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Shear-flow-enhanced barrier crossing
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We consider a single Brownian particle confined in a double well potential (DWP) and investigate its response
to a linear shear flow by means of the probability density and current determined via numerical solution of the
Fokker-Planck equation. Besides a shear-dependent distortion of the probability distribution, we find that the
associated current crossing the potential barrier exhibits a convex dependency on the shear rate when the DWP’s
minima are far apart. With decreasing distance this functional dependency changes from a convex to concave
characteristics accompanied with an increase of the probability current crossing the DWP’s barrier. Through the
difference map of the particle density distribution it is possible to extract the shear-flow-induced contribution
to the particle density driving the barrier-crossing current. This may open the possibility to design specific flow
profiles to optimize flow-induced activated transport of nanoparticles.
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The study of the particle dynamics in potential landscapes
is of fundamental interest for our understanding of activated
transport and plays an important role for many physical
systems and processes ranging from chemical reactions
[1–3], the folding-unfolding problem of proteins [4–6], to
stochastic resonance and synchronization phenomena [7,8],
and many more [9–11]. With the advancements to monitor the
time-dependent motion of individual polymers and colloidal
particles combined with the optical tweezer technique [12–17],
it is possible to investigate their steady-state and complex time-
dependent behavior [18–30], including positional correlations,
and how these are affected by hydrodynamic interaction effects
[31–36]. Furthermore, holographic techniques allow experi-
mentalists today to realize even two- and three-dimensional
(2D and 3D) optical lattices [37–40], which constitute a
2D and 3D potential landscape for particles undergoing an
not necessarily thermally activated transport. Importantly, the
magnitude and spatial characteristics of the landscapes can
be controlled, so that the design of microfluidic devices with
improved efficiency or new functionalities may be designed
such as for the sorting of (bio)polymers and colloidal particles
according to their mass, particle shape, or refraction index
[41–44].

Despite this breadth of quite different physical scenarios,
the crossing of an individual (Brownian) particle over a
potential barrier may be viewed as the key physical process
in activated transport, and is often attributed to Kramers
who originally formulated his theory to describe chemical
reactions [1]. This theory has been experimentally validated by
extracting the transition rates for thermally activated transport
from the positional distribution of a single Brownian particle
confined in a double-well potential realized through optical
tweezers under zero-flow conditions [26]. Of course this
distribution is modified under nonequilibrium conditions as
in the case of an external flow field where it may adopt
an elliptical or parachute-like shape dependent on whether
the external flow is a linear shear or Poiseuille, respectively,
as recently shown for a single particle within one optical
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FIG. 1. (Color online) Sketch of the 2D experimental setup: the
particle is located within the x-y plane in which it undergoes a
random motion. Two (independent) optical traps are used to shape a
potential landscape in which the particle is trapped. A linear shear
flow is imposed along the connecting line between traps 1 and 2 thus
mediating a flow-activated transport between them.

trap [34,45,46]. Importantly, the shape of the distribution does
not only depend on the magnitude of the local flow velocity, but
also on the (local) shear rate thus affecting the local probability
current.

In this Brief Report we extend previous work [26,34,36,45]
and investigate the dynamics of a single Brownian particle
exposed to constraint forces due to two optical tweezers similar
to the experiment of Ref. [26], but in addition impose a linear
shear flow as illustrated in Fig. 1 thus introducing an external
drag on the particle. By solving the Fokker-Planck equation
for the particle distribution it is shown that the external shear
mediates a antisymmetric distortion of the probability density
and drives a finite particle current across the potential barrier
separating the minima of the double-well potential. A proper
choice of the potential parameters allows us to tune the
curvature of the current as a function of the shear rate from
convex to concave characteristics. We introduce difference
maps of the particle density to extract the shear-dependent
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components of the density by which regions with flow-
activated transport can be identified.

We model the experimental setup sketched in Fig. 1
consisting of two optical tweezers through a double-well
potential (DWP) of the form

V (x,y) = 1
2κ

(
y2 − a1x

2 + a2x
4
)
, (1)

so that the particle is trapped in one of the DWP’s minima. κ

refers to the spring constant and the two parameters a1,a2 > 0
determine the position of the two minima and the depth of the
DWP. The particle’s exposure to a 2D linear shear flow in the
x-y plane with the flow direction along the x axis (cf. Fig. 1)
is described as

u0(x,y) = γ̇ yêx (2)

with the shear rate γ̇ . Since the DWP and the external flow
depend only on the x and y coordinates, the particle’s dynamics
along the z axis decouples from the former, so that the
Brownian dynamics is considered within the x-y plane only.
We assume further that the two planar boundaries generating
the linear flow profile are sufficiently far away such that the
hydrodynamic interaction between the bead and the planes can
be neglected.

A particle with radius a embedded in a solvent with
viscosity η and temperature T undergoes a thermal motion,
which is determined by its diffusion constant D = kBT /ζ

with the friction coefficient ζ = 6πηa and kB the Boltzmann
constant. The shear flow exerts a drag force ζu0 on the particle
and together with the potential forces −∇V introduces a
bias to the random motion. Information about the dynamics
of the particle can be obtained from the time evolution of
the distribution function for the particle’s position which is
determined by the Fokker-Planck equation (FPE)

∂tP (x,t) = −∇ · j(x,t) (3)

with j the probability current

j(x,t) = −D∇P (x,t) + (u0 − ζ−1∇V )P (x,t), (4)

and x ≡ (x,y). For the case considered here, the FPE takes the
form

∂tP = D�P − γ̇ y∂xP + κ

ζ

(
6a2x

2 − a1 + 1
)
P

+ κ

ζ

[(
2a2x

3 − a1x
)
∂x + y∂y

]
P. (5)

To proceed it is convenient to rescale space and time through
x = δx̃, respectively, t = τ t̃ with δ2 = kBT /κ and τ = ζ/κ ,
so that the FPE can be recast in a dimensionless form

∂t̃P = �̃P + (3αx̃2 − β + 1)P

+ [(αx̃3 − βx̃ − Wiỹ)∂x̃ + ỹ∂ỹ]P. (6)

The parameters appearing in Eq. (6) are given by α = 2δ2a2,
β = a1, and Wi = bδ2/D = γ̇ τ the Weissenberg number.
Using these scaled units the double-well potential [cf. Eq. (1)]
can be rewritten in units of kBT , that is, V (x,y) = kBT Ṽ (x̃,ỹ)
with

Ṽ = 1
2

(
ỹ2 − βx̃2 + α 1

2 x̃4
)

(7)

characterized by two minima x̃1,2
min = ±√

β/α both at ỹ = 0
and depth Ṽmin = | − αx̃4

min|/4. For practical purposes it is
more suitable to use these two parameters x̃min and Ṽmin instead
of α, β to tune the DWP with

α = 4|Ṽmin|
x̃4

min

, β = 4|Ṽmin|
x̃2

min

. (8)

When there is no shear flow applied (Wi = 0), Eq. (6) can
be solved analytically

P (x̃,ỹ) = P0e
− 1

2

[
ỹ2−βx̃2+ 1

2 αx̃4
]

(9)

P0 =
√

2α

π3β
e−z[I−1/4(z) + I1/4(z)]−1 (10)

with P0 the normalization constant, z = β2/8α, and Iν refers
to the modified Bessel function of the first kind [47]. The
equilibrium particle distribution P (x̃,ỹ) is shown in Fig. 2
with the DWP’s minima set at x̃min = 3.0.

At finite shear (Wi > 0), the x-directed shear flow couples
the particle’s dynamics within the x-y plane through its
y dependency [cf. Eq. (2)] and an analytical solution is
no longer accessible. In this case we determine P (x̃,ỹ) by
solving the time-dependent FPE [cf. Eq. (6)] numerically.
Figure 3 shows the steady-state, nonequilibrium 2D particle
distribution P (x̃,ỹ) with a shear rate Wi = 2.0. Contrary to
Wi = 0, at finite shear the problem is no longer symmetric
with respect to x and y, rather exhibits an inversion-symmetry
P (x̃,ỹ) = P (−x̃, − ỹ) (cf. Fig. 3) reflecting that the linear
shear flow couples the dynamics of the particle along the x

and y axis. Furthermore, Fig. 3 shows that the two centers of
the distribution P (x̃,ỹ) originally located at the minima of the
DWP are now displaced toward the lower left, respectively,
upper right corner, which is a direct consequence of the
inversion symmetry. Simultaneously, the shear flow actuates a
nonzero particle current as illustrated by the arrows in Fig. 3
which traverses the potential barrier at x̃min = 0.0 and thus
mediates a exchange of particle density between the two
potential minima.
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FIG. 2. (Color online) Contour plot of the 2D probability distri-
bution P (x̃,ỹ) at equilibrium (Wi = 0.0) with the minima of the DWP
at x̃min = 3.0.
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FIG. 3. (Color online) Contour plot of the 2D probability distri-
bution P (x̃,ỹ) with x̃min = 3.0 for a Weissenberg number Wi = 2.0.
The arrows refer to the probability current j(x̃,ỹ) actuated at finite
Wi.

We now vary the shear rate Wi and determine the x̃

component of the effective probability current crossing the
potential barrier at x̃ = 0 for the upper half-space ỹ � 0
defined by

I+
0 :=

∫ Ly

0
dỹjx̃(0,ỹ). (11)

Figure 4 shows I+
0 as function of the shear rate Wi for various

values of the potential minima x̃min. When x̃min = 10 the two
minima of the DWP are quite far apart, so that the particle
current vanishes for all applied shear rates. With decreasing
distance one finds a growing current with increasing shear
showing a weak convex behavior at x̃min = 3.0. Interestingly,
the sign of the curvature is reversed and becomes negative
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FIG. 4. Probability current I+
0 obtained by numerically solving

Eq. (6) as function of the shear rate Wi and for varying location of
the potential minima x̃min.

(concave) as the two DWP’s minima at x̃min = 1.0 are quite
close, so that a finite shear is sufficient to activate the
transfer of particles across the barrier separating the two
potential minima. At intermediate distance (x̃min = 5.0) the
particle current displays a (weak) S shape as function of
Wi, which in turn marks the onset of the sign change in the
current from a convex to concave behavior with decreasing
distance x̃min.

In the experiment described in Ref. [26], the effective
potential seen by the particle has been extracted from
the probability density under zero-flow conditions. When a
nonzero flow is applied as discussed here, the question is
what is the contribution of the flow to the distortion of the
particle distribution. This information can be obtained from
the difference between the particle distribution at nonzero
shear rate and the one at zero flow, that is, �PWi(x̃,ỹ) =
PWi(x̃,ỹ) − PWi=0(x̃,ỹ). This is shown in Fig. 5 for the case
of a Weissenberg number of Wi = 2.0, where the distribution
�PWi displays an antisymmetric behavior similar to the one
shown in Fig. 3. Clearly visible are the regions with an
increased or decreased particle density since the finite shear
flow redistributes density away from the DWP’s minima,
where the distribution P (x̃,ỹ) takes its maximum in the
absence of flow. Of course, how the shear flow modifies the
particle density depends on the position of the minima x̃min

and on the magnitude of the applied shear rate. Importantly,
such difference maps as the one shown in Fig. 5 allow us to
spot regions in the particle distribution, which are strongly
affected under nonzero flow conditions and thus may provide
information about how activated transport can be controlled
by external flow fields. Note, the difference map �PWi can be
directly determined in experiments using similar techniques
as the ones employed in Ref. [26].

In summary, we investigate the dynamics of a single
Brownian particle confined within a double-well potential with
resemblance to the experiment of Ref. [26], but extended
by imposing an additional linear shear flow. Solving the
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FIG. 5. (Color online) Difference of the particle distribution
�PWi(x̃,ỹ) for a shear rate of Wi = 2.0. The crossing points of
the dashed lines indicate the location of the minima of the DWP
at x̃min = 3.0.
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Fokker-Planck equation for the particle distribution it is shown
that the finite shear distorts the distribution driving a particle
current across the barrier separating the two minima of
the DWP. The particle current shows a convex or concave
functional dependency on the Weissenberg number, which
can be controlled by the distance between the minima of
the double well potential. Furthermore, the inspection of the
difference density introduced here using the zero-flow particle
density as reference allows to extract those contributions
to the particle density, which depend solely on the flow.

This information might be useful to understand how external
flows of various types affect the distribution of particles as
well as the activated transport in inhomogeneous potential
landscapes. Utilizing laser-beam optical traps and microfluidic
channels, possibly similar to the one used in Ref. [34], the
reported behavior may be experimentally probed in a direct
manner.

This work has been supported by the German science
foundation through FOR608 and SFB 840.
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