3.3 Quenching of an off-critical blend by local heating

Important consequences of the strong coupling betweernrinbeneous tempera-
ture fields and local composition arise for situations whesailibrium phase dia-
grams are applied to nonequilibrium systems [111]. Sucha@es have been re-
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Fig. 15 Phase contrast mi-
crograph of laser-heated gold
colloid (center) with PDMS
enrichment in the surrounding
volume (bright) and PEMS
accumulation at larger dis-
tance (dark). Only the middle
one of the three colloids is
heated with a focused laser
[110].

ported by a number of authors. Lee et al. studied spinodadrdposition in the
presence of a temperature gradient [16, 17]. Tanaka et\adstigated the influ-
ence of periodically driving the polymer mixture above aredolw the instability
point [74]. Meredith et al. employed a combinatorial methwaith perpendicular
temperature and concentration gradients in order to d@teremtire polymer phase
diagrams in a single experiment [112]. In the following itiMae shown that rather
unexpected effects can occur in the presence of tempegriadeents and that equi-
librium phase diagrams do not necessarily give a valid aggrdo nonequilibrium
conditions.

The experiments reported here have been performed with a3?BEMS (16.4/
48.1) blend. The mixture is an UCST mixture with a criticalnguosition of
cc = 0.61. The diffusion, thermal diffusion and Soret coefficienfsthis system
are shown in Fig. 8. Samples of two different off-criticalngoositions ¢ = 0.3
andc = 0.9) were prepared. The temperature was set to a value of a fgreake
above the binodal. Hence, the sample was entirely withirhttreogeneous phase

c(PDMS)=0.3g/g

140 pm

c(PDMS)=0.9g/g

Fig. 16 Forced demixing of
an initially homogeneous off-
critical PDMS/PEMS blend
for c = 0.3 (upper row) and
¢ = 0.9 (lower row).
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Fig. 17 Phase diagram of

a PDMS/PEMS (16.4/48.1)
blend. The dashed lines are
the binodal and the spinodal.
The phase contrast micro-
graphs show typical demixing
patterns for spinodal decom-
position and nucleation and
growth in the respective re-
gions. The bullets mark the
initial sample positions. See
text for details. Fig. from Ref.
[111].
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and one would expect that heating could only drive the blemthér into the stable
one-phase region.

This assumption is indeed true for equilibrium scenarioth e homogeneous
temperature distribution. Due to the coupling between hedimass transport, laser
heating gives rise to completely different behavior and eaen drive a UCST-
mixture locally from the homogeneous into the phase sepaisthte.

The result of such laser writing experiments is shown in E&y. where the fo-
cused laser beam has been scanned along simple paths,rdiaeiacle. The upper
two images correspond to the sample wétk 0.3 (left of the binodal), the lower
two to ¢ = 0.9 (right of the binodal). The initial location of either salapn the
phase diagram is marked in Fig. 17 with bullets. All four iraagn Fig. 16 show
two distinct features. First, there is smooth variationhaf gray values with lighter
values along the scan path. This reflects the writing withrecentration change due
to the Soret effect, similar to the scenario discussed ferctitical sample. Addi-
tionally, there are localized droplets, which are charéstie for a nucleation and
growth type demixing scenario. These droplets are brigttagpear in the center
of the written line, corresponding to the hottest regioncfe- 0.3. Forc = 0.9 they
are darker than the average gray value and located at thehpeyiof the line. In
either case their number increases with exposure time.

The occurrence of demixing morphologies characteristic tfe metastable
regime between the binodal and the spinodal can be unddrétmn Fig. 17. The
red dot marks the initial position of the sample witk- 0.3. Upon laser heating the
temperature within the laser focus risesd@¥ and the distance to the binodal first



26 W. Kbhler, A. Krekhov, and W. Zimmermann

increases. A stationary temperature distribution is lgwEhched and the Laplacian
of the temperature field@ (r,t) is obtained from the stationary solution of the heat
equation (5) with the power absorbed from the laser as sderoe

a
0T = ——1|
p (35)

Inserting this into the diffusion equation (3) gives an egsion for the initial linear
growth rate of the concentration profile, whétéc ~ 0:

Jc a

— =——Drc(1—0)l 36
5 =~ Dre(1—¢) (36)
Due to the negative Soret coefficient of PDMS/PEMS, the caition in the center
of the focus evolves towards higher PDMS concentrations lagidce, towards the
two phase region. The mixture crosses the binodal aftere tim

5c  8co+ T (dTpin/do) "

6t:%7 Drc(1—c)la/k

(37)

d¢o is the initial distance to the binodal as defined in Fig. ITy(,/dc) is the
slope of the binodaldbT = 2.5K has been obtained from a full 3d-simulation of the
thermal part of the problem. Details of this estimation]uding estimations for all
missing parameters, are discussed in Ref. [111]. The eslihtianedt ~ 13 s turned
out to be much shorter than the seven minutes until first dtsglould be observed.
Possibly, the much longer waiting time is owed to the mekakty of the region
between the binodal and the spinodal.

The arrow pointing from the initial location &= 0.3 to the left indicates the
evolution of the concentration away from the center of thaté@ line and at the
window surfaces, corresponding to the blue cladding laipeffgy. 12. These regions
represent the cold side with a reduced PDMS and increasedSRigvicentration
that are shifted further into the stable region, away fromghase boundary.

The situation is different foc = 0.9, where the PDMS-enriched central part is
stabilized and shifted away from the binodal. But now, tiggaes outside the central
area, where PEMS accumulates, cross the phase boundatiyamteetastable range.
The demixing by nucleation and growth is visible in the loweo micrographs in
Fig. 16 in form of a halo of dark droplets around the writtenustures.

Due to the phase contrast technique, PDMS- and PEMS-ricls @an easily be
distinguished, as shown in the three micrographs insertdelg. 17. They show
characteristic demixing scenarios observed for samplasgbeneously quenched
into the two-phase region. The image in the middle corredpdn a symmetric
spinodal demixing pattern. The image on the left side showgldt formation char-
acteristic for the metastable region to the critical cotiegion, where PDMS-rich
droplets form the minority phase. They appear as brightsspith a dark back-
ground. Clearly, the forced demixing of the samples with 0.3 in Fig. 16 corre-
sponds to this scenario.



Thermal diffusion in polymer blends: criticality and pattermnf@tion 27

For samples with high PDMS concentratiarns ¢ the situation is the other way
around. The droplets of the PEMS-rich minority phase appleak in front of a
bright background. The right micrograph in Fig. 17 and thaglas withc = 0.9 in
Fig. 16 correspond to this situation.

As a consequence of these experiments one has to realizeatieais required
in situations where equilibrium phase diagrams are appdiegnequilibrium situa-
tions [112]. Due to the coupling of heat and mass transpuet|dcal concentration
may change. An excursion along the temperature axis unablyideads to a si-
multaneous excursion along the concentration axis. Dueettarge Lewis number,
these two effects are characterized by very different ataristic relaxation times.

4 Model for phase separation including thermodiffusion

A modified Cahn-Hilliard (CH) model [113] is used for the thetical analysis of
the impact of thermal diffusion on phase separation, bynakito account an in-
homogeneous temperature distribution which couples tonaertration variation
via the Soret effect. We use the Flory-Huggins model for tke £nergy of binary
polymer-mixtures. The composition is naturally measurettims of volume frac-
tion ¢ of a componenA, which can be related to the weight fractioby

c @A
opoa+(1-@)ps’

where pa and pg are the densities of the two polymers. For all polymer blends
considered in this study, the densities of the two companarg assumed to be
similar and, therefore, volume and weight fractions candresitlered to be identical
for all practical purposes. For an incompressible binaf mixture (o = const)

the continuity equation relates the spatial and time depecel of the local volume
fraction ¢(r,t) to the total mass curredr,t), and expresses the conservation of
mass in the system

ot p

(38)

J=Jp+Jr. (39)

Here Jp is the mass current related to gradients of the chemicainfiateu(=
Ua — Us), andJy is the mass current due to the Soret effect in a inhomogeneous
temperature field [76]

JD(rvt) = —PM(DU)T ) JT(I’,t) - _PDT(P(J-_ (p)DT(rvt) ) (40)

whereM is the “mobility” of speciesA with respect toB, and D+ is the thermal
diffusion coefficient. Both are often treated as a constlihbagh they are concen-
tration dependent in general.
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In a Ginzburg-Landau model the chemical potenti# related to the free energy
functionalF[¢(r,t)] via the expression

p=250 2 far |2 koo (@1)

with the Boltzmann constakg. The Flory-Huggins (FH) expression for the mixing
energy of an incompressible binary polymer blend has tHevidg form [80]

e _ ¢, 19
T NPT TN, MA@ HXe1-9), (42)
whereNa andNg describe the degree of polymerization (“chain lengths)haefA
andB sort of molecules, respectively. is the Flory interaction parameter that de-
scribes the interaction strength between the two spécéasiB and positive values
of x favor phase separation. This contribution to the free gnbag a double-well
structure in the two-phase region and the temperature deper of the coefficient

X is commonly described by the following phenomenologicalression,
X=a+pT 1, (43)

with two empirical constantsy and3 [114].

For positive values ok (¢) the gradient term in Eq. (41) expresses the energy
required to create an interface betwe®nich andB-rich domains and this energy
contribution is reduced by removing interfaces during tharsening process in the
two phase region. For the coefficient of the gradient termgn(E1) we use the de
Gennes’ random phase approximation

_1[R o
K<¢)_36{q0+1—(p} ; (44)

whereaga andog are the monomer sizes (Kuhn lengths) of gha@ndB components,
respectively.

Since we have in mind polymer blends subjected to an inhomemes tempera-
ture field (produced, e.g., by light absorption), the heaiag¢iqn

oT(r,t) 2 o
Fra DinO°T (r,t) + pcpl(r,t) (45)

has to be taken into account, whdbg, is the thermal diffusivity. The heat source
term is proportional to the light intensitythat corresponds to the local illumination
of the polymer film. Heren, is the optical absorption coefficier, is the density,
andcp the specific heat at constant pressure. For typical polytesds the Lewis
number, describing the ratio between the temperaturesitiffutime and the mass

diffusion time, is of the order of 1&. Therefore, one can treat the heat equation
(45) in the stationary limit (neglect the time derivativetioé temperature).
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A mixture of compositiong, is unstable against phase separation wheh has
negative curvature @ = ¢. The critical point of spinodal decomposition in model
(42) is given by

1

@ =NY2/INY2NY2) | xe = INY2 4 NY212/(2NaNg) | (46)

such that the system is miscible fpr< xc and immiscible fory > x. at the critical
concentration. Close tog, Xc) the expression for the free energy in (42) can be
approximated by a Taylor expansion with respect to the caitipa fluctuation

¢ (r,t) =[@(r,t) — @] leading to the Ginzburg-Landau functional in terms of paver
of ¢ (an irrelevant term linear ip has been omitted)

TSR R

where the coefficients are defined as

2 4
b=2(xc —X) ~ 25 (T~ Te), u= 3X3VNals
Cc

K = 2 0R(1+ /Na/Ng) + OB(1+ /N /M) “8)

Eq. (39) and Eqg. (45) in combination with Eq. (40) and Eq. @&fine our model
close to the critical point:

a0(r.) = T2 [b(T)p 4 up® - KD%9) 4 Drap(L- @IPT. (49)
@
Dip°T = —pcpl(r,t) . (50)

Sr = D1 /D is the Soret coefficient with the diffusion coefficidht= (MkgTc|b]) /v.
In the absence of thermal diffusion, Eq. (49) reduces to tk# known Cahn-
Hilliard equation, which is also known as mod®I[3]). In fact, Eq. (49) gives a
universal description of a system in the vicinity of a cafipoint leading to spin-
odal decomposition.

5 Temperature modulations in the two-phase regime

We will demonstrate in this section how spinodal decomjmsipattern in the two
phase region can be locally manipulated in a controlled walidating a polymer
blend PDMS/PEMS by a focused laser beam. It is also showh tlieaessential
spatial and temporal phenomena, as observed in the expasinean only be repro-
duced in numerical simulations when thermodiffusion ($efféect) is taken into
account in the basic equations.



30 W. Kbhler, A. Krekhov, and W. Zimmermann

The polymer blend PDMS/PEMS with molar massedVvgf = 16.4 and 223
kg/mol, respectively, was similar to the one which has presiy been used for
the investigation of transport properties in the criticggime [81] and a laser with
515 nm and 20 mW has been used for local heating. The blendtbfa@DMS
weight fraction ofc = 0.536 was almost critical with a critical temperature of
T, = 37.7 °C. A minute amount of an inert dye (quinizarin) was added fatiaal
absorption at wavelength of the laser. The thickness ofahgpte was 20Qum, the
beam waist approximately 3@m, the optical density.Q and the temperature rise
within the beam center was estimated to be approximatelylfkges of the sam-
ple were recorded by a microscope objective Yand a CCD camera, whose image
sensor was, without additional optical elements, withmithage plane 50 cm be-
hind the objective. The horizontally oriented sample whsrilnated with slightly
divergent white light from a cold light source, which prodg@n observable ampli-
tude image from a pure phase object. This method of imagirgpimiodal decom-
position patterns in mixtures of non-absorbing liquids iffiedent refractive indices
has been discussed in detail in Ref. [115].

The sample was quenched into the two-phase regt®belowT; and 120 min
later,where also Fig. 18(A) was taken, the laser beam wastuiatt = 0. At this
moment the spinodal decomposition has already reachedgregsed stage, and
the Fourier transform of Fig. 18(A) gives a characteristicgth scale of the order
of 10 um. At the time= 200 sec the laser beam has been turn of and Fig. 18(B) was
taken at = 300 sec. Since the spatial concentration distribution@fwo polymers
cannot be extracted quantitatively by direct imaging téghes, the gray scales of
the experimental images in Fig. 18 have been equalized tonam contrast.

The spinodal pattern completely disappears in the areasenthe material was
heated by the laser beam beyohd After the laser is switched off, this circular
pattern again survives for a long time [Figs. 18(B),(C)Jfdve in this area a some-
what irregular structure develops, which slowly grows iardeter [Fig. 18(C)] and
moves away from the central spot like a spherical wave.

To analyze this phenomenon further, two-dimensional nigaksimulations of
Eq. (49) and Eg. (50) were performed using a central finiteedihce approxi-
mation of the spatial derivatives and a 4-th order Rungdeintegration of the
resulting ordinary differential equations in time. Degadf the simulation tech-
nique can be found in Ref. [113, 116]. The material pararsetérthe polymer
blend PDMS/PEMS were used and the spatial séate(K /|b|)Y/? and time scale
T = £2/D were established from the experimental measurements dfttheture
factor evolution under a homogeneous temperature quench.

The results of the simulations, including the Soret-effart shown in Fig. 18(a)-
(c) for parameters comparable to the experimental comditidhe dark and bright
areas correspond according to the basic equations to thend\-Barich phase,
whereas the experimental images are generated by an oiptiaging technique,
from which only characteristic patterns and length scalesdirectly compara-
ble. For comparison simulations were also performed withioel Soret effect, cf.
Fig. 18@)-(y)], by settingDt = 0 in Eq. (49). All other parameters of the model
were kept constant and the same initial conditions were usdeg. 18(a) and
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Fig. 18 Temporal development of a pattern in a polymer blend at 37.2 °C < T, which was
exposed locally to laser light during the perioe:® < 200 s. Images are takentat 0 (A), t = 300

s (B), andt = 700 s (C). The corresponding images (a-c) are obtained by siondatith and the
images @ — y) without taking the Soret effect into account. Fig. from H&f.6].

Fig. 18(@). In this case the laser heated spot is driven into the oasghegime
during the laser light exposure, but the characteristitufea of the experimentally
observed demixing pattern do not show up without the Sofetef

Our simulations clearly demonstrate that without theryn@diven mass diffusion
the spatial variation of the control paramebéT ) due to the local laser heating does
not provide the typical pattern evolution observed in thpegiments. It is crucial
to take the Soret effect in the basic equations into accaouotder to reproduce the
experimentally phenomena observed by local heating.

We have demonstrated that in the two-phase region the slidechixing pattern
can locally be manipulated on a mesoscopic length scaleday heating. We expect
the smallest achievable structures to be in the region odliffraction limit of the
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laser beam. These new effects are not limited to the cytiatigeometries discussed
here and may possibly open a new route towards the strugtafipolymer blends
and towards the creation of gradient materials and embegi@etient structures.

6 Spatially periodic forcing of phase separation

A number of interesting effects occur in spatially periadlig forced pattern form-
ing systems with an non-conserved order parameter, whizh be@en investigated
during the recent years [60, 61, 62, 63, 64, 65, 66, 67, 11,/6%870, 71, 72, 73].
Here we focus on nearly unexplored effects of spatiallyquici forcing in system
with a conserved order parameter, as they occur in phaseasiegesystems which
are forced by spatial temperature modulations and wherenthgiffusion plays a
crucial role.

Such forced phase separating systems can be realized,sfanae, in optical
grating experiments on polymer blends with a spatially guid light intensity
I(r,t) = lpcoqgx) [44, 87]. A spatially periodic light intensity leads with E&O0),
to the following equation

a, g

0°T = —8Toq? dTo= =
0d° coggx), OTo pcoDin @’

(51)

which determines the spatially periodic temperature fi€te contributionJ2T in

Eq. (49) can be replaced with this equation and one obtairedditive spatially
periodic forcing contribution in Eq. (49). On this route weroduce dimensionless
variables by choosing the temperatitein the two-phase region as our reference
temperatureTp < Tc) and we write

r=r'&, £=(K/|p)¥?; t=t't, T=E82/D; ¢ = Y(u/|p)) Y2, (52)

where all quantities are evaluatedTgt Then we obtain the rescaled equation for
the order parametep(x,t) of the following form (primes are omitted)

aY(r.t) =0 [—ey+ y°— 0P +acoygx)] (53)
where
T.-T _ Dr[u)\"?
giTC—To ) aD(|b|) @(1-@)dTo . (54)

Equation (53) describes the dynamics of phase separatite ipresence of a spa-
tially periodic forcing following a quench from the stableesphase regiore(< 0)
to a reference temperature in the two-phase region Q). In the following we will
consider only the case of a symmetric quench vfith y = 0 as initial condition at
t=0.
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In the absence of the forcing & 0) the homogeneous solutiaihh= 0 becomes
unstable for > 0 against linear perturbationsexp(ot + ik - r) with wave number
k € (0,1/€) and the growth rate = k?(¢ — k?). The most unstable (fastest growing)
mode is characterized by, = /£/2 with o, = £2/4. If a two-dimensional sys-
tem phase separating system the spatial extension in oeetidir is smaller than
the wavelength of the fastest growing mode, it can be consillas a quasi one-
dimensional systems.

6.1 Spatially periodic solutions and their stability

For positive values of the control parametestationary, spatially periodic solutions
Ws(X) = Ps(x+211/q) of Eq. (53) may be found with and without forcing. However,
in the case of a vanishing forcing amplitude=£ 0) in Eg. (53) this equation has a
+-symmetry and therefore one has a pitchfork bifurcatiomftbe trivial solution

= 0 to finite amplitude periodic solutions as indicated in Hig. However, in the
unforced case periodic solutions of Eq. (53) are for any wawaberq unstable
against infinitesimal perturbations that induce coarsgpiocesses [118, 113].

1
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0.2
- 570~ ]
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(d) 0 0.5 1
ax / (2m)

Fig. 19 Part (a) shows the bifurcation diagram for spatially periagitutions at a forcing wave
numberg = 0.5 and modulation amplitudes= 0 (dotted),a= 0.01 (dashed) and= 0.03 (solid).
Parts (b), (c) and (d) show the three solutigréx) over one period corresponding to the different
branches of the bifurcation diagram e 0.03 ande = 1. Fig. from Ref. [119].

For finite values of the modulation amplitudghe brokent-¢-symmetry is in-
dicated in Fig. 19 fom = 0.01 by the dashed line and far= 0.03 by the solid
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line. While we have in the unmodulated case a trivial solutjos- 0 and two fi-
nite solutions with identical amplitudes but of opposigrsione finds in the forced
case three periodic solution&;, A, and Ag, of different amplitude as shown for
one period in Fig. 19(b)-(d). These three different sohgibave been determined
by solving Eg. (56) by a Galerkin method, namely by expandigsolutionys(X)
with respect to periodic functions (Fourier series) anddlyiag the resulting non-
linear equations for the amplitudes of the periodic expganginctions by a Newton
method. TheAs- and Ay-solutions are in phase with the external modulation and
the preferred;-solution is shifted by half a period. One should also ndtet the
A1 solution exists already in the range< 0 and therefore in the one phase region
without forcing.

Besides the existence of the periodic solutigréx) of Eq. (53) one is also in-
terested in their stability. For this purpose we use as arsatiperposition of the
stationary periodic solutiogys(x) and a time-dependent perturbatigq(x,t)

Wxt) = Ps(x) + yn(xt), ga(xt)=e"o(x), (55)

whereys(x) satisfies the equation
—&Ws+ Y — Oocths +acoggx) =0 (56)

with periodic boundary conditiongs(0) = @s(211/q). Substituting (55) into Eq. (53)
and linearizing this equation with respect to the pertudoag; we arrive at a linear
eigenvalue problem

OQ=02Q, L =—€+3P2— 0y, (57)
where@(x) can be represented in Floquet form

P(x) = €% (x) - (58)

Heres s the Floquet exponent angk (x) is 2r/g-periodic. For a givers > 0 and
g we are interested in the largest real partogk a) and therefore in the growth
rate of the small perturbatiogy (x,t) with respect to each stationary periodic so-
lution A1, A or Az. The neutral stability conditiow(a, s,q) = 0, which separates
the parameter range where the periodic solutions are dtalnbethe unstable range,
is a condition to determine the critical forcing amplituals, §). For forcing ampli-
tudes larger than this the growth rate of the perturbatiamegative and therefore
the stationary periodic solutiong; are stable with respect small perturbatigns

In the limit with wave numbers of the forcing small comparedhe wave num-
ber of the fastest growing mode of the unforced systgfiy;, < 1, the stationary
solution s can be determined and the neutral stability conditiga, s,q) = 0 can
be solved analytically in a perturbative way (see [113] fetails). With the resulting
analytical solution foA; the following expression for the critical forcing ampliteid
is obtained:
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(“q/knﬁz]  (59)

a(5.) = [1+ cosms/q 9232tk q)e 1. L

Since the amplitudes takes its maximum in the limg — O, the periodic solution
A1 becomes at first unstable for long wavelength perturbations

Similar ass(x) also @=(x) is calculated by solving Eq. (57) by a Galerkin
method and in general the neutral stability condition haset@olved numerically.
We find in general, that the stationary solutiggsandAg are always unstable with
respect to small perturbations. In Fig. 20 the forcing atngkas(q), as given by
Eq. (59) fors= 0, is plotted (solid line) together with the correspondingnerical
results (solid circles) and the deviations between bothiaye

Fig. 20 The forcing am- 10*1 . . . . .
plitude as above which the

periodic solution4; is lin- >

early stable. The solid line is 10

the approximate analytical re- "
sult according to Eq. (59) and 10
the solid circles are obtained
numerically. The critical am- @ 10
plitude a; above which the
evolution of the initially ho-
mogeneous system after the
quench is locked to ther?/q- "
periodicity of the forcing. The 10
results are given fog = 1.

5

10

=7

10

The stability of two-dimensional stripe patterns that agdqalic along the same
direction (here the& direction) as the forcing has been investigated numeyidadir
this purpose we have chosen a similar ansatz as in one diomensi

Yr(x,y,t) = e”d S g (x) (60)

but which depends now on two Floquet exponesi(z:direction) andp (y-direction).
The linear stability analysis shows, that additional tremsal degrees of freedom
do not influence the stability boundaay, cf. Fig. 20, as obtained in the case of the
one-dimensional model.

As mentioned above, for finite forcing amplitudes one hasaaly periodicA;
solutions in the range < 0. But, when the system is quenched into the two-phase
region withe > 0, where one may choose for reasons of simplieity 1, the spin-
odal decomposition sets in and the late stage of the phaaeasiem process depends
on the forcing amplitude. It is an interesting question, for which parameter com-
binations and independent of the initial conditions befine quench, the systems
ends up in &\ solution, that is locked to the periodicity of the exterraicing?
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The question has been investigated by numerical simuktbicq. (53) in one
spatial dimension with a typical system size= 512. In order to test the results
depend on their independence of the system size, we also seéetded runs for
L = 1024 and 2048. As initial condition we took small fluctuaaround the ho-
mogeneous (single phase) stgie= 0 by assigning to each lattice site a random
number uniformly distributed in the interval0.01. In order to average over random
initial configurations 100 runs were performed for each peat@r combination. Our
simulations show that there is a well-defined critical atogléa. = ac(q), above
which the time evolution of the system always ends up in thgataryA; solution
that is locked to the wavelengthiizq of the external forcing, independent of the
initial conditions. In Fig. 20 the critical amplitud®(q) is shown (solid squares) as
obtained from the numerical simulatiors=£ 1).

Since linear stability of the periodic solution of type is a necessary condition
for it being an attractor one has(q) > as(q). Forg approaching the fastest growing
wave numbeky = \/€/2 one hasa.(q) ~ as(q) (see Fig. 20), which is actually
not surprising, and this value gives a reasonable estimagg fq) also for smaller
values ofg.

6.2 Traveling spatially periodic forcing

A spatiotemporal periodic forcing is a rather recent andrigdting development for
exploring various facets of pattern formation in systemthwionconserved order
parameters [69, 70, 71, 72, 73]. A forcing traveling with treocity v is also in
systems with a conserved order parameter a further integegbssibility to ex-
plore various properties of phase separation dynamicsatticplar, we consider
the effects of traveling spatially periodic forcing in thrarhework of our extended
Cahn-Hilliard model with thermodiffusion [see Eqgs. (490)]. Using dimension-
less variables, as introduced by (52), the modified CH equésigiven by

ay(r.t) =0?{—ep+¢* - PP +acodq(x—w)]} . (61)

The forcing termacodqg(x — vt)] is caused by an interplay between a traveling tem-
perature modulation and thermodiffusion (Soret effectictBa traveling spatially
periodic temperature modulation could be created for ircstan optical grating ex-
periments [44, 87] with a light intensity of the forifr,t) ~ cogq(x—wt)]. Another
possibility is to move a sample with a velocityacross a modulated temperature
field. The control parameterin Eq. (61) corresponds to a dimensionless distance
to the critical temperature of the binary mixture. Transfation of Eq. (61) in the
frame comoving with the traveling forcing— x— W gives

a(r,t) =02 [—ey+ Pe— D2w+acos(qx)] + Vo . (62)

As it was shown before, if phase separation is forced by &ostaty and spatially
periodic temperature modulation then the coarsening digsisinterrupted above
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some critical value of the forcing amplitu@eand it is locked to the periodicity of
the external forcing. However, if this forcing is “pulled¥yka velocityv # 0, the
traveling periodic solutions of Eq. (61) exist only in a @éntrange ofv depending
ona.

Thus we are interested in the conditions of the existencestatuility of the
spatially periodic solutiongis(X) = Ws(x+2711/q) of Eq. (62) in the comoving frame.
The nonlinear solutions and the bifurcation diagram asrgiveFig. 19 are only
slightly changed by a small traveling velocity. Howeverthwincreasing values of
v a phase shiff @ between the periodic forcing coggx) and the solutionys(x)
occurs. The maximum phase shift that can be achieved is abgyt= /2 at a
certain velocityve, above which the solution does not exist. Consigigiix) being a
271/ g-periodic solution of the following equation

Ok [—EWs + P2 — BxPs +acoggx)] + Voks = 0. (63)

Equation (63) can be integrated twice and using the peiitgdi€ (s an integration
of the resulting equation with respect to the intef@Pr/q) gives

2m/q 2m/q

aq 0/ sin(qx)ws(x)dx—vo/ P2(x)dx=0. (64)

Clearly the maximum velocitye, at which the periodic solutions still exists,
corresponds to the solution which is shiftedgy2 with respect to the forcing, i.e.,
for s ~ sin(gx).

The linear stability analysis of periodic solutiogig(x) of Eq. (63) with respect
to small perturbations have been performed numerically [$&9] for details). It
has been found that the solutioAs andAs are again always unstable, whereas the
A;-solution can be stable in a certain range of the paramdtergyiven values of
andq the modulation amplitude has to exceed a certain valagq) (see Fig. 20)
to stabilize theA;-solution. If the traveling velocity is smaller than a critical one
vc(€,a,q) the A; solution remains stable. The critical velocity(g,a,q) is given
by the solid line in Fig. 21 and for > v¢(&,a,q) the spatially periodic solution is
linearly unstable. The onset of instability occurs for dmalues of the Floquet ex-
ponents — O, i.e., it belongs to a long-wave perturbation as in the cdse= 0.

In Fig. 21 also the boundary of the existence range of perisaliutionsve(€,a,q)
is shown as obtained approximately from Eq. (64) (dashex) Eamd by a full nu-
merical simulation (dotted line). Since the stability bdary (solid line) always lies
belowve, the periodic solution always becomes unstable before tistegce range
is reached.

The temporal evolution ofy(x,t) in the laboratory frame, as described by
Eq. (61) in the 1D case, is shown in Fig. 22 for three regimdas®traveling forc-
ing starting with the initial conditiony = 0 and superimposed with small noise. In
Fig. 22(a) the velocity is sufficiently small and belongshe tange where the so-
lution is locked to the traveling forcing. In Fig. 22(b) thelocity is chosen in the
rangeve < V < Vg, Where the solution locked to the traveling forcing stilists,
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Fig. 21 Above the solid line
the spatially periodic solution

is unstable. The dashed line 0.05 -
marks the existence boundary e
above which the spatially 0.04 LS
periodic solution does not s
exist due to the criterion given 0.03 e
by Eq. (64). The dotted curve S 7
marks the existence boundary P
obtained numerically from 0.02 s
Eq. (63). The parameters are P
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but where it is linearly unstable. In this parameter rangestblution is locked dur-
ing the initial period of phase separation before coargetakes over. In Fig. 22(c)
the temporal evolution of phase separation is shownvfsrve where the locked
solution does not exist anymore. At this velocity an inténgspinning-depinning
behavior can be observed during the initial stage of phasaraton. One still has
a traveling periodic solution with the same wave number asdicing but with a
velocity smaller than the velocity of the forcing. Due to tredocity mismatch the
phase shift between the solution and the forcing is slowdydased before it reaches
about half of the forcing period. ¢ From that moment the pkeisolution practically
stops moving (pinning) until the forcing shifts over the nlealf of the period. After
that the solution starts moving again (depinning) and tloegss repeats itself a few
times. Later on the wavelengths of the solution and theigrbecome different and
the coarsening takes place.

\

° 0 50 . 100 150 (a) 150 (C)

Fig. 22 Temporal evolution of phase separationver 0.015< v; (&), Ve < V= 0.0185< Vg (b)
andv = 0.02 > v (c). The other parameters age- 1,q = 0.5, anda = 0.04. Fig. from Ref. [119].
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6.3 Periodic patterns in 2D

In two spatial dimensions phase separation can become roarplex due to ad-
ditional degrees of freedom and their consequences arstigated by extended
simulations of Eq.(53) in two spatial dimensions and we helvaracterized the
simulated patterns by the structure factor

Stk = B0, Plk,t) = [dre " pir.p). (65)

which can be also measured experimentally and allows di@uoparison between
experimental and theoretical results. For the unforced ¢standard Cahn-Hilliard
equation) the structure factor is isotrof8e= S(|k|,t) and possesses at long times
the universal scaling behavistk,t) ~ I (t)9G[kI (t)], where the characteristic length
of the domains evolves in time &&) ~ t%/3 (for d > 2) [120]. By the spatially
periodic forcing the rotational symmetry is broken in than@ and one may expect
an anisotropy of the structure factor. The average domaigtiein thex andy
directions can be related to the characteristic lengttescal

L(t) = [k ()], Iy(t) = [(k) (D), (66)
where

[ dkeS(k, 0,t)ky [ dkS(0,ky, Dky
T dkeS(ky, 0,1) = JdkS0kyt)

Numerical simulations of Eq. (53) were performed using i@@finite difference
approximation of the spatial derivatives with 4-th ordemBe-Kutta integration of
the resulting ordinary differential equations in time. Tigpical system size was
Lx = Ly = 256. Some test runs were made with= Ly = 512 and 1024. We used a
uniform mesh sizéx = dy = 1 and time ste@t = 2 x 102. The accuracy of calcu-
lations was checked by choosidg = oy = 0.5 anddt = 2 x 103, The dynamics
of spinodal decomposition was computed over Bdecades in time, which allows
monitoring the late stages of the phase separation prdsessing with random ini-
tial conditions with|y| < 0.01, the characteristic length dynamics was calculated
by averaging over 100 runs.

Without driving @ = 0) one has the typical scenario of spinodal decomposition
and there is no anisotropy in the behaviot,oandly (Fig. 23). Thus, small pertur-
bations grow exponentially and at about 15 (not shown) a nonlinear saturation of
the fastest growing mode becomes important and sharp ddroaitdaries form. At
aboutt ~ 30 the late stage coarsening starts and we observe the mmllrkscaling
Iy ~ ly ~t%3. In Fig. 24 snapshots of the phase separation process aengee for
a particular run.

We have found that in the 2D case, similar to 1D, there existstigal driving
amplitudea; above which the spinodal decomposition ends up in the statyo
periodic solution with the period of the forcing, i.e., p&d structure. The critical

(ke (1) > (k) (1) (67)



40 W. Kbhler, A. Krekhov, and W. Zimmermann

Fig. 23 Dynamics of the 100
characteristic length scales
Ix(t) andly(t) without forcing
(a=0). System sizéy =

Ly = 256,¢ = 1.

Fig. 24 Snapshots of the phase separation process. The same parametelig.a®3n F

amplitude turned out to be about-3 times larger than in the one-dimensional case.
In particular, forq = 671/Lx with Ly = 256 one has in 2@ = 0.014 whereas for
1D a; = 0.0045. Thus, for 2D the upper curve in Fig. 20 moves slightiyaim (the
linear stability curveas remains unchanged).

In Fig. 25 the dynamics of the characteristic length schlesdly is presented
for the casea = 0.05 > a; and in Fig. 26 typical snapshots are shown. The pecu-
liar non-monotonic behavior df; at early times can be understood as follow: in
the linear range the noise-initiated fastest mode growsremtially asypexp(t/4)
and the forced modulation with wave numlzegrows linearly ast (its exponen-
tial growth is small), see Eq. (53). Thus, shortly after tivernch the fastest mode
determines the average domain size. At a tilne (Yp/a) exp(t1/4) ~ Yp/a=0.2
there is a crossover, beyond which the anisotropy becomasgsandly reaches a
plateau that is controlled by the wave number of the forckentually, beyond
to = (Yo/a) exp(tz/4) ~ 18, the exponential growth of the fastest mode wins, which
leads to a drop df;. Although at this time nonlinearities are already notideathe
suppression of the effect of the forcing remains. Subseatjuene has essentially
isotropic coarsening unti} saturates at/. After this ¢ > 500) the ordering in the
y direction becomes exponentially fast. Actually the lasgstremains essentially
unchanged if the forcing is turned on as laté as80 where the average domain size
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Fig. 25 Dynamics of the 100 ' . . . —
characteristic length scales — '4
Ix(t) andly(t) for the driving
amplitudea = 0.05 well y |
above the critical. System L]
sizely =Ly =256, =1, .
q=67/Ly.

has reached half the driving period. At a later time a for@ngplitudea = O(1) is
needed to generate the periodic state.

=30 =500 =10 t=10"

- ' - ‘II‘
e Avahllll

Fig. 26 Snapshots of the phase separation process. The same parametelig.a25n F

In Figs. 27, 28 we also show the dynamics of the charactetestigth scales and
snapshots for a driving amplitude slightly below the cati®©One can see that bt
10° there is a competition between the influence of the forcirdjthe coarsening
process, which finally wins.

The situation considered should be applicable to expetisnen spinodal de-
composition in sufficiently thin polymer films with small pedic temperature
modulations created by means of optical grating techniquoaal laser heat-
ing. Then, for polymer blend layers of thickness less thaavahicrometers the
temperature variation across the film can be neglected fificismtly small un-
der cooling. Fig. 29(l) shows the time evolution of one singhe written into
a PDMS(16.4 kg/mol)/PEMS (22.0 kg/mol) blend € 0.512¢/g, Tc = 3147K,
a ~ 500m 1) at a temperature 1.3K beloW: and a laser power of 1 mW. The
width of the laser focus is about@lum, the length of the line is almost 14@n.
Obviously, it is not possible to write a stable line into tleerple. After approxi-
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Fig. 27 Dynamics of the 100 .
characteristic length scales ]
Ix(t) andly(t) for the driving
amplitudea = 0.01 slightly
below the critical. System
sizely = Ly = 256, = 1,
q=67/Ly.

Fig. 28 Snapshots of the phase separation process. The same parametelig.a&7in F

mately 1000 s surface tension effects lead to a pearlinghilgy that eventually
dominates the structure formation.

Fig. 29(I) shows the result if multiple parallel lines areitten instead of a sin-
gle one. A grid pattern evolves with a period comparable ¢éoléimgth scale of the
already coarsened spinodal pattern. This grid pattermidestis long as the writing
process continues (A). Turning the laser off for 360 s leada beginning degra-
dation (B), but continued writing again stabilizes the irs@d structure (C). After
turning the laser off again, some deformations due to bglgirthe left- and right-
most grid lines is observable (D). Continued writing of otilg outermost (longer)
lines allows for a continued stabilization of the centradigrattern (E). After switch-
ing the laser off, surface tension takes over and all parailes eventually decay
into spherical structures.

7 Directional quenching

With directional quenching we present an effective medartio induce periodic
stripe patterns in phase separating systems, where thdengtie of the patterns
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Il

P

Fig. 29 Temporal evolution of one single line (I) (written from= 0s untilt = 2074s at 1.3K
belowTe, laser-power 1mW). 21 parallel lines (I1) (written fram= 0s with 8 mW at 1.5 K below
Te; “on” and “off” refer to switching of the laser; “boundary” mesithat only the outermost lines
are written in order to stabilize the central part of the patteee text for details).

is uniquely selected by the velocity of a quench interfata &ddition a spatially
periodic modulation of the quench interface is introducksd aellular patterns can
be generated.

We choose again the generic Cahn-Hilliard model in one alpditmension for
describing phase separation [121, 122]

A Y = d(—EP+ Y3 — ), (68)

where the real order parametg(x;t) is a measure for the difference of the con-
centration of one component from its value at the criticahpande is the control
parameter. Here, in our first approach as in R&f.thermodiffusion effects are ne-
glected.

Directional quenching is achieved by changinfjom a negative value at< xq
to a positive one fox > xq, where the poinky(t) moves in the laboratory frame
with the velocityv.

—€,X< M,
£(xt) = {H VY (69)
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By this moving jump of the control parameter the system isddigt into a sta-
ble and unstable region. Numerical simulations of the angedsional model in
Eqg. (68) and with the directional quenching (69) show thaéaaulic solution de-
velops behind the quench interface in the unstable regigpic@l examples for
large and small values of the velocityf the quench interface are shown in Fig. 30.
Forv above some critical valug’, the periodic solution detaches from the moving
quench interface and the wavelength of the solution becandependent of, cf.
Fig. 30(a). In contrast, fov < v* the solution remains attached to the quench in-
terface and the wavelength is uniquely determined.lyecreasing the solution
develops into a periodic kink lattice (sharp changes batwee- ++/¢) where new
kinks are continuously generatedxat xq(t) = —vt [Fig. 30(b)]. The period of the

1 1
= =
-1 -1
0 50 100 150 0 100 200 300

X

() (b)

Fig. 30 Solutions of Eq. (68) foe = 1 with the quench interface (69) in the comoving frame at
x=0forv=2>v*in part (a) and fov = 0.02 < v* in part (b). Only a part of the system of the
total lengthly = 4096 is shown. Figs. according to Ref. [123].

solution, A, turns out to be uniquely defined by the velocity of the quentdrface,
which is shown in Fig. 31. For — 0 one ha\ ~ 1/v whereas forv > v* one finds
A =2m/g*. Although the periodic solutions far away from the movingnch inter-

Fig. 31 Kink separation 100 ‘ ‘ ‘
length A = 211/ multi- b
plied by the velocity of the
guench interface as a function
of v (solid circles with a solid
line as a guide to the eye);
v = 1.622 from Eq. (71).
The dashed line corresponds > 10
to Eqg. (72).e =1 and Fig.
according to Ref. [123].

/ /
—_————— ——— v e

1 —
0.001 0.01 0.1 1 10
\

face are in principle unstable against period doubling cthersening is extremely
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slow for patterns generated with< km [see Eq. (70)]. Thus the extensiay of

the (quasi-ideal) periodic solution behind the quenchriate can be estimated as
Lp = VAtp = v/op whereap, is the growth rate of the unstable period doubling mode
given as [113, 118]:

Op = €216 eX{—27Tkn/q)) / (Ttkin/0) - (70)

The two limiting cases of large and small values of the vé&jociof the quench
interface can be determined analytically. For lawg@e consider for instance the
initial condition = 0 everywhere except a hungp> 0 localized neax = 0. Then
the time evolution of this initial perturbation is governbg the motion of wave
fronts to the left and to the right with a well-defined velgoit and wave number
g~. These quantities can be calculated by a linear stabiliglyais of the leading
edge of the front in the comoving frame [123]

1/2 3/2
V= ﬁ+2<2(ﬁ—1)) g2 q = ST e gy
3 \3 8vV2(V7+2)
The phase velocity and the wave number of the propagatirigdiersolutions, as
obtained from the numerical simulations of Eq. (68), aréhim tangev > v* inde-
pendent orv and agree perfectly with* andg* as given by Eq. (71). In the opposite
limit v — O our starting point is a stationary solution of Eq. (68) ¥et O interpo-
lating betweeny = 0 atx < 0 andy = /€ atx > 0 and which is characterized by
a sharp front ak = 0. If the quench interface according to Eq. (69) starts toenov
the sharp front will follow at first. But since the spatial eage () is conserved,
regions withyy < 0 have to be generated in the region xq, which leads to the for-
mation of a kink lattice [Fig. 30(b)]. The kink-lattice foation can be understood in
terms of a fast switching stage and slow pulling stage: firsta kink is generated
in a short time ak ~ xq. During the slow stage this kink is pulled by the quench
interface whereby its amplitude and the distance to the kiekt behind increase
until it exceeds some limiting value and then a new kink isegated. Repeating
this process a regular kink lattice develops in the wake @fjtiench interface with
the periodA, which is uniquely determined by the velocityf the moving quench
interface (Fig. 31). The equilibrium periatl can be calculated in the framework of
boundary layer problem that gives [123]

A= VBE ) oget (72)
9 v \

in perfect agreement with the results of numerical simofetiin the limitv — 0
(Fig. 31).

The generalization of the analysis to the off-critical qeieqy) # 0, is straight-
forward and the expressions (71) fet and g* hold with the replacemert —
£ — 3(@)2. In the limit v — 0 the distance\ , between two kinks in the range
Y > 0 becomes different compared to the kink-distancefor ¢y < 0. We find
Ay —A_ = (Y)A//€ and for the resulting period of the kink lattice,
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A=A +A = % 2?%(8—25@)@2 . (73)

Similar as in caséy) # 0, we have confirmed by numerical simulations of Eq. (68)
the results in Eq. (73) fofy) # 0 in limit v — 0.

Let us consider the 2D cagéx,y,t) where we study numerically the 2D version
of the CH equation (68):

Ay =DP(—ep+y*—?y) (74)

with the moving quench interface (69). Zero flux boundaryditons have been
used atx = 0,lx and periodic boundary conditions yat= 0, ly. Initially the quench
interface is located a; = |y moving from right to left. The system size was=512,

ly = 256 and we start with the homogeneous solutjos: () with small superim-
posed noise of the strengthy wheredy < /€ anddy < (). Thus the well-
known Ginzburg criterion, necessary for the validity of aamdield description of
a phase separation process [5], is satisfied: in fact, thardias does not depend on
the particular choice od .

In the case of the critical quengly) = O, the orientation of the domains depends
on the velocity of the quench interface [Fig. 32(a)-(c)].satallv periodic patterns
with domains perpendicular to the quench interface are édrffrig. 32(a)]. Then
for v abovev, =~ 0.45 the 1D stripe patterns parallel to the quench interfapeap
[Fig. 32(b)-(c)]. Finallyv > v* leads eventually to irregular patterns similar to the
case of a spatially homogeneous quench.

. i
I,

Fig. 32 Snapshots of the phase separation in 2D at the time when the quégrtace (69) £ = 1)
almost reaches the left boundafys) = 0: v= 0.01 (a),v = 0.47 (b), andv=1 (c). (¢) = 0.1:
v=0.02 (d),v=0.1 (e), andv =1 (f).

I?@

l } I:(c)
®

In contrast, for the off-critical quencfy) # 0 whenv < v* always regular stripe
patterns with domains parallel to the quench interface vimwad [Fig. 32(d)-(f)].
This situation is covered by an 1D analysis presented beftwere the period of
the structure is uniquely determined by the velocity of therch interface. In the
limit v — O the period of the patterns found in our numerical simuretiagree
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with (73). Forv > v* irregular coarsening patterns similar to the case of aalpati
homogeneous quench have been observed.

Finally we have studied the influence of a periodic modutatié the quench
interface which reads as follows:

—€&,X<Ix+acogpy)—vt,

+€&, x> Ix+acog py) —vt. (75)

E(X’ y7t) = {
In the case of a critical quench we found that the velogitgt which the transition
from perpendicular stripe patterns [Fig. 33(a)] to patallees [Fig. 33(c)] occurs,
depends on the modulation amplitualeThis dependence is very strong for values
a of the order of the typical domain size at the initial stageludise separatioa ¢
Am = 11/km). Furthermorey, decreases with decreasing modulation wavenumber
For p smaller than the wavenumbky, of the fastest growing mode patterns with a
cellular morphology forming behind the moving quench ifgee have been found
[Fig. 33(b)].

- (|
S — (a) d\
- {e0eoecccee %
= {egoooocoee |
= g i
- {e | (I
- ts i
=1 {e l
“» {e L[]
- (d) :qoooooo.oooooooooo(e)g 0]

Fig. 33 Snapshots of the phase separation in 2D at the time when the mextiglanch interface
(75) € =1, a= 4, p= 11/16) almost reaches the left boundafy) = 0: v= 0.01 (a),v = 0.05
(b), andv=1 (c). () =0.2:v=10.05 (d),v=0.2 (e), andv = 1 (f).

In the case of an off-critical quench we found tfjg) # O favors the formation
of regular cellular planforms [Fig. 33(e)] at intermediatdocities of the quench
interface, in analogy to the transition from perpendictdgrarallel stripes foty) =
0.

Thus we have demonstrated that directional quenching in @detleads to
the formation of periodic solutions with the wavelengthquely selected by the
velocity of quench interface. Controlling phase separslip directional quenching
turns out to be a promising tool to create regular structimesaterial science.
Although slow coarsening cannot be avoided by directionahghing in principle,
long lived periodic patterns can be “frozen in”, e.g., by @ple€uench, induced
polymerization, chemical treatment etc.
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8 Summary and Conclusions

For critical and off-critical PDMS/PEMS polymer blends kvian upper critical
solution temperaturd@; we investigated the coupling between an inhomogeneous
temperature field and the order parameter, describing tte¢ dtmmposition. In the
asymptotic critical regime close f&, for € = (T —T¢)/Tc < 0.02, the system be-
longs to the three-dimensional Ising universality classtier away from the critical
point, for e > 0.02, there is a crossover to the classical mean field beh&ioce
the employed transient holographic grating technique watlsignificantly smaller
g-values than typically encountered in photon correlatipecsroscopy, the asymp-
totic critical scaling law of the diffusion coefficieBt could be observed much closer
to T, without a conflict between the increasing correlation langiand the length
scale defined by L. A consistent description dd over a broad temperature range
is based on a crossover model developed by Jacob and Kodtk@miactivation
energy of the viscosity determined from the temperaturedeéence of the thermal
diffusion coefficienD+ (Fig. 3). As predicted by Folk and Moser [124], the thermal
diffusion coefficientDr shows no critical slowing down and its temperature depen-
dence can be described by a simple Arrhenius law with idehdictivation energies
both for critical and off-critical mixtures. As a consequerof the insensitivity of
Dt to the critical point and the critical slowing down ©%, the Soret coefficient
Sr = Dt/D of a critical blend diverges on approach &f with an exponent of
—0.67 in the asymptotic critical regime and with and exponent bf characteristic
for the structure factor, in the mean field regime (Fig. 5).

Close to the critical point, the mixture becomes very suslokpto external per-
turbations, and only moderate temperature gradients #ieient to induce signifi-
cant concentration changes. The highest Soret coeffigiesdsured exceed the val-
ues typically found for mixtures of organic solvents, catisig of small molecules,
by four to five orders of magnitude. This high susceptibibifythe order param-
eter opens the possibility for writing almost arbitrary qmusition patterns into a
polymer blend by heating with a focused laser beam that catdiened across the
sample. These patterns can then be visualized by phasasomtdifferential inter-
ference contrast microscopy. Because of the excursiong &oth the temperature
and the concentration axes, a full numerical model reqaisasput the knowledge
of both diffusion coefficient® andDt over the entire concentration and temper-
ature range of the homogeneous phase. The measured datageavaterpolated
within the framework of the pseudo-spinodal concept. Tlizdga are shown in Fig.
8, and PDMS/PEMS is up to now the only polymer blend whereglegfficients
are available not only for a critical composition but also flee entire one-phase
regime.

Numerical modeling shows that very sharp and localizedctiras are formed
during the initial linear growth regime, although the dnigitemperature profile has
already reached its broadened stationary shape. This att &ifiht surprising ef-
fect can be rationalized by recalling that the evolutiorhaf toncentration profile is
driven by the Laplacian of (r,t) rather than the temperature itself. At later times,
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solutal convection largely exceeds thermal convectionleads to asymmetric ver-
tical cross sections of the patterns even for only @60thick samples (Fig. 12).

The coupling of the order parameter to the temperature gmédilso leads to
unexpected excursions along the concentration axis indke of off-critical mix-
tures. As a consequence, equilibrium phase diagrams lbegeusual meaning in
thermal nonequilibrium situations, and even an off-caitislend with a temperature
above the binodal can be quenched into phase separatiorcélyneating with a
laser beam.

After crossing the spinodal from the homogeneous into thepihase regime,
spinodal decomposition sets in and leads to characteb&t@ntinuous spinodal
patterns with a characteristic length scale that growthisiguhe coarsening stage.
The strong Soret effect can not only be utilized to write cosifion patterns within
the homogeneous phase but also opens a route for a contabdenanipulation of
the spinodal decomposition patterns bel@wFig. 18). After switching the writing
laser off, such an enforced perturbation freely evolvesniretin competition with
the coarsening dynamics of the unperturbed spinodal patter

Theoretically we have described in the frame work of a gdizexh Cahn-
Hilliard model effects of stationary and traveling spdyigberiodic temperature-
modulations as well as the effects of moving quench inteam spinodal decom-
position in binary fluid mixtures and polymer blends. In gevg@hase separating
systems, such as in polymer blends as investigated in this also experimentally,
thermodiffusion plays an important role in the presenceabbmogeneous temper-
ature distributions. Since the model takes thermal diffusnto account we were
able to reproduce the essential features of spatio-terhggramics observed in
experiments on thermal patterning of polymer blends inweephase regime.

In such systems spatial temperature modulations may caagége thermodiffu-
sion effect, concentration modulations in the compositibpolymer blend already
above the critical temperature, below which phase separatts in. If the mean
temperature crosses the critical temperature from abdesepseparation sets in.
However, a spatially periodic temperature modulation glearthe phase separation
process in polymer blends considerably.

If the modulation amplitude of the temperature exceedsteativalue, the spa-
tially periodic forcing interrupts phase separation araphbriodicity of the concen-
tration modulation is locked to the wavelength of the terapge modulation. In
the case of a traveling temperature-modulation the cliticadulation amplitude re-
quired for locking the concentration modulation with restge external forcing de-
pends on the traveling velocity. One observes in a certaianpater range transient
locking phenomena of the concentration modulations witipeet to the external
forcing. If the modulation amplitude is smaller than theical one, the coarsening
processes may be accelerated considerably by travelingetature modulations in
the two-phase regime.

For systems where thermodiffusive effects can be negleatedhave presented
results on the effects of directional quenching where therobparameter jumps
from above the critical temperature to below and where thatlon of the jump is
moved by a finite velocity. We have shown how by this method regular structures
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are created in the process of phase separation behind thagropiench interface.

Moreover, it was shown that the wavelength of periodic stpatterns is uniquely
selected by the velocity of the quench interface. If in @ddit spatially periodic

modulation of the quench interface is introduced also tallpatterns can be gen-
erated.
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