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Identifying hydrodynamic interaction effects in tethered polymers in uniform flow
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Using Brownian dynamics simulations, we investigate how hydrodynamic interaction (HI) affects the behavior
of tethered polymers in uniform flow. While it is expected that the HI within the polymer will lead to a dependency
of the polymer’s drag coefficient on the flow velocity, the interchain HI causes additional screening effects. For
the case of two polymers in uniform flow with their tether points a finite distance apart, it is shown that the
interchain HI not only causes a further reduction of the drag per polymer with decreasing distance between
the tether points but simultaneously induces a polymer-polymer attraction as well. This attraction exhibits a
characteristic maximum at intermediate flow velocities when the drag forces are of the order of the entropic
forces. The effects uniquely attributed to the presence of HI can be verified experimentally.
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The dynamics of flexible polymers in liquids and the
interaction between different sections of the polymer mediated
by the fluid, the so-called hydrodynamic interaction (HI),
is the origin of a variety of fascinating flow phenomena,
such as turbulent drag reduction [1-3], elastic turbulence
[4], and the coil-stretch transition predominant in exten-
sional flows [5]. Many experiments have been performed
to explore the dynamic interplay between polymers and the
fluid by studying the deformation of single polymers in
uniform, shear, and extensional flow fields [6—-10] as well as
their time-periodic dynamics in linear shear and Poiseuille
flow [11-16].

A key question in exploring polymer-fluid interaction is
to find suitable experimental setups as well as appropriate
measurable quantities which allow to attribute the observed
behavior to HI effects in a unique manner. It is known
that hydrodynamic screening affects the elongation R,, of
tethered polymers in uniform flows and depends on the flow
velocity uey in a nonlinear manner in general. However,
such nonlinear dependency of R,., on the flow velocity is
already observed for free-draining polymers in the absence of
HI [6,17-22].

In this Brief Report, we use the drag force acting on the
polymer instead of its elongation as a means to probe in
uniform flows the HI effects in a unique manner, which we
calculate through Brownian dynamics (BD) simulations of
bead-spring models. After a brief introduction of the polymer
model, we start from the case of a single tethered polymer and
show that screening effects within the polymer appear through
the velocity dependency of the drag coefficient { = ¢ (Uey), in
agreement with earlier studies where an effective Stokes radius
was used to characterize the presence of intrachain HI [23,24].
Beyond the single-chain case, it is shown by example of two
polymers in uniform flow that the HI between polymers leads
to an enhanced drag reduction and, importantly, induces lateral
forces, causing an effective polymer-polymer attraction, which
is a unique fingerprint of HI as well.
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The Brownian dynamics of a system of one or more tethered
bead-spring polymers exposed to a uniform flow field is
governed by Langevin’s equation [19,25]:

R=uyR)+H -F+2kzTH- &, 1)
where R = (Ry, ... ,Ruxn)) describes the conformation of

the M polymers, each consisting of N beads. uy(R) represents
the external unperturbed flow field at the bead positions,
kp is Boltzmann’s constant, and T is the temperature. The
matrix square root of the mobility matrix H appearing in
Eq. (1) is numerically calculated by means of Tschebyscheff
polynomials, as described in Refs. [20,26]. £(¢) is an uncor-
related Gaussian white noise whose components &; have zero
mean (£;(¢)) = 0 and unit variance (§;()&;(t")) = 8(t — t')3;},
with i,j € x,y,z. F refers to all potential forces and includes
the excluded-volume interactions (EVI) among the beads
described by a Lennard-Jones potential and the next-neighbor
bond forces between beads on the same polymer, which are
modeled here by a finite extensible nonlinear elastic (FENE)
potential [27,28]. All distances are given in units of the
bond length, with b =~ 0.96 in the FENE model [20]. The
hydrodynamic interaction between two beads i and j, which
may belong to the same or to different polymer chains, is
described by the Rotne-Prager tensor [2,29]. In the region
where the beads do not overlap, i.e., r;; = |Ri — Rj| > 2a
(i # j), its off-diagonal elements are determined by [29]
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and is extended to the overlap region r;; < 2a by
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The diagonal elements of the mobility tensor H are just
the inverse of the drag coefficient ¢; for a single bead, i.e.,
H;; = 1/¢. In the limit a/r;; — 0, the nondiagonal elements
of H;; vanish, and one approaches the free-draining (no HI)
limit, in which case the mobility matrix of the entire system
is determined only by &, and does not depend on the polymer
conformation. Throughout this work, we use N = 100 beads
per chain and a bead radius given by a = ¢;/6mn, with ¢

r;j ®fijj|~ (3)
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being the Stokes friction coefficient of a single isolated bead.
n refers to the viscosity of the solvent. All other parameters
appearing in forces and so on are chosen as in Refs. [20,28].
In all plots, we use the normalized velocity uey(/urer, Where
we define the reference velocity u s as follows: employing the
Pincus relation for a blob with Flory radius Ry = bN'/? and
bond length b, we obtain the balance between the drag and
entropic force, i.e., 6rnRpiir = kgT /RF [1]. Note that for
large N the ratio kg7 /Rp and thus s are quite small. To
eliminate this N dependence, we multiply i s by the number
of segments, so that us := kBTN/6rrnR% = kBT/6m7b2.

The form of the mobility matrix H;; in Eqgs. (2) and (3)
implies that the hydrodynamic screening of the local flow field
and the reduction of the drag force on each bead depend not
only on the distance r;; between the beads but also on the
orientation of r;; relative to the flow direction. This can be
illustrated by a simple example of a two-bead system. With
r1; either parallel (||) or perpendicular (L) to the external flow
Uext = Uext€y, the drag forces F! and Ft on each bead are
parallel to the flow direction &, and are given by [30]

FH _ Csuext ~ FJ_ _ C‘vuext é
I TEE T IR
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Assuming rj, = 2a, for example, the drag forces on each
bead relative to the free-draining limit are |F!|/¢uex & 57%
and |F| /&suexe = T2%, respectively. If the bead vector rj,
is skewly oriented to the flow direction, the drag picks up
lateral force components [30], which can lead to an effective
attraction between beads or polymers.

As discussed in the introduction, in uniform flows a direct
probe of HI effects is possible by determining the drag
coefficient ¢ of the whole polymer chain, which we define
in analogy to the Stokes’ law for a rigid sphere [31] through
the relation F, := Cu.y, With F; being the fotal drag force
acting on the entire polymer and u¢ being the uniform flow
velocity. An alternative way to probe HI effects is to assign the
polymer an effective Stokes radius through R, = ¢ /67y and
to look how R, depends on the polymer extension, as done in
previous studies [23,24].

Note that in Stokes’ law the drag coefficient ¢ is determined
by the sphere’s geometry through its radius R, i.e., { = 67 nR
[31]. In general, such a relation no longer holds for deformable
objects such as polymers, which experience a different drag
force depending on the conformational state they adopt for
a given velocity uey. Importantly, in the absence of HI the
uniformity of the original flow field is preserved, so that ¢ is
independent of u.y. In this free-draining case, the total drag
on the polymer with N beads is simply given by the sum of the
drag on each bead, F; = N {ucx, irrespective of the polymer
extension with a constant drag coefficient {; = N¢,. Hence,
any velocity dependency of the drag coefficient ¢ is a unique
signature of HI.

In our BD simulations, F, is determined from the data by
noticing that the total drag force the flow exerts on the tethered
polymer is opposite in sign and equals the force that must
be applied to hold the polymer in place. This latter force is
located at the first bead R, which is connected to the tether
point by a Hookean spring with force constant «. Thus, F,; can
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FIG. 1. (a) Two FENE polymers in uniform flow Uex = texiéy,
with their ends tethered at a distance Dy,. (b) Normalized drag
coefficient ¢ /¢ per polymer as a function of the normalized velocity
Uexi/Urer TOr Dgep = 10.0 (diamonds) and 20.0 (squares) and for a
single chain, i.e., Dy, = 0o (circles). The inset shows ¢/ as a
function of Dgep, fOr tey; /ttrer = 1.92.

be easily obtained from the displacement between R; and the
tether point.

Figure 1(a) illustrates the setup to determine the drag
coefficient ¢ for a polymer in our simulations. To investigate
HI effects not only within a single polymer but also between
different polymers, the ends of two polymers are fixed at
a variable distance D, between their tether points, and a
uniform flow field ucy is applied. The chains are described
by a FENE model including EVI and account for both the
intrachain and interchain interaction due to HI. To achieve
in BD simulations with N = 100 beads for each chain a
similar ratio for the drag coefficients in the stretched and coiled
conformation &,,4/&coii ~ 2 as for a 150-pum-long DNA-strand
with N =~ 2000 Kuhn segments [18], we adjust the ratio
between the bead radius a and bond length b to a/b ~ 0.25.
Figure 1(b) shows the drag coefficient {/¢; normalized to
the drag coefficient {; = N¢; in the free-draining limit as
a function of the normalized velocity uey/uwr at various
separations Dgep; the statistical errors are quite small, with
the magnitude given by the size of the symbols used in
Fig. 1(b). In the limit of noninteracting chains (Dgep = 00),
one obtains the drag coefficient of a single chain, where the
drag grows monotonously with increasing flow velocity since
the intrachain HI is gradually reduced. However, since in a
FENE model the bond length b between nearest-neighbor
beads remains nearly fixed, the HI between the beads persists
even in the stretched configuration, so that the drag is still
only 22% of the drag at free draining. With smaller separation
Dgep = 20 and 10, the interchain becomes significant and leads
to a further reduction of the drag ¢ /¢ [see Fig. 1(b) and in
the inset] due to the screening of the flow in between the
chains.

The observed velocity dependence of ¢ /¢y discussed in
Fig. 1 originates from the screening due to both the intrachain
and interchain HI. However, it is only the interchain HI
that induces flow-induced lateral forces and thus leads to an
effective chain attraction, as shown in Fig. 2. To illustrate
this effect, we consider two chains whose tether points are
separated by Dse, = 10 and 20, at first neglecting thermal
fluctuations [T = 0 in Eq. (1)]. A measure for the attraction
is given by the difference between D, and Aycom, With
AYeom := y.,, — ¥2,, being the lateral distance of the center
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FIG. 2. Difference Dy, — Aycom between the distance of the
tether points and the lateral distance of the centers of mass with
Dye, = 10 and 20 for a FENE chain with the full mobility matrix
(solid circles and solid diamonds) and without thermal fluctuations
(open circles and open diamonds).

of mass (com) of the two chains. If the chains do not interact,
Dgep — Aycom must vanish since no lateral forces exist that
could cause a lateral displacement. However, when HI is
significant, Dgp — Aycom 1S positive (see dashed lines in
Fig. 2), implying that the two chains attract each other. As
expected, with smaller separation of the tether points Dgep,
the attraction is larger since the interchain HI is enhanced.
With increasing flow uex/urs the lateral displacement of the
polymers decreases as the longitudinal drag in flow direction
starts to dominate the lateral attractive force.

The basic mechanism of the chain attraction can be
understood by considering a simple model consisting of two
chains 1 and 2 with two beads, a and b. The a beads are
hooked to a tether point, as indicated by a cross in Fig. 3(a).
When a uniform flow ucé, > 0 is imposed, the fluid exerts
a drag force on all four beads pointing along the positive
x axis. To keep all beads in place, the flow-induced drag must
be counterbalanced by constraint forces F¥'" pointing along the
negative x axis, which are the source for a flow perturbation
via v=H - F¥" To obtain the effective flow field seen by
each bead, v needs to be superposed to the unperturbed flow
Uext€y, SO that the total flow field is given by ucxé, + H - Fdir,
To determine the perturbation v, we assume for simplicity that
the beads are pointlike, in which case the mobility matrix is
given by the Oseen tensor H; ; = 1/8wnr; ; [I+#; @ F].
In the following, we consider the case where F¢" acts
on bead la and determine the perturbed flow at bead 2b,
i.e., vap = Hop 1, - F{I". With bead la at the origin R;, =
(0,0) and bead 2b positioned at Ry, = (dy, —d,), their
distance vector reads ry; 1, = (dy, — d,). Inserting the x and
y components of ry, 1, into the Oseen tensor, one obtains
v}, o [1+d?] F4" and vy, o —d,d, F3" . Since F¥" < 0, it
follows that v}, < 0 and vy, > 0. Adding these latter flow
components to ue €, > 0 leads to the effective flow field
and drag force Ffb!]a at the position of bead 2b, as shown in
Fig. 3(a).

A similar analysis can be applied to all other beads and
results in the HI-induced effective local drag forces illustrated
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FIG. 3. (a) Illustration of the polymer-polymer attraction for two
toy chains consisting of two beads a and b connected by springs.
The HI between beads a and b belonging to different chains induces
lateral drag forces F? along the y axis by which the chains attract
each other. (b) For larger polymer chains the HI between the many
beads leads to an inward motion of the chains, and they approach
each other.

in Fig. 3(a). Since the a beads are bound to the tether points
while the b beads can move more freely, chains 1 and 2 perform
an inward motion and approach each other. The same basic
mechanism applies to longer chains, as sketched in Fig. 3(b).
Note that the lateral drag forces derived are only nonzero if
the distance vector r; ; is skewly oriented to the flow direction
determined by uex:éy, so that bead pairs (i, j) whose vector r; ;
is either parallel [(1a,1b), (2a,2b)] or perpendicular [(1a,2a),
(15,2b)] to the flow direction do not contribute to any lateral
drag. The analysis so far has considered the initial situation,
where the toy chains are exactly aligned with the flow direction.
The HI-induced lateral forces then move the b beads inward
up to a certain angle, so that the final orientation of the two
chains as given, e.g., by their connector vector r;, ;, i = 1,21s
skewed relative to the flow axis. The magnitude of this angle
depends on the distance between the a beads and the length of
the spring between the a and b beads.

If we now turn on thermal fluctuations (7" > 0), the polymer
adopts a partially coiled conformation, which is determined
by the force balance between the restoring entropic force and
the external drag. As shown in Fig. 2 (solid lines), for larger
velocities uexi/Urer > 5 the chain attraction is only slightly
larger than without fluctuations, while at small velocities,
depending on Dy, the attraction is somewhat weaker with
than without fluctuations. Within an intermediate velocity
regime 1 < uex/Urer < 5, the attraction is strongly enhanced.
We can understand this fluctuation-induced enhancement of
the polymer-polymer attraction by considering that at small
and intermediate flow velocities the polymers are still in a
rather coiled state, so that larger portions of the polymer are
quite close, with a mutual distance smaller than Dg,. Since
the HI behaves as 1/r, the chain sections closer to each
other interact more strongly, which results in an enhanced
polymer-polymer attraction at intermediate flow velocities.
With increasing flow uex/uref the chains become more and
more elongated, while their mutual distance grows. Again, as
HI decays as 1/r, the interchain HI is now weaker than in the
(partially) coiled state, so that the polymer attraction falls off,
as shown in Fig. 2.

Note that when the distance between the tether points is
reduced further, the interchain EVI becomes important at some
lower critical value of Dy,. In this case, one expects that the
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HI-induced lateral force is compensated by the repulsive EVI,
so that the maximum of the lateral displacement should be
less pronounced. The fact that Dg, — Aycon for the distance
Dgep = 10 is larger than for Dy, = 20 indicates that one has
not reached this lower critical value where the interchain EVI
would play a role. Finally, if EVI were discarded entirely,
the lateral displacements would be lower, specifically within
intermediate velocities 1 < uex/urer < 5, where the polymer
is partially coiled. This is because without EVI the polymer’s
size (given, e.g., by its radius of gyration) is smaller than with
EVI, so that the distance between the beads of different chains
is larger and results in a reduction of the interchain HI. The
exclusion of EVI, however, should not affect the qualitative
behavior shown in Fig. 2(b).

In summary, we investigated hydrodynamic interaction
effects in tethered polymers exposed to a uniform flow by
means of Brownian dynamics simulations and considered two
settings. It was shown that a unique identification of HI effects

PHYSICAL REVIEW E 83, 062802 (2011)

is possible by measuring the drag coefficient of a polymer in
uniform flow, which becomes dependent on the flow velocity
only if HI is significant. In this case, the velocity-dependent
drag force may be interpreted as a nonlinear generalization
of the Stokes’ law for a rigid sphere. Further, we have
demonstrated that HI not only causes intrachain screening
but also mediates an interaction between different chains. This
interchain screening leads to a further reduction of the drag per
polymer as well as to an effective attractive lateral force, whose
presence can be detected by measuring the lateral polymer’s
displacement. The polymer attraction shows a pronounced
maximum in a velocity range where the drag forces are of
the order of the entropic forces. The suggested setups used in
the simulations are suitable for experiments, where these HI
effects may be probed for real polymers, as we propose.

This work was supported by the German Science Founda-
tion via the priority program SPP1164 and SFB840.
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