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Abstract
Formation of the ‘dip’ structure which foregoes switching of magnetic vortex polarity is
studied numerically in magnetic nanodisc. A new method based on influence of the
spin-transfer torque is used. The method allows one to obtain the dip structure for immobile
vortex which significantly improves studying accuracy in comparison with the case of moving
vortex. Free out-of-plane vortices as well as in-plane vortices pinned on hole defects are
considered. It is shown that the process of the dip formation is different for free and pinned
vortices and direction of the dip does not directly depend on the vortex polarity.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The control of magnetic nonlinear structures using an electrical
current is of special interest for applications in spintronics
[1, 2]. The spin-transfer torque acts on nonhomogeneities
in magnetization distributions, in particular, on magnetic
vortices. Typical structures are CPP-heterostructures,
where current flows perpendicular to the plane: metallic
nanopillars, in which vortex oscillations have been studied both
experimentally [3, 4] and theoretically [5–8], and magnetic
tunnel junctions with large output power of spin transfer
vortex nano-oscillators [9, 10]. Alternative systems are CIP-
structures, where current flows in the plane of the interface
[11, 12]. Recently Shibata et al [13] used CIP-structure to
demonstrate the effect of the spin-transfer torque on the vortex
state magnetic nanodisc. The spin current excites the spiral
motion of the vortex which finally relaxes to some shifted
position. Such a picture is a result of a Thiele–like vortex
dynamics, where the vortex does not change the shape during
its motion and it is valid for the relatively small vortex shifts.

It was shown both theoretically [8, 14, 15] and
experimentally [16–18] that the vortex core magnetization
(so-called vortex polarity) can be switched on a picosecond
time scale. This discovery demonstrates the potential of

realizing all-electrically controlled magnetic memory devices,
changing the direction of the modern spintronics [19, 20].
The physical picture of the vortex switching is essentially
the same in all systems where the switching was observed,
including vortex excitations by different kinds of mag-
netic field and spin-polarize currents [15, 16, 21–28]. The
switching process of a moving vortex includes two main
stages. The vortex structure is excited at the first stage by
a pumping (fields or currents), leading to the creation of an
out-of-plane dip near the moving vortex. The appearance
of a dip structure was computed by micromagnetic simu-
lations [29] and confirmed experimentally [27, 28]. When
the pumping is strong enough, the dip amplitude can reach
the maximum possible value (second stage), leading to a
vortex–antivortex pair generation from the dip structure.
Dynamics of a three body problem is described analytically;
[8, 30, 31] it is accompanied by the annihilation of the vortex–

antivortex pair, which finally causes the switching of the vortex
polarity.

In this paper we predict the dip formation near the vortex
under the influence of the current. We consider two geometries,
nanodisc and nanoring with small inner hole: symmetric as well
as asymmetric (inner hole is shifted from disc centre). The spin
current in the latter case provides the pure planar vortex centred
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on inner hole of the ring. Using micromagnetic simulations4

we discovered that such a shifted immobile vortex gets an extra
out-of-plane magnetization which corresponds to the well-
known ‘dip’ structure of the moving vortex [21, 23, 27]. Our
study shows that the dip development is specified by the current
direction and its intensity, and it does not depend on the vortex
polarity. We also show that the critical current (threshold of
the vortex–antivortex pair nucleation) strongly depends on the
nanodot thickness for the ring geometry and this dependence
is weak for disc geometry.

2. Model, micromagnetic simulations and a dip
formation

Our study is based on a simulated magnetization dynamics
in the framework of the modified Landau–Lifshitz–Gilbert
(mLLG) equation with the CIP spin-torque effect [11, 12]:

ṁ = −γm × Heff + αm × ṁ − (u · ∇)m

+ βm × [(u · ∇)m]. (1)

Here m = M/MS = (
√

1 − m2
z cos φ; √

1 − m2
z sin φ; mz)

is a normalized magnetization vector with MS being the
saturation magnetization, the overdot indicates derivative with
respect to time, γ > 0 is gyromagnetic ratio, Heff is
the effective micromagnetic field, α is the Gilbert damping
constant. The last two terms in equation (1) describe,
respectively, adiabatic and nonadiabatic spin-torque terms.
The velocity parameter u is proportional to the current density:
u = −jPµB/(|e|MS), where µB is the Bohr magneton, e

is the electron charge and P is the current polarization rate.
The current density j is supposed to be spatially uniform and
constant. Dimensionless constant β describes the degree of
the nonadiabaticity. The mLLG equations (1) can be derived
from the Lagrangian with a density L = G − E and a Gilbert
dissipative function density F = αMS/(2γ )(ṁ)2. Here the
gyroscopic term G = MS

γ
(1 − mz)φ̇, and the energy density

E = 4πM2
S(Eex + Ems + E a

ST + E na
ST ). Here Eex = �2(∇m)2

is the exchange energy density with � =
√

A/(4πM2
S) being

the exchange length, where A is the exchange constant. The
magnetostatic energy density Ems = (8π)−1

∫
d3r′(m(r) ·

∇)(m(r′)·∇′)|r−r′|−1 in case of a thin sample can be reduced
to the effective easy plane anisotropy: Ems ≈ m2

z/2 [32].
The energy density of adiabatic spin torque term has a form
E a

ST = (1−mz)(u ·∇φ), the contribution of nonadiabatic term
E na

ST we discuss later.

2.1. Dip formation on a free immobile vortex in a nanodisc

In order to describe the CIP spin-torque influence onto the
vortex dynamics we discuss two different kinds of simulations.
In the first one we consider the permalloy5 disc with radius

4 We used the open source OOMMF code http://math.nist.gov/oommf/
with an extension package for spin-current simulations developed
by IBM Zurich Research Laboratory http://www.zurich.ibm.com/st/
magnetism/spintevolve.html.
5 In all OOMMF simulation we used material parameters adopted for
permalloy: the exchange constant A = 1.3 × 10−11 J m−1, the saturation
magnetization MS = 8.6 × 105 A m−1, the anisotropy was neglected and

L = 100 nm and thickness h = 20 nm. The ground state
of such a disc is the out-of-plane vortex, situated at the disc
origin, see figure 1, curve 1. Then the spin current velocity
was switched on adiabatically: step-by-step we increased the
value of velocity u by a small value. The sizes of the steps
were sufficiently small to prevent the vortex polarity switching.
On each step the full relaxation was achieved and the set of
parameters was determined: position of the vortex centre s (in
units of the disc radius L), position of the dip minimum sd

and also the dip depth md, see figure 1. When the current
is not strong, the position of the vortex centre s(t) can be
calculated from the Thiele approach [33, 34], where the vortex
moves like a rigid particle, m(r, t) = m(r − X(t)), here
X denotes the vortex core position. The generalized Thiele
equation under the action of CIP current can be written as
follows [12]:

G × (Ẋ − u) + D̂(αẊ − βu) = Fms, (2)

where G = 2πhpqez is the gyrovector with p = +1
being vortex polarity and q = +1 being the vorticity; D̂ ≈
hπq2 ln(L/�)Î is the dissipation tensor with Î being the
identity matrix, and Fms is the magnetostatic force. According
to (2), the vortex, originally situated at the disc origin, starts
to make a spiral motion and finally goes to some shifted
position, which results from the balance between the spin-
torque force F a

ST = u × G and the restoring magnetostatic
force Fms = −ks [13]:

s = 1

k
([G × u] + D̂βu), (3)

where k is magnetostatic spring constant [8]. When the
nonadiabatic term is absent (β = 0) the vortex is shifted
perpendicularly to the current direction, see inset (a) of
figure 1. At that the vortex and dip displacements linearly
depend on the applied current and only near the critical current,
when the vortex–antivortex pair is nucleated, the dependence
sd(u) is slightly influenced by nonlinear effects, see figure 2(a).
Small rippling, which is observed on the dependence s(u) for
high currents, is a numerical effect and it is caused by weak
pinning of the vortex core on the discretization mesh. When the
nonadiabatic term is taken into account the vortex equilibrium
trajectory is deflected from the described main direction by
angle ε ≈ arctan[β/2 ln(L/�)] along the direction of the vector
u, see inset (b) of the figure 1.

Let us discuss now the deviations from the rigid approach.
When the current is absent the vortex is situated in the disc
centre and the vortex core is surrounded by the ring-shaped

damping was chosen close to natural value α = 0.01 for simulations of
magnetization dynamics and α = 0.1 for simulations which result in a static
relaxed state. The material parameters correspond to the exchange length
� ≈ 5.3 nm. The mesh cell was chosen to be 3 × 3 × h nm for simulations
with disc and 2 × 2 × h for simulations with the nanorings with h being the
sample thickness.
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Figure 1. Profiles of the immobile equilibrium vortices for different values of the applied current. The profiles were taken along the
diameter line perpendicular to the current direction (vertical dashed line on the insets) for case β = 0. The insets demonstrate the 2D
distribution of the out-of-plane magnetization for current close to critical one: β = 0—inset (a) (the corresponding profile is shown with
curve 2), and β = 0.1—inset (b). Dashed isolines correspond to the case mz < 0 and solid isolines—to mz > 0. Trajectory of the vortex
core motion under adiabatically slow increasing of the current is shown as thick solid line in the insets. All presented data were obtained
from the micromagnetic simulations of the permalloy nanodisc with radius L = 100 nm and thickness h = 20 nm.

area where mz < 0, the so-called halo, see figure 1, curve 1.
One should note that the halo effect is absent for the vortex
in infinitesimally thin disc, where the nonlocal magnetostatic
interaction is reduced to the local easy-plane anisotropy [8].
Such a halo has a magnetostatic nature: it appears due to
the nonlocality of the magnetostatic interaction, namely as
a result of interaction between face surface magnetostatic
charges, produced by the vortex profile [8]. The halo
amplitude is represented by the value md(u = 0), see
figure 2(b). When the current is switched on the vortex
shifts and the halo becomes asymmetrical. As the current
is increased the deepest part of the halo transforms to the
dip structure, the dip amplitude increases and dependence
md(u) becomes essentially nonlinear, see figure 2(b). The
nonadiabatic term does not influence the dependence md(u)

appreciably. Even for large nonadiabaticity with β = 0.1
[12] the maximum deviation max

u
|�md(u)| < 2 × 10−3

and relative deviation of the critical current are also small:
�jc/jc ≈ 10−3. So the dependence md(u) for case β > 0 is
not shown in figure 2(b) because it practically coincides with
the corresponding dependence for case β = 0.

The numerically obtained dependence md(u) can be
approximately fitted as follows:

md ∝




u when u � uc,√
1 − u2

u2
c

− 1 when u � uc.
(4)

When the velocity u achieves some critical value uc the
dip structure becomes unstable and depth abruptly achieves its
minimum value md = −1, hence the vortex–antivortex pair is
born. Then the vortex polarity switching occurs accordingly
with the well-studied scenario [21, 23]. It should be noted that
the obtained critical velocity uc = 355 m s−1 is very close to
the critical velocity for moving vortex [35]. To compare the
dip structure of the moving vortex and dip structure of the
immobile vortex under the spin-torque influence the following
numerical experiment was performed: as an initial state the
static vortex shifted by the current j � jc was chosen,
then the current was switched off and the vortex motion to
the disc centre by spiral trajectory was observed. At that
the dependence md(v) was calculated, were v is the velocity of

3
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Figure 2. Parameters of the equilibrium vortex state depending on the applied current (β = 0). (a) shows the vortex (solid line) and dip
(dashed line) displacement from the disc centre depending on the velocity u. The displacements are measured in units of L. (b) shows
dependence of the dip depth md on u: points represent the simulation data and the curve corresponds to equation (4). The open circles
correspond to the dip amplitude of the vortex during its free gyromotion without current versus velocity of the vortex core v. The vertical
dashed line denotes the critical current uc when the vortex–antivortex pair is born.

the vortex core. This dependence is shown in the figure 2(b) by
open circles, where velocity v is measured along axis u. Since
the obtained dependence md(v) is very close to md(u) one can
conclude that the dip structure of the moving vortex is very
similar to the dip structure of the immobile vortex under spin-
torque influence and at that the current parameteru corresponds
to the real velocity v.

To gain some insight into how the interaction with a current
provides a dip creation, one should note that under the influence
of strong enough current, the vortex displacement (3) becomes
essential, hence the rigid approach is not valid. Instead, to
describe in-plane vortex structure, the image-vortex ansatz [36]
can be used:

φv = arg(ζ − s) + arg(ζ − sI) + π/2 − arg s, (5)

where ζ = (x + iy)/L is a coordinate in the XY -plane,
sI = s/s2 is the image vortex coordinate. In the linear
approach on a small vortex shift s, in-plane magnetization
structure can be described as φv(ρ, χ) ≈ χ + sρ sin χ , where
ρ = |ζ − s| and χ = arg(ζ − s) are the polar coordinates,
measured from the centre of the shifted vortex centre (3).
Qualitatively, the dip appears as a result of a balance between
the magnetostatic energy term, Ems = m2

z/2 and the spin-
current one, E a

ST = mz(u · ∇)φv. In such linear approach the
dip corresponds to azimuthal magnon mode:

mz ∼ (u · ∇) φv

2
∼ u cos χ

2ρ
. (6)

Such estimation is valid only far from the vortex centre, and
it corresponds to the asymptote md ∝ u, see (4). In order
to explain nonlinear behaviour, in particular, critical one, it is
necessary to take into account nonlinear interaction between
different magnon modes in the same way as we have done
recently in [37, 38]. The theory of the dip creation will be
published elsewhere.

2.2. Dip formation on a pinned immobile vortex in
asymmetric nanoring

In order to study the role of the vortex out-of-plane structure
in the dip formation process we performed the second kind of
numerical experiment. With this end in view we considered
the shifted vortex without out-of-plane component, the pure
immobile planar vortex. The vortex was pinned on the small
hole placed in the half of the disc radius. The hole radius
rh was chosen to be in the range rh ∈ (ac; rc ∼ �), where
ac is the critical radius of the transition between out-of-plane
and planar vortices [39], rc is vortex core radius and � is the
exchange length (see footnote 5). Thus the hole radius rh is
big enough to make the vortex planar and it is small enough to
prevent significant influence on the out-of-core magnetization
structures. For thin permalloy films ac = 0.37� ≈ 2 nm [39]
and � ≈ 5.3 nm (see footnote 5). That is why we chose rh =
4 nm. For simulation we chose the disc with L = 100 nm and
h = 10 nm. The thickness decrease is needed for increasing
the pinning effect due to decreasing the volume magnetostatic
charges. In spite of the inner hole we suppose that the current
j is spatially uniform in the simulations. Physically this can be
achieved when the hole is filled by a nonmagnetic conductor
with the conductivity close to the conductivity of the magnetic
nanoring. In other words, the hole is considered in terms of
the magnetization but not conductivity.

Let us consider the planar vortex which is pinned at the
inner hole of the ring. In the case of the symmetric hole, the
planar vortex forms a ground state of the disc, see figure 3(b).
In the case of the asymmetric hole, the planar vortex is in
an equilibrium state, which corresponds to the local energy
minimum in the current absence. One can see from the figure 3
that the vortex does not have core or any other out-of-plane
components for the case of zero current. However, under the

4
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Figure 3. In-plane vortex profiles for different current values and vortex positions. Dashed and solid lines correspond to the opposite current
directions. (a) shows profiles of the initially in-plane vortex pinned by the hole displaced by the value L/2 from the disc centre. (b) shows
the similar profiles for the centred vortex. Simulations were performed for the permalloy disc with L = 100 nm and h = 10 nm for the case
β = 0.

influence of the current there appears a dip-like out-of-plane
structure. This dip structure has the following main properties.
(i) The dip structure of the centred vortex is symmetrical
and its sign is changed when the sign of u is changed, see
figure 3(b). (ii) The skewness appears when the vortex is
shifted and its value rapidly increases when the displacement
s increases. (iii) The sign of the dip structure of the shifted
vortex is determined by the sign of the product su and it
has no direct relation to the vortex polarity. (iv) The critical
current uc takes maximal values for the centred vortex and
decreases as the vortex displacement s increases. The detailed
analytical description of the dip development, based on the
magnon mode analysis, is under consideration; (v) dependence
of md(u) for the pinned vortex is well approximated by the
expresstion

md ∝
√

1 − u

uc
− 1 (7)

in the whole range of values of u.
When the effective current velocity u achieves its critical

value uc, the vortex-antivortex pair is born on the edge of the
inner hole. The antivortex falls into the hole (it annihilates
with the pinned vortex), so finally the new vortex appears out
of the hole. Polarity of the new born vortex p is equal to the
polarity of the dip, in other words p = −sign(us). In the case
of centred vortex (s = 0) the polarity p is determined in a
random way.

It is interesting to note that the critical current value
depends on disc thickness and this dependence is different for
free (out-of-plane) and pinned (planar) vortices, see figure 4.
In the case of free vortex the critical velocity uc weakly depends
on thickness while in the case of pinned vortex this dependence
is significant.

Taking into account the nonadiabatic term results the
insignificant decrease in the critical current: for β = 0.1
the relative critical current shift �jc/jc ∼ 10−3 and the
corresponding dependences md(u) are practically the same.

3. Discussion

Typically, to observe the vortex switching, one has to excite
the low-frequency gyroscopical vortex motion. Therefore, it
is difficult to distinguish the vortex motion and the dip creation
process. That is why there exists a general opinion about
dynamical origin of the vortex switching [40]; moreover, there
is ‘universal criterion’ for the vortex switching, according
to which the critical velocity of the vortex uc ∼ 330 m s−1

is required for the vortex core switching [35]. Recently
we predicted the switching for the immobile vortex by a
high-frequency rotating magnetic field [37]: the physical
picture of the dip creation is softening of a high frequency
azimuthal magnon mode due to the rotating field. However
the mechanism of the dip creation in a low-frequency regime
is still opened. In this paper we describes a set-up, which
has all necessary features to study the dip creation process: it
separates the dip creation processes from the vortex motion
and provides the final state with a static vortex, shifted from
the origin of the system.

It is instructive to discuss a relationship between the
mechanisms of the dip creation for a moving vortex and a
static vortex, shifted by a current. If the system allows the
rigid motion with m(r, t) = m(r − X(t)), the gyroscopic
term G = −MS

γ
(1 − mz)(Ẋ · ∇φ) has the same structure

as a spin-torque energy term EST. Therefore, one can talk
about a formal analogy between the vortex velocity Ẋ and the
effective current velocity u. The main difference is that the
vortex motion is possible due to the gyroscopical properties of
the out-of-plane vortex, and the pure planar vortex does not
move at all, while the spin-current interaction is caused by the
in-plane vortex structure, so it is almost the same for the out-of-
plane vortex in disc and the planar vortex in rings. The origin
of the dip creation is, in both cases, the excitations of magnon
modes in the presence of magnetization inhomogeneity caused
by the in-plane vortex structure.

In conclusion, we found that immobile planar vortex in
a nanoring forms a dip structure under the action of adiabatic

5
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Figure 4. Dependences of the dip depth on the applied current for different thicknesses. (a) In-plane vortex is pinned on the hole with
s = 0.5, (b) free out-of-plane vortex. Solid black lines demonstrate the dependence (7). The critical velocity uc = 330 ± 37 m s−1 which was
determined in [35] is shown in the (b) as a vertical strip. The simulations are performed for samples with radius L = 100 nm for case β = 0.

spin current under the threshold value. Above its value the
vortex–antivortex pair can be nucleated, which can cause the
vortex switching process.
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