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Refined empirical stability criterion for nonlinear Schrödinger solitons
under spatiotemporal forcing
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We investigate the dynamics of traveling oscillating solitons of the cubic nonlinear Schrödinger (NLS) equation
under an external spatiotemporal forcing of the form f (x,t) = a exp[iK(t)x]. For the case of time-independent
forcing, a stability criterion for these solitons, which is based on a collective coordinate theory, was recently
conjectured. We show that the proposed criterion has a limited applicability and present a refined criterion which
is generally applicable, as confirmed by direct simulations. This includes more general situations where K(t) is
harmonic or biharmonic, with or without a damping term in the NLS equation. The refined criterion states that the
soliton will be unstable if the “stability curve” p(v), where p(t) and v(t) are the normalized momentum and the
velocity of the soliton, has a section with a negative slope. In the case of a constant K and zero damping, we use
the collective coordinate solutions to compute a “phase portrait” of the soliton where its dynamics is represented
by two-dimensional projections of its trajectories in the four-dimensional space of collective coordinates. We
conjecture, and confirm by simulations, that the soliton is unstable if a section of the resulting closed curve on
the portrait has a negative sense of rotation.
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I. INTRODUCTION

The externally driven nonlinear Schrödinger (NLS) equa-
tion arises in a variety of applications, including charge density
waves [1], long Josephson junctions [2], optical fibers [3–5],
and plasmas driven by rf fields [6]. We use the NLS equation
in the form

iut + uxx + 2|u|2u + δu = R[u(x,t); x,t], (1)

with the perturbation

R = f (x,t) − iβu(x,t), (2)

where f (x,t) is a direct (external) driving force and the second
term accounts for the dissipation. Different forms of the driving
force were considered, e.g., the ac driving, f = ε exp(iωt)
[1,7,8], and the driving by a plane wave, f = ε exp[i(kx −
ωt)] [5,9]. A more general form f = ε exp[ig(x,t) − iωt],
where g is a function of x − vt , was also considered, but no
localized solutions were discussed [9].

The present paper continues the analysis [10] of the soliton
dynamics under the spatiotemporal driving of the form

f (x,t) = aeiK(t)x. (3)
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A discrete version of Eq. (1) was used to model nonlinear
optical waveguide arrays in which discrete cavity solitons can
be excited [11]. In that application, δ is the cavity detuning
parameter, and f (x,t) is replaced with fn(t) = a exp(iφinn),
where n numbers the resonators and φin(t) is the incident angle
of the laser pump light. A biharmonic function φin(t) was
used in order to generate a ratchet effect [12]. In the present
paper, we also obtain a ratchet effect by using a biharmonic
driving (Sec. V). This is interesting because there are only a few
reports on ratchets with nontopological solitons [12–14]; most
of the literature concerns ratchets with topological solitons,
e.g., [15–19].

In Ref. [10], Eq. (1) was simulated using the one-soliton
solution of the unperturbed NLS equation as the initial
condition. The soliton’s position, velocity, amplitude, and
phase served as parameters of the initial condition (IC).

In the case of zero damping and time-independent, spatially
periodic driving of the form f (x) = exp(iKx), the resulting
solitons were observed [10] to display periodic oscillations of
their positions, velocities, amplitudes, and phases. Although
the driving force has zero spatial average, the soliton’s net
motion is unidirectional. (This contrasts with the case of
a perturbation V (x)u with periodic V (x), where the soliton
performs oscillations about a minimum of V (x) [20]).

A large number of sample points in the parameter space
(a,K,δ) were examined by varying the initial amplitude
η0, with the other initial conditions kept fixed. The initial
configuration was seen to evolve into a stable soliton only
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when η0 was taken from one of the “stability windows.” For
η0 outside the stability windows, the solitonic initial condition
was observed to decay or break into two or more fragments,
which would subsequently decay [10].

As a first step toward the understanding of the observed
dynamics of solitons, the authors of Ref. [10] proposed an
empirical stability criterion based on a collective coordinate
(CC) description. The collective coordinate analysis produces
a set of coupled nonlinear ordinary differential equations
(ODEs) for the soliton’s position q, amplitude η, normalized
momentum p, and phase �. An approximate solution of this
dynamical system is given by trigonometric functions and can
be obtained explicitly, except when the initial condition η0 is
chosen near one of the stability boundaries. In the latter case,
the collective coordinate equations had to be analyzed numer-
ically and their solutions were found to be highly anharmonic.

We have positively tested the predictions of the proposed
stability criterion by simulations [numerical solutions of the
full NLS Eq. (1)] for many classes of initial conditions.
However, the tests have turned out to be negative when the
initial momentum was too large, i.e., p0 > K for positive K

(or p0 < K for negative K). In this paper, we therefore propose
a refined stability criterion, which, as we show, makes correct
predictions not only for the case K = constant (with all classes
of initial conditions), but also for harmonic and biharmonic
K(t). The new criterion is a sufficient condition, which states
that the soliton will be unstable in simulations if the “stability
curve” p(v) has a branch with a negative slope. This curve is
obtained as a parametric plot of the normalized momentum of
the soliton,

p = P (t)

N (t)
(4)

versus its velocity

v = q̇(t). (5)

Here P = 4ηp is the canonical momentum of the soliton, and
N = 4η is the norm which is canonically conjugated to the
soliton’s phase �(t); see Sec. II. In the original criterion [10],
the stability curve was defined as P (v). At the end of Sec. III,
we present an example which demonstrates by an analytical
calculation that the normalized momentum p, instead of
the canonical momentum P , has to be used in the stability
criterion.

It is important to emphasize that the soliton’s stability or
instability is judged not on the basis of the stability of solutions
to the collective coordinate equations. (The latter are stable in
most cases). The soliton’s stability is rather decided on the
basis of some of its properties, which are captured by the p(v)
curve of the corresponding collective coordinate solutions.
The proposed empirical criterion reproduces the numerically
observed positions of the stability windows to an accuracy of
better than 1%, despite the complexity of the stability diagram
in the parameter space [10].

The stability criteria for the homogeneous (translation
invariant) NLS equation available in the literature are restricted
to (a) bright solitons, i.e., solutions decaying to zero at the
spatial infinities, with time dependencies of the form ei	t (and
those reducible to this form by a Galileian transformation); and
(b) traveling dark solitons, i.e., solutions approaching nonzero

constant values as x → ±∞. The criteria are insensitive to the
particular form of the nonlinearity as long as it is conservative
and U (1) invariant, i.e., as long as the equation does not include
any damping or driving terms.

In the case of the bright solitons of the form u(x,t) =
us(x)ei	t , the Vakhitov-Kolokolov criterion states that if
the corresponding energy Hessian has only one negative
eigenvalue, then the soliton is stable if dN/d	 > 0 and
unstable otherwise [21–23]. Here N = ∫ |u|2dx; depending on
the physical context, N is referred to as the number of particles
contained in the soliton or the total power of the optical beam.
(See also [24] for the Hamiltonian-versus-number of particles
formulation of this criterion.)

In the case of dark solitons of the form u(x,t) = u(x −
Ṽ t), with |u|2 → ρ0 as |x| → ∞, a similar criterion [25–28]
involves the (renormalized) field momentum

P̃ = i

2

∫
(u∗

xu − uxu
∗)

(
1 − ρ0

|u|2
)

dx. (6)

The dark soliton traveling at the constant velocity Ṽ is stable
if dP̃ /dṼ < 0, and unstable otherwise.

Some parts of the stability analysis of the traveling dark
solitons [28] can be carried over to the case of the traveling
solitons of the NLS equation with a driving term. Namely,
one can show [29] that a pair of linearized eigenvalues crosses
from the imaginary to real axis at the value Ṽ where dP̃ /dṼ =
0. The sign of the derivative dP̃ /dṼ required for stability
depends on the type of the soliton; some classes of solitons
require dP̃ /dṼ < 0, whereas other classes are stable when
dP̃ /dṼ > 0. (An additional complication is the presence of
oscillatory instabilities where two eigenvalues collide on the
imaginary axis and acquire opposite real parts. The oscillatory
instabilities do not affect the sign of dP̃ /dṼ .)

In these analyses, each point of the curve P̃ (Ṽ ) represents a
soliton traveling at a particular constant velocity Ṽ ; therefore
the curve is a characteristic of the whole family of solitons.
The values of Ṽ where dP̃ /dṼ = 0 break the family into
parts with different stability properties. In contrast to this, each
oscillatory solution of the collective coordinate equations [10]
has its own, individual p(v) curve, the whole of which is
traced periodically in time. The shape of this curve determines
whether the corresponding soliton is stable or not.

The present paper has several goals: First, we propose a
refined stability criterion. Second, we study the internal struc-
ture of the instability regions. We will demonstrate that these
regions consist of subregions characterized by instabilities
of different types. The existence of the subregions will be
predicted by the analysis of the reduced dynamical system and
confirmed by direct simulations of the full partial differential
equation (PDE) (Sec. III). In obtaining the reduced dynamical
system, we modify the original collective coordinate approach
of Ref. [10] (Sec. II). In addition to producing bounded
trajectories (a property essential for the stability analysis),
the modified approach provides a much easier derivation
of the canonical soliton momentum and the Hamilton function
in terms of the canonical variables (Sec. II).

Third, we demonstrate that a certain “phase portrait” of the
soliton on the complex plane can be used as an alternative
stability diagnostic (Sec. III). However, the phase portrait
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requires the phase of the soliton to be periodic in time. This
can be achieved by the above-mentioned modification of the
original collective coordinate approach [10] in which the phase
was not periodic, in contrast to the other three collective
coordinates.

Finally, we explore the applicability of our refined stability
criterion to inhomogeneous forcings of the form f (x,t) =
a exp[iK(t)x] in Eq. (3). We will start with a harmonically
oscillating K(t), with and without the damping term in the
right-hand side of (1) (Sec. IV). After that, in Sec. V, we
will consider a biharmonic K(t) with a broken temporal
symmetry. (The temporal symmetry breaking will accompany
the breaking of the spatial symmetry by the inhomogeneous
driving.)

II. MODIFIED COLLECTIVE COORDINATE THEORY

The one-soliton solution of the unperturbed NLS equation
is given by [30]

u(x,t) = 2iη sech[2η(x − ζ )]e−i(2ξx+φ), (7)

where η and ξ are real parameters (η > 0); ζ = ζ0 − 4ξ t gives
the coordinate of the soliton’s center, and φ = φ0 + (4ξ 2 −
4η2 − δ)t is the soliton’s phase. The collective coordinate
theory of Ref. [10] assumed that for sufficiently small
perturbations R in Eq. (2), the soliton shape and dynamics
can be described, approximately, by Eq. (7), where η(t), ξ (t),
ζ (t), and φ(t) are functions of time.

We now show that the following modification of this ansatz
[31,32] provides a considerable improvement of the collective
coordinate theory of Ref. [10]:

u(x,t) = 2iη sech[2η(x − q)]ei[p(x−q)−�]. (8)

Equation (8) is obtained from (7) by setting −2ξ = p, ζ = q,
and φ = � − 2ξζ = � + pq. Here only the last replacement
is essential for the above-mentioned improvement of the
collective coordinate theory. The four collective coordinate
equations of Ref. [10] are replaced with

η̇ = −2βη − π

2
a sechA cos B, (9)

q̇ = 2p + π2

8

a

η2
sechA tanh A sin B, (10)

ṗ = −2aA sechA cos B, (11)

�̇ + pq̇ = p2 − 4η2 − δ + π

2

aA

η
sechA tanh A sin B, (12)

with

A(t) = π

4η(t)
[K(t) − p(t)], (13)

B(t) = �(t) + K(t)q(t). (14)

The new formulation has the following advantages.
(i) Consider the Lagrangian for Eqs. (9)–(12),

L= 4η�̇ + 4ηpq̇ − 4ηp2 + 16
3 η3 + 4δη − 2πa sechA sin B.

(15)

The momentum conjugate to the phase � is

∂L

∂�̇
= 4η, (16)

which is equal to the norm (
∫ |u|2 dx) of the waveform (8).

The momentum conjugate to the soliton’s position is

∂L

∂q̇
= 4ηp. (17)

The advantage of the new formulation is that this is equal to
the field momentum of the configuration (8),

P = i

2

∫ +∞

−∞
(u∗

xu − uxu
∗)dx, (18)

whereas in Ref. [10] the second canonical momentum was
defined by ∂L/∂ṗ = −4ηq, which did not have any obvious
physical interpretation.

If the dissipative term −iβu in (2) has a nonzero coefficient,
we have to use the generalized Euler-Lagrange formalism with
the dissipation function

F = iβ

∫ +∞

−∞
(uu∗

t − u∗ut )dx. (19)

Substituting (8) in (19), we obtain

F = −8βη(�̇ + pq̇). (20)

The generalized Euler-Lagrange equations are

d

dt

∂L

∂�̇
− ∂L

∂�
= ∂F

∂�̇
, (21)

where � represents each of the four collective coordinates η,
q, p, and �.

(ii) Since P = 4ηp is the canonically conjugate momentum
for q, the Legendre transform to the canonical Hamiltonian is
easily performed: H = N�̇ + P q̇ − L. This gives

H = 1

N
P 2 − 1

12
N3 − δN + 2πa sechA sin B. (22)

In Ref. [10], this Hamiltonian could only be obtained via a
canonical transformation.

When the forcing f (x) = aeiKx is time independent and
damping β = 0, the collective coordinates η and p perform
periodic oscillations, whereas q(t) and �(t) are given by peri-
odic functions superimposed over linearly growing functions
of t . In contrast to this, the variable φ = � + pq used in
Ref. [10] will obviously exhibit oscillations with a (linearly)
growing amplitude.

III. TIME-INDEPENDENT, SPATIALLY PERIODIC FORCE

Our approach consists in the numerical solution of the
collective coordinate equations (9)–(12) for representative
values of the parameters and the initial conditions η0, q0,
p0, and �0. Each collective coordinate orbit is then used to
compute p(t) and v(t) in Eqs. (4) and (5), and to plot p against
v. If some part of this “stability curve” has a negative slope,
we predict that the soliton will become unstable in simulations
of the PDE (1) starting with the initial condition (8), with the
same η0, p0, q0, and �0.

Since the collective coordinate approximation can work
only for small perturbations, we choose a small driving ampli-
tude a = 0.05 in f (x) = aeiKx . We also take K = 0.1, which
means that the spatial period of the forcing L = 2π/K � 1.
We are interested in periodic solutions and, therefore, we set

026614-3



MERTENS, QUINTERO, BARASHENKOV, AND BISHOP PHYSICAL REVIEW E 84, 026614 (2011)

-0.03 -0.02 -0.01 0 0.01
v

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006
p

(a)

-0.2 -0.1 0 0.1 0.2
v

-0.2

-0.15

-0.1

-0.05

0

p

(b)

0 1 2 3 4 5
v

-0.04

-0.02

0

0.02

0.04

p

(c)

FIG. 1. Stability curve p(v) corresponding to a = 0.05, K = 0.1,
δ = −1, and β = 0. The initial conditions for the Eqs. (9)–(12) were
q0 = p0 = �0 = 0 and (a) η0 = 0.8, (b) η0 = 0.65, (c) η0 = 0.1. The
integration time tf = 1000.

the damping parameter β = 0. Damped oscillatory solutions
were already considered in Ref. [10].

For δ � 0, the p(v) curve predicts only unstable solitons,
which is confirmed by simulations. For δ < 0, there are
typically several stability regions, which grow as |δ| is
increased, while the parameters a and K are fixed [10]. We
concentrate here on the simplest case with only one stability
and one instability region. Namely, we choose δ = −1, q0 =
p0 = �0 = 0 for which the soliton solutions are predicted
to be stable if η0 � η(1)

c = 0.684 [Fig. 1(a)] and unstable for
η0 < η(1)

c . This is confirmed by our simulations of the PDE (1)
to an accuracy of better than 1% in η(1)

c .
The range of initial amplitudes η0, for which the solutions

of Eqs. (9)–(12) feature a p(v) curve with a descending

branch, can be divided into two subintervals, 0 < η0 < η(2)
c and

η(2)
c < η0 < η(1)

c , where η(2)
c = 0.288. In the upper subinterval,

(η(2)
c ,η(1)

c ), the curve p(v) exhibits two long branches, one with
a positive and the other with a negative slope [Fig. 1(b)].
In the lower subinterval, the positive-slope branch is short
and very steep [Fig. 1(c)]. The difference in the shape of the
stability curves suggests different types of instability in the
two subregions; however, the way in which the instabilities
are different cannot be deduced from the p(v) curve alone.
To gain further insight into this difference, we plot a phase
portrait for the dynamical system (9)–(12). The vertical and
horizontal axes in the portrait are chosen so that they admit a
clear interpretation in terms of the full PDE, Eq. (1). To this
end, we first transform to the frame of reference moving with
the velocity Vf :

u(x,t) = �(X,t)eiKx, X = x − Vf t, (23)

where Vf = 2K . Equation (1) is taken to an NLS equation
driven by a space-time independent external force:

i�t + �XX + 2|�|2� + (δ − K2)� = a. (24)

[This equation was previously studied in a different context
[7,8,33,34] and two static soliton solutions were obtained
explicitly [34]. Unlike [7,8,33,34], we focus here on moving
solitons of Eq. (24).]

Under the transformation (23), the collective coordinate
ansatz (8) becomes

�(X,t) = 2iηsech[2η(X +Vf t − q)]e−i[(K−p)(X+Vf t)+pq+�].

(25)

The η(t) and p(t) components of the oscillatory solutions of
(9)–(12) are periodic with period T , whereas q and � are
of the form q(t) = vt + q(p)(t), �(t) = −αt + �(p)(t), where
q(p)(t) and �(p)(t) are T -periodic functions and α is a constant
[10]. The corresponding soliton given by (8) and (25) has the
mean velocity v in the original frame of reference, and v − Vf

in the moving frame.
At the point x = vt [or, equivalently, at X = (v − Vf )t],

the function (25) has the following time dependence:

� = 2iη sech[2η(vt − q)]e−i[Kvt−p(vt−q)+�]. (26)

The function (26) is a collective coordinate counterpart of
the � field at the center of the soliton solution of Eq. (24).
Comparing Eq. (26) to the function �(X,t)|X=vt−Vf t obtained
in the direct numerical simulations of the full PDE (1), one can
assess the validity and accuracy of the collective coordinate
approximation. For this reason, we choose the complex
function (26) as a representative of the four-dimensional
dynamics, and plot its real versus imaginary part to generate
the corresponding phase portrait. The soliton dynamics is
described by the resulting orbits of the phase portrait.

One can readily verify that these orbits are closed. Indeed,
the modulus of the function (26) is periodic with period T .
Therefore, to demonstrate the closure, one just needs to show
that the argument of � changes by an integer multiple of
2π over the period. We have arg � = (α − Kv)t − p(p)q(p) −
�(p), where the last two terms are T periodic. As for the first
term, the constants v and α are found as the coefficients of the
linearly growing components of q(t) and �(t), respectively.
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FIG. 2. The phase portrait of the system (9)–(12) with a, K , δ,
and β as in Fig. 1. Shown is Im�(X = vt − Vf t,t) vs. Re�(X =
vt − Vf t,t). The large ellipse corresponds to η0 = 0.8, the horseshoe
to η0 = 0.65, and the small ellipse to η0 = 0.1. Other initial conditions
are as in Fig. 1. The separatrix is shown by the dotted curve. The filled
and open circles are stable and unstable fixed points, respectively.

The numerical solution of Eqs. (9)–(12) verifies α − Kv =
2π/T in the stability range η0 � η(1)

c ; α − Kv = −2π/T in
the lower instability subinterval 0 < η0 < η(2)

c ; and Kv − α =
0 in the upper instability subinterval η(2)

c < η0 < η(1)
c . These

relations between v and α hold to a numerical accuracy of
O(10−5).

Trajectories resulting from initial conditions in the interval
η0 > η(1)

c are ellipses, with a positive sense of rotation (Fig. 2).
The ellipses enclose a stable and an unstable fixed point
on the real axis at about +1 and −1, respectively. (For the
definition and calculation of these points, see the Appendix).
Figure 3(a) compares the soliton amplitude η(t) from the
collective coordinate theory to the amplitude measured in the
direct simulations of Eq. (1).

For the upper instability subinterval η(2)
c < η0 < η(1)

c , the
phase trajectory is a horseshoe (Fig. 2). This curve consists of
an outer part with a positive sense of rotation and an inner part
with a negative sense of rotation relative to the origin. The two
parts are correlated with the two branches with positive and
negative slopes, respectively, of the p(v) curve in Fig. 1(b). The
soliton instability is seen in the simulation result in Fig. 3(b).
Note that the first harmonic vanishes after about 30 time units,
while the second harmonic persists. Eventually the soliton
decays: the amplitude approaches zero while the width tends
to infinity.

For the lower instability interval 0 < η0 < η(2)
c , the situation

is quite different, both in the collective coordinate theory and
in the simulations: The phase portrait features an ellipse, but
with the negative sense of rotation (Fig. 2). Moreover, the
ellipse is much smaller than the one arising in the stability
region so that it encloses only one fixed point. This fits with
the simulations in which the soliton remains metastable for a
relatively long time, exhibiting a periodic modulation of the
oscillation amplitude [Fig. 3(c)], but then the instability sets
in [Fig. 3(d)].

So far we have varied η0, with p0 = q0 = �0 = 0 kept
fixed. We now consider the stability diagram in the η0-p0 plane
near the critical value η(1)

c , which separates the stability and the
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FIG. 3. Soliton amplitude η(t) from the collective coordinate
theory (solid lines) and from the simulations (dashed lines). The
parameters and the initial conditions are the same as in Fig. 1. (a)
η0 = 0.8, (b) η0 = 0.65, (c) η0 = 0.1 (shown are results for early
times 0 � t � 100); (d) η0 = 0.1 (shown are simulation results for
late times 600 � t � 1000.)

upper instability interval. Figure 4 shows that a nonzero value
of the normalized momentum p0 has a stabilizing effect on the
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0.63 0.64 0.65 0.66 0.67 0.68 0.69

η
0

-0.4

-0.2

0

0.2

0.4
p 0

FIG. 4. Stability diagram near η(1)
c = 0.684, with q0 = �0 = 0.

Parameters: a = 0.05, K = 0.1, δ = −1, β = 0. Circles: unstable
soliton. Pluses: stable soliton. The horizontal line marks p0 = K . For
this value of p0, the p(v) curve collapses into a point.

soliton; including nonzero p0 enlarges the stability domain.
The curve which separates the stability and instability regions
is roughly a parabola.

Finally we would like to emphasize the crucial role
played by the normalized momentum p in the stability
analysis—rather than by the canonical momentum P (as was
suggested in [10]). We have established that the empirical
stability criterion proposed in [10] disagrees with the results of
numerical simulations when the initial normalized momentum
is too large, i.e., p0 > K (for positive K). Let, for instance,
the parameters of the equation take the same values as
in Fig. 1 (a = 0.05, K = 0.1, δ = −1, and β = 0), and
take the same initial conditions as for the stable stationary
solution in the Appendix (η0 = 0.5

√
K2 − δ, �0 = π/2,

q0 = 0), except that now p0 = K + d, with 0 < d < 0.2.
Here the numerical solutions of the collective coordinate
equations can be very well approximated by p(t) = p0 +
ap(1 − cos �t) and v(t) = v0 + av(1 − cos �t), where p0, v0,
ap, and av > 0. Thus p(v) is a straight line with the slope
ap/av > 0. This predicts stability, and so does the orbit in
the phase portrait which is a small ellipse with a posi-
tive sense of rotation around the stable fixed point at about
+1 on the real axis. The stability is confirmed by simulations.
However, when the momentum P = 4ηp is used, the situation
is different. This time, η(t) can be expressed via p(t) by using
the exact relation η = η0(p0 − K)/(p − K), (p �= K), which
is obtained from Eqs. (9) and (11) where one integration has
been carried out. Substituting the above expression for p(v),
one can check that P decreases when v increases, and vice
versa. Thus the slope dP/dv < 0 predicts instability, which
disagrees with the simulations.

IV. HARMONIC K (t)

As stated in Sec. I, one of the aims of this paper is to verify
whether the stability criterion p′(v) > 0 remains applicable to
time-dependent forces of the form f (x,t) = aeiK(t)x . In this
section, we consider the case of a harmonically modulated
forcing wave number,

K(t) = k sin(ωt + θ ), (27)
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FIG. 5. Collective coordinate results for harmonic K(t), with no
damping. a = 0.05, k = −0.1, ω = 0.02, θ = 0, δ = −3, β = 0,
q0 = p0 = 0, �0 = π/2, η0 = 1. (a) q(t) exhibits ωi oscillations
modulated by the frequency ω. Shown is the interval 0 � t �
Td = 2π/ω. (b) q(t) exhibits ω oscillations modulated by the
frequency ωl = 2π/Tl . Here 0 � t � 8000. (c) Stability curve p(v)
for Td/2 − 5 � t � Td/2 + 10. The arrow points to the section of the
curve with a negative slope loop.

first without a damping term in the NLS equation (β = 0),
then with the damping term (β > 0).

We choose the same parameters as in Sec. III: a = 0.05, k =
−0.1, which implies |K| 	 1. In order to be in the adiabatic
regime, we choose a small modulation frequency ω = 0.02.
Finally, we let θ = 0 and choose initial conditions q0 = p0 =
0, η0 = 1, and �0 = π/2.

The numerical solutions of the collective coordinate equa-
tions (9)–(12) exhibit oscillations with three very different
frequencies in their spectrum. This is most explicit in the
behavior of q(t) [Figs. 5(a) and 5(b)]. First, there are intrinsic
oscillations with the frequency ωi ; these have a period Ti of the
order of 10, which is similar to the oscillations in the case of
the constant K discussed in the previous section. Second, there
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are oscillations with the driving frequency ω whose period
Td = 2π/ω ≈ 314. Finally, there are oscillations with a very
low frequency ωl and very long period Tl ≈ 8000 [Fig. 5(b)].
The resulting stability curve p(v) exhibits many small loops,
which have a short section with a negative slope. An example
is given in Fig. 5(c). (For clarity, the curve is plotted only over
a short time interval). The negative slope predicts instability;
this is confirmed by our simulations of the full PDE.

Stable solitons can be obtained by changing η0 in such a
way that the loops do not arise. This is achieved by suppressing
the intrinsic oscillations, since their period Ti ≈ 10 is of the
same order as the time scale of the loops; see Fig. 5(c). The
intrinsic oscillations disappear when we choose η0 = √−δ/2
[Figs. 6(a) and 6(b)]. In this case, η(t) performs very small
oscillations around η0 and the two dominant terms on the
right-hand side of Eq. (12), namely −4η2

0 and −δ, cancel
each other. Figure 6(c) demonstrates that the small loops have
indeed disappeared.

The resolution of Fig. 6(c) does not allow verification of
whether there are sections with negative slope near the turning
points of the stability curve. We now show that there cannot
be any, as the curve develops cusps at the turning points.
Consider the region around one of the maxima (or minima)
of the ω oscillations of the collective coordinates [Fig. 6(a)].
The functions q(t), η(t), etc. are not symmetric with respect to
tm (position of the extremum) due to the existence of the very
slow ωl oscillations. The same holds for p; hence,

p(t) =
{
pm − Cl(t − tm)2 for t � tm,

pm − Cr (t − tm)2 for t � tm,
(28)

with Cl �= Cr . For the velocity v(t) = q̇(t), the asymmetry
is negligible, compared to the asymmetry of p(t), because
the time derivative q̇ contains a factor ωl 	 1. Thus v(t) =
vm − b(t − tm)2 for both t � tm and t � tm. By eliminating
t , we obtain p = pm − Cl(vm − v)/b as v increases up to its
maximal value vm, and v = vm − Cr (vm − v)/b as v decreases
from vm. Thus the stability curve p(v) has a cusp with two
different (but positive) slopes, Cl/b and Cr/b, at the turning
point v = vm. The absence of segments of the curve with
dp/dv < 0 predicts stability for the soliton. This is confirmed
by the simulations of the PDE (1).

When the damping term −iβu is included in the right-
hand side of the NLS equation (1), the collective coordinate
dynamics simplifies. Namely, both the intrinsic oscillations
and the low-frequency oscillations are damped out from
solutions of the collective coordinate equations after a transient
time ttr = 1/β. After this transient, all collective coordinate
oscillations become locked to the driving frequency ω. The
stability curve in this case consists of two nearly straight lines,
which form sharp cusps at both ends [Fig. 7(a)]. Thus there are
no sections with a negative slope and the soliton is predicted
to be stable. This is confirmed by the simulations of the PDE.
For long times (t � ttr), the average soliton velocity v slowly
approaches zero [Fig. 7(b)]; this behavior is independent of
the initial conditions. Thus there is no unidirectional motion
of the soliton for long times; the reason will be established in
the next section.

As β is decreased, the stability curve becomes wider and the
decay of v to zero faster. On the contrary, as β is increased, the
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FIG. 6. Collective coordinate results for harmonic K(t), with no
damping. Same parameters and initial conditions as in Fig. 5, but
η0 = √−δ/2. (For this choice, the intrinsic ωi oscillations vanish.) (a)
The amplitude η(t) exhibits no ωi oscillations, only the ω oscillations
modulated by the ωl oscillations, which are hardly visible for 0 � t �
1000. (b) In the interval 0 � t � 8000, both the ω and ωl oscillations
are observed. (c) Stability curve for 0 � t � Td .

stability curve becomes narrower, and the decay of v to zero
slower. However, for β above a critical value βc (βc ≈ 0.035
for the parameters of Fig. 7), the collective coordinate solutions
become unstable. Direct simulations confirm the soliton’s
instability.

V. BIHARMONIC DRIVING: RATCHETS

The simplest ratchet models consider a pointlike particle
in a periodic potential driven by an ac force, f (t). Under
certain conditions related to the breaking of symmetries,
unidirectional motion of the particle can take place despite
the applied force having a zero temporal average [35–39].
Particle ratchets were generalized to nonlinear field theoretic
systems, in which particles are replaced by solitons [40–46].
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FIG. 7. Collective coordinate results for harmonic K(t), with
nonzero damping. The same data is used as in Fig. 6, but η0 = 0.866 ≈√−δ/2, β = 0.01. (a) Stability curve p(v) for 3Td � t � 4Td .
(b) q(t) for 10 000 � t � 100 000.

In particular, solitons in nonlinear Klein-Gordon systems can
move on the average in one direction, if either a temporal or a
spatial symmetry is broken.

A temporal symmetry, namely, a time-shift symmetry,
is broken by a biharmonic force [47,48]. In this case, the
mechanism of the ratchet effect was clarified by a collective
coordinate theory employing the soliton position and width as
collective coordinates [15,16,49]. Due to the coupling between
the translational and internal degrees of freedom, energy is
pumped nonuniformly into the system, generating a unidi-
rectional motion. The breaking of the time-shift symmetry
gives rise to a resonance mechanism that is present whenever
the soliton oscillation spectrum comprises at least one of the
frequency components of the driving force.

In this section, we investigate whether the NLS solitons
show a behavior similar to the Klein-Gordon kinks. Our
motivation here stems from the fact that the NLS solitons
are nontopological, whereas the vast majority of reports on
soliton ratchets have so far focused on topological solitons.

We consider the NLS equation (1) where the perturbation

R = f (x,t) − iβu (29)

has the form

f (x,t) = a1e
iK1(t)x + a2e

iK2(t)x, (30)

with

K1 = k1 sin(ωt), K2 = k2 sin(2ωt + θ ). (31)

Consider first the single-harmonic case, a2 = 0. When t �
ttr = 1/β, the soliton oscillations are locked to the driving
frequency ω and are independent of the initial conditions (see
Sec. IV). Thus there exists a global solitonic attractor.

We now perform a symmetry analysis [12,48]. The per-
turbed NLS equation is invariant under the symmetry operation

S : t �→ t + T/2, x �→ −x. (32)

At the same time, the transformation S changes the sign of the
soliton velocity v(t) = Ẋ(t). The soliton position is defined by

X(t) =
∫ +∞
−∞ dx xρ(x,t)∫ +∞
−∞ dx ρ(x,t)

, (33)

with

ρ(x,t) = ||u(x,t)|2 − |ubg(x,t)|2|. (34)

Here ubg(x,t) = abg(t) exp(iK1x) is the background field to
which the soliton decays as |x| → ∞ [10,12]. When |u(x,t)|2
from the simulations is plotted, the soliton sits on a shelf with a
homogeneous intensity |abg(t)|2. The shelf has little influence
on the soliton dynamics [10]; this is why the collective
coordinate theory is in a good agreement with simulations,
despite ignoring the presence of the background.

Since the attractor is global, the transformation S maps
it onto itself. This implies that the average velocity on the
attractor is zero. The soliton performs periodic oscillations
about its equilibrium position, which are reproduced by the
collective coordinate theory [Fig. 7(b)].

In order to construct a solitonic ratchet, i.e., obtain a stable
soliton with v �= 0, it is necessary to break the invariance under
the operation S. The simplest way to do this is to employ the
biharmonic driving in Eq. (30) with a1 �= 0 and a2 �= 0. The
collective coordinate equations (9)–(12) can easily be extended
to the case of the forcing function f including two terms. In
particular, Eq. (9) is replaced with

η̇ = −2βη −
2∑

i=1

ai

π

2
sechAi cos Bi, (35)

where

Ai = π

4η(t)
[Ki(t) − p(t)], (36)

Bi = �(t) + Ki(t)q(t), (37)

while the Ki are as in Eqs. (31). The collective coordinate
equations for q̇, ṗ, and �̇ are modified in a similar way.

Since the collective coordinate description is accurate only
for small perturbations, we take small driving amplitudes
a1 = a2 = 0.05. We choose a very small driving frequency,
ω = 0.002, in order to remain in the adiabatic regime. If the
damping coefficient β is chosen to be too large, the soliton
amplitude η quickly relaxes to zero, while q(t) and �(t)
rapidly go to infinity. For example, for the parameters δ =
−3, k1 = k2 = k = 0.001, θ = 0, and the initial conditions
η0 = 1, q0 = p0 = 0, �0 = π/2, this instability occurs when
β > 0.065. On the other hand, if β is chosen too small (e.g.,
β = 0.01), the average soliton velocity grows without bound
over sufficiently long integration times (tf ∼ 105). Thus we
can expect a stable ratchet effect only for intermediate values
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of β, for instance, β = 0.04. As we find that v ∼ k, a larger
ratchet effect can be obtained by increasing k. However, when
k exceeds a certain critical value kc, the average velocity starts
to grow slowly with time. (For the chosen parameter values,
kc = 0.002).

Using the parameter values and initial conditions for which
the collective coordinate equations exhibit stable solutions, we
perform direct simulations of Eq. (1). Our aim is to test whether
an initial wave form (8) will evolve into a stable solitary wave
over the time ttr = 1/β. However, it turns out that the initial
structure evolves rapidly immediately after the start of the
simulation and quickly decays to zero.

In order to obtain stable solitary waves, we need to improve
the initial conditions. This can be achieved by setting the initial
conditions equal to the mean values about which the collective
coordinates oscillate, once the transients have elapsed. These
mean values can be obtained from an approximate analytical
solution of the collective coordinate equations. We let

q = vt + Cq, p = p̄ + Cξ ,
(38)

η = η̄ + Cη, � = �̄ + C�,

where Cx represent oscillations with amplitude ax and zero
mean. We choose ω = O(10−3), and k1 = k2 = k = O(10−3).
The other parameters (δ,a1,a2,β) do not have to be small for
the perturbation analysis that follows and can therefore be
chosen to be O(1). By substituting in the collective coordinate
equations, we retain only the leading terms in the perturbation
series. This gives

p̄ = 0, p = a1K1(t) + a2K2(t)

(a1 + a2)
= O(10−3), (39)

η̄ = 1

2

√−δ, aη = O(10−6), (40)

�̄ = arccos

[ −4βη̄

π (a1 + a2)

]
, a� = O(10−3), (41)

q = vt + k

ω

2a1

a1 + a2
[1 − cos(ωt)] + k

2ω

2a2

a1 + a2
(42)

× [1 − cos(2ωt + θ )], v = O(10−6). (43)

Equations (39)–(42) are in a very good agreement with the
numerical solution of the collective coordinate equations. We
note that the constants p̄, η̄, and �̄ do not depend on the
relative phase θ , but the variable components of q(t) and p(t)
do.

The improved initial conditions are now p0 = p̄ = 0, η0 =
η̄, �0 = �̄, and q0 = 0. After a transient time, the numerical
trajectory settles to the solution (39)–(42). This yields v(t) =
q̇ = 2p, and thus p(v) = 1

2v is a straight line with positive
slope. Our stability criterion predicts the stability of the soliton
and simulations of the PDE confirm this [Figs. 8(a) and 8(b)].
As v is very small, the ratchet effect is not visible on the
time scale of Figs. 8(a) and 8(b), but can be observed over
longer simulation times tf ≈ 30Td [Fig. 8(c)]. The soliton
collective coordinate η(t) oscillates about 0.866 025 in the
interval [0.866 024,0.866 026], which is in agreement with
Eq. (40). In the simulations, η(t) oscillates about 0.87 363 in
the interval [0.87 305,0.87 390].

The ratchet effect is also observed for higher driving
frequencies (e.g., ω = 0.01 and 0.02). However, as ω is
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FIG. 8. Soliton position q(t): (a) from the collective coordinate
theory, (b) from simulations, and (c) the ratchet effect in the collective
coordinate theory visible over long times (tf ≈ 30 periods). Parame-
ters: a1 = a2 = a = 0.05, k1 = k2 = k = 0.002, δ = −3, ω = 0.002,
θ = 0, and β = 0.08, with initial conditions η0 = η̄, q0 = p0 = 0,
�0 = �̄.

increased, both v and the last two terms in Eq. (42) decay
in proportion to 1/ω. Therefore, both the instantaneous and
the average velocity become small and difficult to detect when
ω is large.

It is important to emphasize here that our ability to
determine the initial conditions leading to stable solitons is
due to the availability of the explicit solution of the collective
coordinate equations and our stability criterion. It would be
very difficult to localize the corresponding small basin of
attraction by scanning the parameters of the initial conditions
in the numerical simulations of the PDE.

Finally, we discuss the dependence of the average velocity
v on the relative phase θ in the biharmonic driving force (31).

026614-9



MERTENS, QUINTERO, BARASHENKOV, AND BISHOP PHYSICAL REVIEW E 84, 026614 (2011)

As expected for a ratchet system with a biharmonic driving
[48,49], v(θ ) is sinusoidal with the period 2π . It attains its
maximum value near θ = 0 and its small negative minimum
value near θ = π . The size and shape of the basin of attraction
around (η̄,�̄) also depend strongly on θ ; this effect will be
examined in a future work.

VI. SUMMARY

We have formulated a refined empirical stability criterion
for the driven NLS solitons. Unlike stability criteria available
in the literature, the new criterion is based on a collective coor-
dinate (CC) description. Solving (analytically or numerically)
evolution equations for the four collective coordinates, we use
the resulting trajectories to evaluate the normalized soliton
momentum p(t) and the soliton velocity v(t). These give a
parametric “stability curve,” p(v).

Whenever the curve p(v) has a section with a negative
slope (dp/dv < 0), we observe the instability of the soliton
in direct numerical simulations. We, therefore, conjecture that
the availability of a section with a negative slope is a sufficient
condition for the instability of the soliton. We do not have
a mathematical proof of this conjectured criterion; however,
we have verified it in a variety of situations using constant,
harmonic, and biharmonic functions K(t), with or without the
damping term.

The establishment of a theoretical justification for this
conjecture is a subject for future work, first for the cases
of K(t) which we have considered in this paper, then for
a general function K(t). One of the foreseen difficulties is
related to the fact that the soliton solution of the driven
NLS equation does not vanish as x → ±∞ because the
perturbation f (x,t) = a exp[iK(t)x] does not decay to zero
in these limits. On the other hand, our collective coordinate
theory is based on a soliton ansatz which vanishes as x →
±∞.

For the case of constant K and zero damping, all collective
coordinates perform periodic motions. This allowed us to
compute a phase portrait, which consists of closed orbits on
a complex plane. The soliton evolution is described by the
motion along one of these orbits. We observe that the sense of
rotation of the orbit is correlated with the stability/instability
of the soliton (determined in simulations of the full PDE).
Namely,

(i) if the orbit is an ellipse with a positive sense of rotation,
the soliton is stable;

(ii) if the orbit is a horseshoe where the inner part has a
negative and the outer part a positive sense of rotation, the
soliton is unstable and disintegrates very quickly; and

(iii) if the orbit is an ellipse with a negative sense of rotation,
then the soliton remains metastable for a relatively long time,
but eventually disintegrates.

An interesting question is whether our collective coordinate
approach and stability criteria can be applied to perturbed NLS
equations with a more general form of the nonlinearity. Work
is in progress regarding the general power-law nonlinearity,
(u∗u)κ , where κ = 1 corresponds to the NLS equation of this
paper. The underlying unperturbed NLS equation has stable
solitons for 0 < κ < 2, and it will be interesting to determine

how the stability of the solitons is affected by the perturbation
f (x,t).
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APPENDIX: FIXED POINTS OF THE PHASE PORTRAIT

For the case of the time-independent force f (x) = aeiKx

and zero damping, we adopt the following ansatz for stationary
solutions of the collective coordinate equations:

q(t) = vst, η(t) = ηs, p(t) = ps, �(t) = �s − αst.

(A1)

Equation (9) yields cos B ≡ 0, which results in

Kvs = αs, �±
s = ±π

2
, sin B = ±1. (A2)

We insert the ansatz (A1) in Eq. (26), yielding

�s = 2iηs sech[2ηs(v − vs)t]e
−i[−ps (v−vs )t+�s+(Kv−αs )t].

(A3)

The fixed points of the phase portrait correspond to the time-
independent �, i.e., v = vs . By using Eqs. (A2), we obtain
two fixed points

Re�±
s = ±2ηs, Im�±

s = 0. (A4)

The ± signs refer to the two cases in Eqs. (A2).
Combining Eqs. (10) and (12) with Eq. (A2), αs can be

eliminated and we are left with two equations,

vs = 2ps ± aπ2

8η2
s

sechAs tanh As, (A5)

−(K − ps)vs = p2
s − 4η2

s − δ ± aπ

2ηs

As sechAs tanh As,

(A6)

where As = π (K − ps)/(4ηs). For either sign, the system
(A5)–(A6) has a single root vs = 2ps , ps = K , and ηs =
1
2

√
K2 − δ. Therefore, there are two fixed points on the real

axis, located at Re� = ±√
K2 − δ.

For the set of parameters of Fig. 2, there is a stable and
an unstable fixed point close to +1 and −1, respectively.
The stability of the fixed points is determined by solving the
collective coordinate equations numerically with the initial
conditions very close to the above values, e.g., η0 = ηs + 10−8,
q0 = 0, p0 = ps , and �0 = �±

s = ±π/2. In the unstable case
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(�0 = −π/2), the numerical solution exhibits oscillations of
the amplitude and phase, whereas the velocity of the soliton
remains constant. This solution is represented by the separatrix

in Fig. 2. A trivial stable fixed point is located at the origin; its
stability is established by numerical solutions of the collective
coordinate equations with ηs close to zero.
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