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Convection in nanofluids with a particle-concentration-dependent thermal conductivity
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Thermal convection in nanofluids is investigated by means of a continuum model for binary-fluid mixtures,
with a thermal conductivity depending on the local concentration of colloidal particles. The applied temperature
difference between the upper and the lower boundary leads via the Soret effect to a variation of the colloid
concentration and, therefore, to a spatially varying heat conductivity. An increasing difference between the heat
conductivity of the mixture near the colder and the warmer boundary results in a shift of the onset of convection
to higher values of the Rayleigh number for positive values of the separation ratio ψ > 0 and to smaller values
in the range ψ < 0. Beyond some critical difference of the thermal conductivity between the two boundaries, we
find an oscillatory onset of convection not only for ψ < 0, but also within a finite range of ψ > 0. This range can
be extended by increasing the difference in the thermal conductivity, and it is bounded by two codimension-2
bifurcations.
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I. INTRODUCTION

Thermal convection plays a central role in geophysics [1,2],
atmospheric dynamics [3], and various technical applications,
whereof nanofluids were recently identified as efficient heat-
transfer substances [4–7]. Rayleigh-Bénard convection with
its numerous variants is also a classical laboratory experiment
for studying generic phenomena of nonlinear dynamics and
pattern formation, which occur in this system as in several
other fields of natural science [2,8–10]. In most of the related
theoretical studies, the Oberbeck-Boussinesq (OB) approxi-
mation for thermal convection is used, where constant material
parameters independent of the thermodynamic variables are
assumed, except the temperature-dependent density within
the buoyancy term, which is the essential driving force of
convection.

Non-Boussinesq contributions to the governing equations
for convective systems are often required to model various
phenomena in an appropriate way. Around 4 ◦C, for instance,
the linear term in the thermal expansion of water vanishes
and the quadratic contribution has to be taken into account.
It is well known that this modification changes the symmetry
condition in a thin fluid layer heated from below, leading to
hexagonal convection patterns instead of stripe patterns close
to the onset of convection [8,11]. Strongly varying material
properties in the Earth’s mantle are a major motivation for
using a temperature-dependent viscosity in models of thermal
convection in single component fluids, which is another
non-Boussinesq contribution [12–17]. A further example is a
temperature-dependent thermal conductivity, being considered
to be important, for instance, for explaining a delayed
cooling of the Earth’s mantle [18]. There are also recent
studies about non-Boussinesq contributions to convection in
binary-fluid mixtures where either a temperature-dependent
thermodiffusion coefficient or a dependence of the viscosity
on the local composition was taken into account [19–21].

Convection in binary-fluid mixtures is another classical,
driven pattern-forming system [22,23], which has attracted
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wide attention during the last decades [22–30]. In binary-fluid
mixtures, the concentration field of one of the two constituents
enters the basic equations as an additional dynamic quantity
[22–24]. Via the Soret effect (thermophoresis), a temperature
gradient, which is applied vertically across a convection cell,
may cause variations of the concentration field that couples
into the Navier-Stokes equations for the velocity field via the
buoyancy term. Depending on the sign of the Soret effect,
the heavier constituent is either driven to the colder upper
boundary or to the warmer lower boundary. In the former
case, one obtains stationary convection patterns near the onset
of convection, and in the latter case oscillatory patterns.
Experimentally, the onset of convection is well investigated
in mixtures of alcohol and water as well as for 3He/4He
mixtures [8]. The possibility of having both a stationary
as well as an oscillatory onset of convection, including a
so-called codimension-2 bifurcation at the transition point,
made it a very attractive model system for generic bifurcation
phenomena [8,31].

Colloidal suspensions, also known as nanofluids, may
be considered as a further example of a binary mixture,
with the suspended particles being the second constituent.
Recently, convection in colloidal suspensions [32–36] has
been investigated experimentally with a special focus on Soret
driven convection [32–34], on bistable heat transfer that is
caused by sedimentation effects [35], or on the effects of
thermosensitive particles [36].

Additionally, in several nanofluids with particle sizes in the
range of 1–100 nm, a strong dependence of the thermal conduc-
tivity on the concentration of nanoparticles was reported (see,
e.g., Refs. [4,6,7,37–39]). This dependence presents another
non-Boussinesq effect. In this paper, we investigate its impact
on the onset of convection. Taking the particle-concentration-
dependent thermal conductivity into account, we go beyond
other recent studies with the focus on convection in colloidal
suspensions [40,41], where the Boussinesq approximation has
been used.

The enhancement of the thermal conductivity in fluids by
increasing the concentration of suspended nanoparticles was
confirmed by a recent benchmark study with contributions
of more than 30 researchers [6]. Despite the promising
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applications of nanofluids for improving heat transfer in
cooling systems, a considerable number of open questions are
left. Among several possible transport phenomena, discussed
to explain the heat-transfer enhancement in nanofluids, Brow-
nian diffusion and thermophoresis were identified as the two
most important ones [5]. Both mechanisms build the crucial
extensions from models for a single component Newtonian
fluid to models for convection in binary-fluid mixtures [22,24].

This paper is organized as follows: In Sec. II, we briefly
present the underlying equations of motion and introduce a
linear relation between the heat conductivity and the particle
concentration, which leads to a nonlinear spatial dependence
of the heat conductive state. The essential methods of the
linear stability analysis for the determination of the onset of
convection are presented in Sec. III. Our numerical results for
the onset of convection include a prediction of an oscillatory
onset even in the range of positive values of the separation
ratio for both cases, no-slip boundary conditions in Sec. III A,
and free-slip boundary conditions in Sec. III B. In Sec. IV, we
summarize and discuss our results.

II. BASIC EQUATIONS AND HEAT CONDUCTIVE STATE

To describe convection in a horizontal layer of a colloidal
suspension, the common mean field approach for binary-fluid
mixtures is used [22,25,26,29,30,42]. In addition, we take into
account a linear dependence of the thermal conductivity κ

on the mass fraction of the colloidal particles N (r,t). The
mass density of the colloidal particles ρc is assumed to
be similar to the mass density of the solvent ρs , i.e., ε =
ρc/ρs � 1 . Furthermore, we assume small colloidal particles
undergoing strong Brownian motion, so that sedimentation
effects become negligible. Deviations of N (r,t) from the mean
mass fraction N0 may lead to a spatial dependence of the
thermal conductivity via the linear relation

κ = κ0 [1 + γ (N − N0)] , (1)

where κ0 describes the mean thermal conductivity of the
suspension and γ = (1/κ0) ∂κ/∂N is a measure for the
dependence of the thermal conductivity on the concentration
of the nanoparticles. Heat conduction experiments with small
volume fractions of nanoparticles match with the assumption
γ ∼ 2.5 [6,37,38].

The common set of basic transport equations for incom-
pressible binary-fluid mixtures (cf. Refs. [22,25,26,29,30])
involves the temperature field T (r,t), the mass fraction of
the particles N (r,t), the fluid velocity v(r,t), the density of the
mixture ρ(r,t), and the pressure field p(r,t):

∇ · v = 0 , (2a)

(∂t + v · ∇) T = ∇ · (χ∇T ) , (2b)

(∂t + v · ∇) N = D ∇ ·
(

∇N + kT

T
∇T

)
, (2c)

(∂t + v · ∇) v = − 1

ρ0
∇p + ν 
v + ρ

ρ0
g (2d)

Equation (2a) describes the incompressibility of the fluid.
χ = κ/ρ0 in the heat equation (2b) denotes the thermal
diffusivity of the mixture, which is in our model a function of
the concentration of the suspended colloids. D in Eq. (2c) is the

diffusion constant, which takes (due to the size of the colloidal
particles) much smaller values than in molecular binary-
fluid mixtures. The dimensionless thermal-diffusion ratio
kT representing the cross coupling between the temperature
gradient and the particle flux is related to the Soret coefficient
ST via kT /T = N (1 − N )ST , which can be either positive
or negative. Throughout this paper, kT /T � N0(1 − N0)ST is
regarded as constant. ν in the Navier-Stokes equations (2d) is
the kinematic viscosity. The gravity field g = −gez is chosen
parallel to the z direction.

For the local density ρ of the suspension, we use a linearized
equation of state [22,43]

ρ = ρ0[1 − α(T − T0) + β(N − N0)] , (3)

with the thermal expansion coefficient α = −(1/ρ0)∂ρ/∂T

and β = (1/ρ0)∂ρ/∂N reflecting the density contrast between
the solvent and the suspended particles. According to the
Boussinesq approximation, this dependence of the density is
taken into account only within the buoyancy term. The sign of
β indicates whether the colloidal particles have a higher or a
lower mass density compared to the solvent. Here, we assume
β > 0 corresponding to ε � 1.

Boundary conditions. The fluid layer is confined between
two impermeable, parallel plates at a distance d, and extends
infinitely in the x-y plane. The lower plate at z = −d/2 is
kept at a higher temperature T0 + δT /2 than the upper plate
at z = +d/2, with the lower temperature T0 − δT /2. Together
with a vanishing mass current at the boundaries and realistic
no-slip conditions for the flow field, we have the following set
of boundary conditions at z = ±d/2:

T = T0 ∓ δT

2
, (4a)

0 = ∂zN + kT

T0
∂zT , (4b)

0 = vx = vy = vz = ∂zvz . (4c)

For geophysical applications, free-slip boundary condi-
tions

0 = ∂zvx = ∂zvy = vz = ∂2
z vz (5)

for the flow field are often considered to be more realistic [44].
In the case of a constant thermal conductivity and free-slip,
permeable boundary conditions, an analytical determination
of the onset of convection is possible [25]. By introducing a
concentration-dependent thermal conductivity, this advantage
is lost and one has to rely on numerical methods.

A. Heat conductive state

Together with the concentration-dependent heat conduc-
tivity given by Eq. (1), the constant vertical heat current
jz = −χ∂zT cond leads to a nonlinear z dependence of the
time-independent temperature distribution T cond(z) and the
corresponding concentration distribution N cond(z) of the heat
conductive state. Both are derived in the Appendix and are of
the form

T cond = T0 + δT

ξ

(
1

2
[1 + Y (ξ )] − W (z,ξ )

)
(6a)
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= T0 − δT
z

d
− ξ

δT

2

(
1

4
− z2

d2

)
+ O(ξ 2) (6b)

N cond = N0 + δN

ξ
[1 − W (z,ξ )] (6c)

= N0 − δN
z

d
− ξ

δN

2

(
1

12
− z2

d2

)
+ O(ξ 2) , (6d)

with the abbreviations

W (z,ξ ) =
√

ξ [1 + Y (ξ )]
z

d
+ 1

2

(
1 + Y (ξ ) + 1

3
ξ 2

)
, (7a)

Y (ξ ) =
√

1 − 1

3
ξ 2 , ξ = γ kT

δT

T0
(7b)

and

δN = −kT

T0
δT . (7c)

For finite values of γ , the vertical heat current

jz = χ0δT

2d

(
1 +

√
1 − 1

3
ξ 2

)
(8)

is reduced compared to the situation of a constant heat
conductivity being independent of the particle concentration.

We would like to stress that Eqs. (6) are derived under
the assumption of small values of δN , but these formulas are
still reasonable for values up to δN < N0/3. The restriction
|ξ | <

√
3 according to Eq. (7b) has the same origin and is

fulfilled by all parameters chosen in this work. For stronger
variations of δN , the assumption of a constant thermodiffusion
coefficient kT /T � N0(1 − N0)ST is not justified anymore
and a generalized approach has to be chosen.

B. Dimensionless equations of convective fluid motion

For the further analysis, it is convenient to separate the
basic heat conductive state in Eq. (6) from convective contri-
butions as follows: T (r,t) = T cond(z) + T1(r,t) and N (r,t) =
N cond(z) + N1(r,t). By using the rotational symmetry in
the fluid layer, we can restrict our analysis to two spatial
dimensions, namely, to the x-z plane. With this simplification,
the fluid velocity v = (vx,0,vz) can be expressed by a stream
function φ(x,z,t):

vz = ∂xφ, vx = −∂zφ . (9)

Subsequently, all lengths are scaled by the vertical distance
d and times by the vertical thermal-diffusion time d2/χ0.
By scaling the temperature field T by (χ0ν0)/(αgd3), the
concentration field N by −(kT χ0ν0)/(T0αgd3), and the stream
function φ by χ0d, we are left with five dimensionless
parameters: The Rayleigh number R, the Prandtl number P ,
the Lewis number L, and the separation ratio ψ ,

P = ν0

χ0
, L = D

χ0
, R = αgd3

χ0ν0
δT , ψ = βkT

αT0
, (10)

are well known from molecular binary-fluid mixtures [26,29].
The fifth dimensionless quantity

ζ = γ
ν0χ0

gβd3
(11)

is introduced to characterize the spatially varying contribu-
tion to the thermal diffusivity caused by the concentration
dependence of the thermal conductivity of the suspension. An
illustration of its physical meaning is obtained by considering
the thermal conductivity contrast between the upper and the
lower boundary

κ̃ = 1 + 1
2 γ kT δT /T0

1 − 1
2 γ kT δT /T0

= 1 + 1
2 R ψ ζ

1 − 1
2 R ψ ζ

, (12)

which is essentially a function of the product of the three
dimensionless control parameters R ψ ζ = ξ .

In the following, we will discuss our results essentially in
dependence on ψ and ζ , whereas P and L are considered as
constants.

Introducing a rescaled temperature deviation θ = (R/δT )
T1, a rescaled concentration deviation Ñ1 = −(T0R/kT δT )N1,
and a rescaled stream function � = 1/(χ0d) φ in terms of these
dimensionless quantities and using the combined function c̃ =
Ñ1 − θ instead of Ñ1, we obtain

∂tθ − W0
θ − RψζW1(∂zc + 2∂zθ ) − W2(c + θ ) − RW1∂x�

= −ψζ [(∂xθ )∂x(θ + c) + (∂zθ )∂z(θ + c) + 
θ (θ + c)]

+ (∂z�∂x − ∂x�∂z) θ , (13a)
∂tc + W0
θ + R ψ ζW1(∂zc + 2∂zθ ) + W2(c + θ ) − L
c

= +ψζ [(∂xθ )∂x(θ + c) + (∂zθ )∂z(θ + c) + 
θ (θ + c)]

+ (∂z�∂x − ∂x�∂z) c , (13b)
∂t
� − P
2� − P (1 + ψ)∂xθ − Pψ∂xc

= P (∂z�∂x − ∂x�∂z) 
�, (13c)

with the abbreviations

W0 = W (z,ξ ) , (14a)

W1 = 1

ξ
∂zW (z,ξ ) , (14b)

W2 = ∂2
z W (z,ξ ) . (14c)

For reasons of simplicity, all the tildes have been sup-
pressed. No-slip, impermeable boundary conditions for the
fields θ , c, and � demand

θ = ∂zc = � = ∂z� = 0 at z = ± 1
2 , (15)

while free-slip, permeable boundary conditions [25,42]

θ = c = � = ∂2
z � = 0 at z = ± 1

2 . (16)

In this paper, we present both results based upon no-slip,
impermeable boundary conditions and those based upon free-
slip, permeable boundary conditions.

III. LINEAR STABILITY OF THE HEAT CONDUCTIVE
STATE AND ONSET OF CONVECTION

To determine the parameters at the onset of convection, we
investigate the linear stability of the heat conductive state given
by Eqs. (6) with respect to small perturbation fields: θ (x,z,t),
c(x,z,t), and �(x,z,t). The reduced set of three linear partial
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differential equations (PDEs) with constant coefficients may
be solved by the ansatz⎛

⎜⎝
θ (x,z,t)

c(x,z,t)

�(x,z,t)

⎞
⎟⎠ = u0(z)eiqxeσ t + c.c. (17)

with the vector function

u0(z) =

⎛
⎜⎝

θ̄(z)

c̄(z)

�̄(z)/(iq)

⎞
⎟⎠ (18)

and c.c. denoting the complex conjugate, leading to a boundary
eigenvalue problem with respect to z and the eigenvalue σ .
We solve the remaining linear ordinary differential equations
(ODEs) by two different methods, as summarized in the
following paragraphs.

The first one is the standard shooting method as described
in detail for binary-fluid convection in Ref. [29]. The resulting
coupled ODEs for the components of the vector function u0(z)
are integrated for a set of initial conditions at one boundary.
With the value of u0 at the opposite boundary, a determinant
f (σ,R,q,Q,P,L,ψ) follows. Keeping the initial conditions
fixed, either R or σ are varied such that f vanishes. The
resulting values of σ and R are functions of the remaining
parameters.

The second approach is based upon the so-called Galerkin
method. The components of u0(z) are expanded with respect
to a suitable chosen set of functions fulfilling already the
boundary conditions, i.e., either Eqs. (15) or (16). Examples
for this alternative numerical method may be found in
Refs. [45–47]. The resulting generalized algebraic eigenvalue
problem is solved numerically.

At the onset of convection, the small perturbations θ , c, and
� neither grow nor decay. This is the so-called neutral stability
condition, where the real part Re(σ ) of the eigenvalue σ with
the largest real part (fastest growing mode) vanishes:

Re(σ ) = 0 with σ = σ (R,q,ζ,P,L,ψ) . (19)

This yields the Rayleigh number

R0(q) = R0(q,ζ,P,L,ψ) (20)

as a function of the chosen wave number q and describes the
so-called neutral curve with a minimum at the critical wave
number qc and the critical Rayleigh number Rc = R0(qc).
Convection sets in with a wave number q � qc by crossing
Rc from below. Depending on parameters, the onset of
convection may take place via a stationary bifurcation with
a vanishing imaginary part of the eigenvalue Im(σ ) = 0, or
via a Hopf bifurcation with a finite Hopf frequency Im(σ ) =
±ω0(q,ζ,P,L,ψ) with its critical value ωc = ω0(qc).

Throughout this paper, we choose for reasons of simplicity
the Prandtl number P = 10. Since nanoparticles are much
larger than, for instance, alcohol molecules in water, their
mass diffusion is more than two orders of magnitude smaller.
Accordingly, the Lewis number in nanofluids takes consider-
ably smaller values of about L = 10−4 [48]. Growing linearly
with the particle’s size [48], the Soret effect can be changed in
a wide range by varying the mass density with respect to the

base fluid or the particle diameter. For small nanoparticles in
water ζ � 0.01 and in glycerin ζ � 10 are appropriate values.

A. No-slip, impermeable boundary conditions

It is a major result of this work that a particle-concentration-
dependent thermal conductivity, described by finite values of ζ ,
leads in the range ψ > 0 to a shift of the onset of convection to
larger values of Rc. As another important result, we find in the
range ψ � L and beyond some critical value ζc an exchange of
instabilities from a stationary bifurcation to an oscillatory one,
and we characterize this transition as a function of ψ and ζ .

The neutral curve R0(q) belonging to the lowest bifurcation
from the heat conductive state at different values of ζ is shown
in Figs. 1 and 2 for two representative positive values of the
separation ratio ψ , namely, for ψ = 10−5 � L (Fig. 1) and
ψ = 10−4 = L (Fig. 2). In both figures, the black solid line
describes the neutral curve R0(q) corresponding to molecular
binary fluids, i.e., ζ = 0. It is included for illustrating the
relative changes of the neutral curve as a function of ζ .

1400

1600

1800

2 2.5 3 3.5 q

R0
(a)

1666

1668

1670

2.8 3.0 3.2 q

R0 (b)

FIG. 1. Neutral curves R0(q) are shown for different values of the
conductivity parameter ζ and ψ = 10−5. Solid lines mark stationary
bifurcations and dotted and dashed lines mark oscillatory ones. In
part (a), one has ζ = 0 (black solid line), ζ = 0.06 (dark gray solid
line), ζ = 0.08 (gray solid and dashed lines), and ζ = 0.10 (light
gray dotted line). (b) Two neutral curves, which correspond to the
two eigenvalues with the largest real parts, are shown at ζ = 0.0875.
Again, the solid line indicates a stationary bifurcation and the dashed
line an oscillatory one.
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1000

1500

0 1 2 3 4 q

R0

FIG. 2. Neutral curves R0(q) are shown for ψ = 10−4 and the heat
conductivity parameter ζ = 0 (black solid line), ζ = 0.05 (dark-gray
lines), ζ = 0.15 (gray solid line), and ζ = 0.20 (light gray dotted
line). At ζ = 0.05, the neutral curve splits into the dark gray solid
part for the stationary and the dark gray dashed line for the oscillatory
instability. At ζ = 0.15, the gray solid line marks the stationary
branch and the oscillatory one is not shown. The light gray dotted
line corresponds to the oscillatory instability at ζ = 0.20.

We also mention for completeness that the Rayleigh number
at the onset of convection in binary fluids decreases in the
range of ψ > 0 with increasing values of ψ starting at
Rc(ψ = 0) � 1708. Simultaneously, the critical wave number
qc of the stationary bifurcation tends to zero in the range
ψ � L [26,29,30].

For increasing values of ζ , the neutral curve R0(q) of the
stationary bifurcation is shifted to larger values, as illustrated
in Fig. 1(a). For ζ = 0.08, at about q � 3.55 along R0(q)
a transition takes place from a stationary bifurcation in the
range q � 3.55 to an oscillatory one in the range q � 3.55.
We mention that here, and in all following figures, solid
lines mark stationary bifurcations whereas dashed, dotted,
or dashed-dotted curves indicate oscillatory bifurcations. The
neutral curve is determined by the condition given in Eq. (19)
for the eigenvalue with the largest real part. At about q � 3.55,
the real parts of three different eigenvalues cross each other
as a function of q, where the eigenvalue of the stationary
bifurcation has the largest eigenvalue in the range q � 3.55
and a pair of complex conjugate eigenvalues leading to an
oscillatory bifurcation has the largest real part in the range
q � 3.55. Accordingly, at the transition between the two
instabilities, one has an unsteady change of the slope along
the lowest neutral line. At a slightly larger value of ζ , this
transition takes place at a smaller value of q and the path
along the lowest parts of the two neutral curves belonging to
the two instabilities becomes nonmonotonic, as illustrated in
Fig. 1(b) for ζ = 0.0875. At the crossing point of the two
neutral curves in Fig. 1(b), the eigenvalue of the stationary
branch vanishes as well as the real parts of the two complex
conjugate eigenvalues at the oscillatory branch. This type of
an exchange of instabilities is different from the well-known
codimension-2 point in molecular binary fluids [26,29], where
only two of the three eigenvalues are involved and one has a
so-called double zero eigenvalue problem [31].

At larger, but still small, values of the separation ratio ψ , the
transition from a stationary to a Hopf bifurcation, which occurs
by increasing ζ , takes place in a different and more diverse
manner, as exemplified in Fig. 2 for ψ = 10−4. The neutral
curve of the stationary bifurcation at ζ = 0 (black solid line)
is strongly deformed by changing ζ to ζ = 0.05 (dark gray
curves). The minimum of the latter curve at qc is shifted to a
smaller value compared to the black line. Moreover, for certain
wave numbers, e.g., q = 2.5, one eigenvalue σ vanishes at two
different values of R by crossing two times the dark gray solid
line. Between these two values of R, the growth rate Re(σ )
is positive and otherwise is negative. Beyond the dark gray
solid curve at an even higher value for R at q = 2.5 and ζ =
0.05, the real parts of a pair of complex conjugate eigenvalues
change their sign and become positive, namely, beyond the
dark gray dashed line. Increasing the conductivity parameter
up to ζ = 0.15, the gray solid line for the stationary bifurcation
results, which is even further deformed compared to the case
ζ = 0.05. Increasing ζ beyond ζ = 0.15, the stationary branch
vanishes at about ζ = 0.165, and beyond this value, only a
Hopf bifurcation from the heat conductive state takes place
as shown by the light gray dotted line for ζ = 0.2. Since the
value of the Rayleigh number of the neutral curves at the Hopf
branch changes only slightly as a function of ζ , the Hopf
branch belonging to ζ = 0.15 is not shown.

This transition scenario (that increasing values of ζ lead
to a growth of the critical Rayleigh number at the onset of
stationary convection and finally to a Hopf bifurcation to
convection at even higher Rayleigh numbers) is illustrated
from a slightly different perspective by Fig. 3. In this figure,
the critical values Rc = R0(qc), qc, and ωc at the minimum
of the lowest neutral curves are plotted as functions of the
conductivity parameter ζ . The solid lines, describing the
stationary bifurcation as a function of ζ , cease to exist at
about ζ = 0.165. During the process of disappearance of the
stationary bifurcation, the neutral curve of this bifurcation is
deformed, as illustrated in Fig. 2. Beyond ζ = 0.165, a Hopf
bifurcation from the heat conductive state is preferred. Within
the oscillatory region, Rc varies only slightly with ζ and takes
values that are more than 100% larger than the corresponding
value for ζ = 0. The critical wave number decreases initially,
exhibits a major jump at the transition point, and remains
finally nearly constant, taking a value of qc � 3.2, which is
close to the critical wave number for a simple Newtonian fluid
qNF

c = 3.116. The critical Hopf frequency is monotonically
increasing.

A third perspective on the transition from a stationary
bifurcation to a Hopf bifurcation is provided in Fig. 4 for
ζ = 0.1 and in Fig. 5 for ζ = 0.2. In both figures, we present
the critical values Rc resp. Rc, qc, and ωc as functions of
the separation ratio ψ . As a guide to the eye, we have also
included the well-known limiting case for ζ = 0 (gray solid
lines). Again, solid curves describe the critical values for a
stationary bifurcation, if this threshold is lower than the Hopf
bifurcation, and dashed lines the critical values of the Hopf
bifurcation.

The left transition from a stationary bifurcation to a Hopf
bifurcation in Figs. 4 and 5 is a codimension-2 bifurcation as
illustrated in Fig. 1(b). The critical Rayleigh numbers at the
minimum of the neutral curve of the stationary bifurcation at
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FIG. 3. Part (a) shows the critical Rayleigh number Rc, (b) shows
the critical wave number qc, and (c) shows the critical frequency ωc

as a function of ζ for ψ = 10−4. Solid lines mark a stationary onset
of convection and dashed lines mark an oscillatory one.
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FIG. 4. The critical Rayleigh number Rc is given as a function
of ψ for ζ = 0.0 (gray line) and ζ = 0.1 (black lines). In the latter
case, the solid line marks the stationary and the dashed line the Hopf
branch. At the transition from the stationary to the Hopf branch, one
has a codimension-2 point.
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FIG. 5. In part (a), the critical Rayleigh number Rc is shown as a
function of ψ for ζ = 0 (gray line) and ζ = 0.2 (black lines), whereby
in the latter case the solid lines mark a stationary bifurcation and the
dashed line a Hopf bifurcation. Part (b) shows the corresponding
critical wave number qc(ψ) and part (c) shows the frequency ωc(ψ).

qS
c and at the minimum of the Hopf branch at qH

c come rather
close to each other with qH

c − qS
c � 0.025 in Fig. 5.

With further increasing values of ψ , the transition from
the Hopf branch back to a stationary branch is different for
ζ = 0.1 (Fig. 4) and ζ = 0.2 (Fig. 5). The right transition in
Fig. 4 is similar to the left one and resembles qualitatively the
scenario shown in Fig. 1(b). By reducing ζ below ζ = 0.1,
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the two transitions shown in Fig. 4 approach each other and
one obtains a rather degenerate bifurcation structure. The
interesting nonlinear dynamics in this parameter range will
be discussed in more detail elsewhere. The right transition
in Fig. 5 shows a jump in the wave number and is in this
respect rather different: By approaching this transition from
larger values of ψ , the stationary branch ceases to exist
(cf. Fig. 2). To the right of this second transition point,
convection sets in stationary. However, with decreasing values
of ψ , the stationary part of the neutral curve becomes more
and more deformed [just as in the case of increasing values of
ζ at a fixed ψ (cf. Fig. 2)] and finally ceases to exist at the
codimension-2 point. Also, this transition with quite disparate
wave numbers at the two bifurcations bears an interesting
nonlinear behavior, which is to be discussed elsewhere.

The ψ range where convection sets in via a Hopf bifurcation
changes as a function of the conductivity parameter ζ , as shown
in Fig. 6. In the gray region within the displayed curve, we find
a Hopf bifurcation to convection; outside the curve, a stationary
bifurcation takes place. Close to the left nose of this curve, one
has two transition points as in Fig. 4, whereas for larger values
of ζ , the situation resembles the one shown in Fig. 5, with
a strong jump in the wave number and the Rayleigh number
along the upper part of the curve.

In the limit of a vanishing Soret effect, i.e., ψ → 0,
temperature gradients do not cause concentration gradients
anymore, the particle concentration becomes homogeneous,
and the heat diffusivity χ is independent of the temperature.
In molecular binary-fluid mixtures, one has a codimension-2
point at ψCTP � −L2, with a stationary bifurcation for ψ >

ψCTP and a Hopf bifurcation in the range −1 < ψ < ψCTP

[25,26,29]. In colloidal suspensions with L � 10−4 or smaller,
this codimension-2 point ψCTP is even closer to zero.

In the range ψ < ψCTP, the Soret effect causes an en-
hancement of the particle concentration near the lower plate
and, with γ > 0, also the heat conductivity increases at this
boundary. For rising values of ζ , we find a monotonous reduc-
tion of the critical Rayleigh number at the Hopf bifurcation
compared to the limit ζ = 0. This is an opposite trend in

10−7

10−6

10−5

10−4

10−3

0 0.1 0.2 0.3 0.4 ζ

ψ

ωc = 0

ωc �= 0

FIG. 6. Location of the two codimension-2-points (cf. Figs. 4 and
5) in the ζ -ψ plane. In the gray region inside the black curve, the onset
of convection takes place via a Hopf bifurcation and otherwise via a
stationary bifurcation.

comparison to the enhancement of the threshold found in the
range ψ > 0. However, this reduction of the Rayleigh number
at the Hopf bifurcation is rather small and no deformation of
neutral curves takes place. With increasing ζ , the critical wave
number qc decreases slightly and the frequency ωc increases
almost linearly, similar to the behavior depicted in Fig. 3(c).
For example, at ψ = −10−4 and in the range 0 � ζ � 0.5, Rc

decreases with rising values of ζ from Rc = 1708 at ζ = 0 to
1624 at ζ = 0.5, qc decreases from qc = 3.116 to 3.097, and
ωc increases from ωc = 0.19 to 0.28.

The thermal conductivity contrast κ̃ is a function of the
product Rψζ = ξ . Since Rc keeps large values at the Hopf
bifurcation with decreasing ψ , in contrast to the range ψ > 0
[26,29], the assumption of a linear variation of the particle
concentration along the vertical z coordinate is violated at
medium values of ζ , i.e., the linear dependence of the thermal
conductivity on the particle concentration becomes violated
for smaller values of ζ than in the range ψ > 0.

The symmetry breaking caused by the nonlinear ground
state of the temperature and concentration field generates
characteristic changes of the flow field. Let us first concentrate
on the case ψ > 0. We found that, for nonvanishing values of
ζ , the center z0 of the convection rolls is always shifted out
of the center of the cell at z = 0 toward the lower plate, i.e.,
z0 < 0. For a fixed value of ψ > 0, the position z0 decreases
monotonically for rising values of ζ as long as the onset of
convection is stationary and, besides this shift, no further
qualitative deformation of the convection rolls takes place.
A typical flow field for this situation is presented in Fig. 7(a)
for ψ = 10−5 and ζ = 0.085, where we show contour lines
of the stream function �. This behavior changes when ζ

takes even larger values for which convection sets in via a
Hopf bifurcation. In this parameter range, we find inclined
convection rolls, as exemplarily presented in Fig. 7(b) for

-0.50

-0.25

0.00

0.25

0.50

-1 -0.5 0 0.5 1 x/λ

z
(a)

-0.50

-0.25

0.00

0.25

0.50

-1 -0.5 0 0.5 1 x/λ

z
(b)

FIG. 7. Contour lines of the stream function � at the onset of
convection for (a) ψ = 10−5 and ζ = 0.085 (stationary instability)
and for (b) � = 10−4 and ζ = 0.3 (oscillatory instability). The
center of the convection rolls is shifted to z0 = −0.029 and −0.005,
respectively. Here, λ = π/qc.
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MARTIN GLÄSSL, MARKUS HILT, AND WALTER ZIMMERMANN PHYSICAL REVIEW E 83, 046315 (2011)

300

450

600

1 1.5 2 2.5 3 q

R0 (a)

0

200

400

600

1 2 3 4 q

R0
(b)

FIG. 8. Neutral curves R0(q) for different values of the conduc-
tivity parameter ζ are shown in part (a) at ψ = 10−4 with ζ = 0 (black
solid line), ζ = 0.08 (dark gray lines), ζ = 0.095 (gray lines), and
ζ = 0.50 (light gray dashed-dotted line) and in part (b) at ψ = 10−3

with ζ = 0 (black solid line), ζ = 0.20 (dark gray lines), ζ = 0.35
(gray lines), and ζ = 0.50 (light gray dotted line). Solid curves mark
stationary instabilities and all other line types mark oscillatory ones.

ψ = 10−5 and ζ = 0.30. Left traveling waves (LTW, with
ωc > 0) are inclined to the left, right traveling waves (RTW,
with ωc < 0) are inclined to the right. Similarly, inclined rolls
appear also for negative values of the separation ratio and finite
values of ζ but, in contrast to the results for ψ > 0, the center
is slightly shifted toward the upper boundary for ψ < 0.

The dependence of the shift of the center of the convection
rolls on the sign of the separation ratio ψ can be understood
as follows. For ψ > 0, the suspended particles are driven
to the upper plate of the convection cell and, hence, the
thermal conductivity rises from the lower to the upper plate.
As the vertical heat current jz = −χ∂zT cond is independent
of z [compare Eq. (8)], it follows straightforwardly that the
gradient of the temperature profile, which enhances the onset
of convection, decreases from the lower to the upper plate.
Therefore, the fluid motion tends to concentrate in the region
of the lower boundary, which results into a shift of the center
of the convection rolls to z0 < 0. Obviously, the situation is
reversed for ψ < 0 and, hence, the center of convection rolls
is shifted upward.

B. Free-slip, permeable boundary conditions

Let us now turn to free-slip, permeable boundary condi-
tions. It is well known that, for free-slip, permeable boundary
conditions (16) instead of no-slip, impermeable boundary
conditions (15), the critical wave number qc does not tend to
zero for increasing values of ψ [26,29]. Despite this difference,
the major trends are similar. For finite values of ζ , the threshold
is enhanced compared to its value at ζ = 0 in the range ψ > 0
and lowered in the range ψ < 0. As in the case of no-slip,
impermeable boundary conditions, we find a competition
between a stationary and an oscillatory onset of convection
in the range ψ > 0, which, however, reveals some differences,
as described in this section.

Figure 8 shows neutral curves for different values of ζ at
ψ = 10−4 and 10−3. For smaller values of the separation ratio,
the major effect of finite values of ζ is a shift toward higher
Rayleigh numbers, very similar to the situation depicted in
Fig. 1(a). For ψ = 10−4, the neutral curves are additionally
deformed and split into a stationary branch and an oscillatory
branch at higher Rayleigh numbers, as illustrated in Fig. 8(a).
Even though the situation is similar to the one shown in
Fig. 2, there are some interesting differences. For ζ = 0.08,
the dark gray solid curve merges with the dark gray dotted
curve without crossing, i.e., two stationary eigenvalues merge
and build a pair of complex conjugate ones similar to those
presented in Fig. 9 for ζ = 0.095. The island at finite values of
q marked by the gray solid curve in Fig. 8(a) and corresponding
to ζ = 0.095 is a further feature that differs from the case
of no-slip boundary conditions. The upper boundary of this
curve marks a linear restabilization of the heat conductive
state, as indicated by the second sign change of the real part in
Fig. 9. After the restabilization, an even higher positioned
Hopf bifurcation occurs, as described by the gray dashed
line in Fig. 8(a), which in the ranges of small and large
values of q almost coincides with the oscillatory branch for
ζ = 0.08. As this restabilization takes place far beyond the first
instability, where the nonlinear contributions to the equations
of motion determine the dynamics of the system, an answer to
the question as to whether this restabilization is of relevance
for a real system can only be given by solving the nonlinear
equations of motion in that range.

For separation ratios larger than ψ = 10−4, even a linear
restabilization of the oscillatory bifurcation may occur. This
is illustrated for ψ = 10−3 in Fig. 8(b). For ζ = 0.2, we find
a linear restabilization of the stationary branch, as depicted
by the dark gray solid line, before an oscillatory bifurcation
from the heat conductive state (dark gray dashed-dotted line)
takes place. In contrast, for larger values of ζ , e.g., ζ = 0.35,
the stationary branch has already disappeared and the lowest
instability is given by a Hopf bifurcation. Here, this oscillatory
branch shows a linear restabilization and a second Hopf
bifurcation arises at even higher values of R as shown by
the upper gray dashed curve in Fig. 8(b).

These interesting bifurcation scenarios, including two
exchanges of instabilities, are presented from a different
perspective in Fig. 10. Here, the critical values Rc, qc, and ωc

are shown as functions of ζ . In the first coexistence range, the
situation is similar to the case of rigid boundary conditions, i.e.,
the end point of the solid line corresponds to the disappearance
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FIG. 9. The real parts of the two largest eigenvalues are shown
as functions of the Rayleigh number R corresponding to the neutral
curves in Fig. 8(a) for ζ = 0.095 and at q = qc � 2.1. The black
solid line marks the stationary branch and has two zero crossings,
which define the boundary of the closed curve in Fig. 8(a). At about
R � 502, this real eigenvalue merges with a second real eigenvalue
(light gray solid line) to a pair of complex conjugate eigenvalues
(black dashed line). The appendant imaginary part |ω| is depicted in
the inset.

of an isolalike deformed stationary neutral curve. Similarly, in
the second coexistence range, the first oscillatory instability
ceases to exist at the end point of the dashed line, leaving
behind a second oscillatory instability at even higher values of
the Rayleigh number. We mention that, unlike the end points
of the solid and first dashed line, the starting points of both
dashed lines are not related to the creation or aniquilation of
isolas. We decided to display these lines also to the left of the
transition points to stress the fact that the oscillatory branches
are already present before another branch vanishes (cf. Fig. 8).
The critical wave numbers and frequencies corresponding to
the three distinct instabilities differ considerably.

A further illustration of the bifurcation scenario is given by
Fig. 11, where the critical Rayleigh number Rc and the critical
wave number qc are shown as functions of the separation ratio
ψ for a conductivity parameter of ζ = 0.2. Again, we find the
most pronounced changes in comparison to ζ = 0 in the range
ψ ∼ L = 10−4. When the two codimension-2 points marking
the exchange of instabilities are plotted as functions of ζ , the
resulting curve shows a similar behavior as the one for no-slip
boundary conditions in Fig. 6.

In accordance with the results for no-slip boundary condi-
tions, one obtains for negative values of the separation ratio ψ

and finite values of ζ a reduction of the threshold compared
to the case ζ = 0. The critical wave number is independent
from ζ and takes the value qc = π/

√
2, just as in the case of

molecular binary-fluid mixtures.
For finite values of ζ , the changes in the flow field at the

onset of convection with respect to the limiting case ζ = 0
are qualitatively very similar to those discussed for no-slip
boundary conditions. While a positive separation ratio ψ > 0
lowers the center of convection rolls, the opposite happens
in the case ψ < 0. In addition, an oscillatory onset leads
to inclined rolls. As for free-slip boundary conditions, the
velocity field takes finite values at both plates, and the shift
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FIG. 10. The critical Rayleigh number Rc in (a), the critical wave
number qc in (b), and the critical frequency ωc in (c) are shown as
functions of ζ for ψ = 10−3. Solid lines mark a stationary onset of
convection and dashed lines mark an oscillatory one.

of the center is larger than in the case of no-slip boundary
conditions.

IV. DISCUSSION AND CONCLUSION

The onset of thermal convection in a colloidal suspension
was investigated by means of a generalized continuum model
for binary-fluid mixtures, which has been extended beyond
the Boussinesq approximation by taking into account a
linear dependence of the thermal conductivity on the local
concentration of colloidal particles.

We investigated colloidal suspensions where the thermal
conductivity of the suspension increases with rising values of
the particle concentration. An inhomogeneous particle concen-
tration can be induced by temperature variations via the Soret
effect, which corresponds to finite values of the separation ratio
ψ . The concentration-dependent thermal conductivity causes
a nonlinear variation of the temperature across the convection
cell, in contrast to a linear variation for a constant thermal
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FIG. 11. Part (a) shows the critical Rayleigh number Rc as a
function of the separation ratio ψ for ζ = 0 (gray solid line) and
ζ = 0.2 (black lines), where, in the latter case, the solid lines mark
the stationary branch and the dashed line marks the oscillatory one.
Part (b) shows the corresponding critical wave number qc using the
same line styles.

conductivity. The strength of the spatial variations of the heat
conductivity is described by a dimensionless heat conductivity
parameter ζ , as introduced in this paper. It was found that,
for finite values of ζ , the vertical heat current through the
convection cell is reduced compared to the case of a constant
heat conductivity.

For positive values of the separation ratio ψ , the sus-
pended particles are driven to the colder upper plate of
the convection cell, and for a constant heat conductivity,
i.e., ζ = 0, a stationary bifurcation from the heat conductive
state to convection takes place. Spatial variations of the heat
conduction, corresponding to ζ 	= 0, lead to a shift of the
critical Rayleigh number Rc to larger values than obtained in
the case ζ = 0. Additionally, beyond some critical value ζc

and in the parameter range ψ ∼ L, the onset of convection
takes place via a Hopf bifurcation. This trend (i.e., that a delay
of the onset of convection leads to a Hopf bifurcation) is also
met in the range ψ < 0, and is well known from molecular
binary-fluid mixtures.

Vertical variations of material properties, as discussed in
this paper for the thermal conductivity, are considered to be
important for modeling convection in the Earth’s mantle and,

accordingly, a number of models including non-Boussinesq
effects were explored [1,18]. For modeling convection in
systems with spatially varying material parameters, two
superimposed layers of immiscible [49–51] or even misci-
ble fluids [52] are also used. As in our system, with its
spatially varying heat conductivity, an oscillatory onset of
convection was found in such two-layer systems for various
parameters.

The range of positive ψ values, where the Hopf bifur-
cation takes place, increases with rising values of ζ . At
both boundaries of this range, we find a codimension-2
bifurcation, where the thresholds of the stationary and the
oscillatory bifurcations coincide. Additionally, one has a
further codimension-2 bifurcation at ψ � 0, which is well
known from earlier investigations of molecular binary-fluid
mixtures. However, for no-slip boundary conditions, the two
codimension-2 points occurring for ψ > 0 are qualitatively
different. Here, the two neutral curves belonging to the two
different bifurcations cross each other and, therefore, three
eigenvalues are close to be critical. In contrast to this, only two
eigenvalues are critical close to the codimension-2 bifurcation
at ψ � 0. At the left boundary of the ψ range, where a Hopf
bifurcation is preferred, one encounters usually small jumps
in the critical wave number, whereas large jumps occur at the
right boundary of this range.

During our analysis, we assumed γ > 0 in Eq. (1), corre-
sponding to the situation wherein the thermal conductivity of
the particles is higher than the one of the base fluid. Hence,
the local heat conductivity increases with a rising particle
concentration. However, we obtain for γ < 0 exactly the same
bifurcation scenarios as described in this paper for γ > 0.
This may be understood as follows. Independent of the sign
of γ , one obtains in the presence of thermophoresis layers
of higher and lower thermal conductivity accompanied by a
nonlinear z dependence of the temperature. Changing the sign
of γ changes both the variation of the heat conduction and the
temperature profile, but the vertical heat current is identical
for both signs of γ , as indicated by Eq. (8).

A further interesting question is how a spatially varying
heat conductivity affects the ratio between the convective and
conductive heat transfer (Nusselt number) beyond the onset
of convection, and how to understand the effects of boundary
layers with enhanced or reduced heat conductivity.
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APPENDIX: DETERMINATION OF THE HEAT
CONDUCTIVE STATE

In the heat conductive state, i.e., v = 0, the temperature
distribution T cond(z) and the particle distribution N cond(z) are
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determined by the two equations
0 = ∂z{[1 + γ (N cond − N0)]∂zT cond} , (A1a)

0 = ∂2
z N cond + kT

T0
∂2
z T cond . (A1b)

For a vanishing mass current at the boundaries [cf. Eq. (4b)],
a double integration of Eq. (A1b) yields

N cond = −kT

T0
T cond + N0 + n0 . (A2)

Now, Eq. (A1a) takes the form

0 = ∂2
z

(
(1 + γ n0) T cond − kT

2T0
T 2

cond

)
(A3)

and its integration gives
T 2

cond − �0 T cond = 1
4 (C1 z + C0) , (A4)

with �0 = (1 + γ n0)T0/(γ kT ). Solving this quadratic equa-
tion, the two unknown constants C0 and C1 are determined
by the two boundary conditions (4a) for T cond and one
obtains

T cond = �0 −
√

M2+

(
1

2
− z

d

)
+ M2−

(
1

2
+ z

d

)
, (A5)

with M± = �0 + T0 ± δT /2. The last free constant n0 in
Eq. (A2) is determined by the definition of N0:

N0 = 1

d

∫ d/2

−d/2
N cond dz = N0 + n0 − kT

T0d

∫ d/2

−d/2
T cond dz .

(A6)
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