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Two-dimensional magnetic plots of finite size were simulated by integrating the Landau–Lifshitz
equation for the isotropic Heisenberg model with a systematic exploration of the effect of dipole–
dipole interactions of various strengths d, at a low temperature. Structures with or without vortices
are observed, and in the cases in which vortices are present, out-of-plane contributions show only
for relatively weak dipolar strengths: the integrated intensity of the out-of-plane component decreases

roughly as 1/d with increasing dipolar strength while the vortex core width decreases as d− 1
2 . The

coexistence of several vortices with an out-of-plane component seems limited to a narrow d-range, at
least for the sample sizes studied. The size limit below which the vortices disappear decreases roughly
as 1/d.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction and model

Vortices and other topological defects have been suggested by
theory [1], Monte Carlo [2–5] simulations, micromagnetic simu-
lations [6] and also experimentally observed in magnetic two-
dimensional dots [7–9]. Analytical work based on Taylor expan-
sions [10] again shows that dipolar interactions generate magnetic
topological defects. The issue of data storage is clearly essential in
such interest and, specifically, the polarity of vortices i.e. the out-
of-plane spin component associated with a vortex (e.g. [11]) can be
manipulated. This, however, assumes the presence of such polarity.
We present Langevin spin dynamics simulations [12] with dipo-
lar interaction competing with nearest neighbour exchange which
enable to study both spin structures, and, when present, vortex
polarity, for various dipolar strengths and several dot sizes.

We solve the usual Landau–Lifshitz spin-dynamics equation:

ṡ� = −s� × H�, H� = HH�
+ Hd�

(1)

where s� is the vector associated with spin � and H� the local field
which is caused by all the other spins. The local field is the sum
of two terms, where the first is a nearest-neighbour Heisenberg
or exchange interaction, the second the dipole–dipole interaction;
thus:
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J being, in this case, the identity matrix for the isotropic Heisen-
berg model. The strength of the dipole–dipole interaction is d and
r��′ is the vector connecting spins � and �′ .

The simulated samples are square monolayers of identical spins
on a rigid square lattice, (32 × 32), (64 × 64) or (128 × 128), in
the xO y plane. The spins are free to rotate with |s�(t)| = 1, ∀�,
∀t . The integration procedure is the same as in Ref. [12]: for ev-
ery timestep, each spin explicitly precesses around the local field
via a rotation matrix which conserves |s�(t)|, and a Langevin dy-
namics allows to introduce temperature. The dipole–dipole interac-
tion is dealt with using the convolution theorem and Fast Fourier
Transforms: this introduces no additional approximation through
zero-padding and the discrete character of the sample (see [12]
and references therein).

These methods were checked in [12] for a X–Y Heisenberg
model ( J x = J y = 1, J z = 0) without dipolar interaction (d = 0)
and with d = 0.2 with varying temperatures: a variety of in-plane
structures with or without vortices and vortex–antivortex pairs
were observed, along with the associated dynamics.

We deal here with the isotropic Heisenberg model ( J x = J y =
J z = 1), low temperature T = 0.001 in reduced units (in these
units, the Kosterlitz–Thouless transition for the X–Y Heisenberg
model [13,14] takes place for T � 0.7), and varying dipole–dipole
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Fig. 1. Instantaneous 128 × 128 configurations, d = 0.006, 0.01, 0.02, and 0.06, T =
0.001. Arrows represent the in-plane orientations of spins (a sampling of one out of
four spins in both directions to avoid overcrowding of the figure). The color scheme
indicates the out-of-plane component; the colors follow the sequence: blue, cyan,
green, white, orange, red, magenta for sz ranging from −0.5 to +0.5, thus the first
three colors correspond to negative polarization, white to no polarization and the
last three to positive polarization. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this Letter.)

strength: 0.001 � d � 0.9, a way to change the ratio d/ J or ex-
change length

√
J/d. The choice of a low but finite temperature is

a compromise: we want to limit thermal fluctuations so that sig-
nificant features are not blurred beyond detection, but on the other
hand, we wish to let the system explore available phase space in
order to avoid getting trapped in some metastable state. These re-
quirements are far from trivial as will be seen in Section 2.

All simulations, unless otherwise specified, were done in the
following manner: an initial, highly disordered configuration was
chosen and a first relaxation run with strong damping was car-
ried out; a second relaxation run was then performed with small
(0.0005) damping and a final production run was done with the
same small damping.

2. Configurations

2.1. Instantaneous configurations

Typical configurations are shown on Figs. 1 and 2 for (128 ×
128) samples only, since (32×32) and (64×64) yield quite similar
configurations as the polarity effect is restricted to a small number
of sites in the close vicinity of the vortex core.

For small dipolar interaction d < 0.01 (see d = 0.006 and 0.01
in Fig. 1, top), vortices are not observed but the in-plane con-
figuration is non-uniform. A relatively strong (|sz| ≈ 0.1) “wavy”,
out-of-plane spin component is present; if, instead of showing
snapshots as in Fig. 1, one averages over time, these waves dis-
appear, meaning they are thermal fluctuations, namely, for small
dipolar interaction, the low-frequency gap in the magnon disper-
sion curve (see [12]) vanishes and long wavelength, low frequency
modes can occur even at very low temperatures. It was shown
in [10], using a Taylor series expansion, that dipole–dipole inter-
actions lead to anisotropy: the overall out-of-plane contribution
therefore decreases as d increases because of the increasing de-
Fig. 2. Instantaneous configurations for d = 0.08, 0.1, 0.2 and 0.7, T = 0.001. Arrows
and colors have the same meaning as in Fig. 1.

magnetizing field. In-plane configurations define, at the edges a
sort of “leaf” configuration [6]: spins located next to the edges of
the sample tend to lie parallel to these edges because of the dipo-
lar interaction, while bulk spins tend to lie in a direction parallel to
the diagonal of the square, thus giving an overall impression of a,
maybe poplar, leaf (see Fig. 1, top right).

For intermediate dipolar interaction, i.e. 0.01 < d � 0.08 as ob-
served from Figs. 1 (d = 0.02 and 0.06) and 2 (d = 0.08), usually
one vortex appears with a significant out-of-plane spin contribu-
tion at the vortex core, while |sz| remains negligible elsewhere.

For large enough dipolar interaction i.e. 0.08 < d < 0.2 (Fig. 2),
several vortices appear. The individual vortex width decreases but
the vortex heights also decrease. The out-of-plane components fi-
nally disappear completely for d ∼ 0.1.

For very large dipolar interaction d � 0.2, configurations remain
in-plane as in the XY case [12] and vortices constitute a rela-
tively ordered structure. Boundaries in which the spin orientations
change abruptly connect vortices in a way reminiscent of Monte
Carlo simulations [18]. However, the Monte Carlo simulations were
done on a hexagonal lattice resulting in patterns with that sym-
metry, while ours, on a square lattice, tend to retain right angles,
thus showing the importance of doing microscopic simulations in
which the lattice is explicit.

2.2. Are these ground states?

For large d (approx. for d � 0.08), convergence is rapid and
no inconsistency was detected. However, the snapshot shown for
d = 0.06 (Fig. 1, bottom right), at least, is clearly not a ground
state: the vortex is not in the middle of the sample where symme-
try would require it to be. It is known [15] that a non-central vor-
tex migrates toward the center via a gyrotropic motion: for small
dipolar interaction, this motion is very slow, and, in this instance,
not completed. Thus the question of whether our configurations
can be considered to represent ground states should be addressed:
several tests were therefore done with different initial conditions,
namely (1) a uniform configuration in which all spins are parallel
in-plane and (2) with a single central vortex. These configurations
were left to relax in the usual manner, in order to let, for instance,
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Table 1
Time-averaged energies per site after relaxation for simulations started with initial
conditions: (1) uniform in-plane spin orientations and (2) single central vortex. δ is
the difference between the energy of the central vortex structure and the energy of
the uniform structure. When δ > 0, the uniform state is more stable, and when δ <

0 the single central vortex state is more stable. The system does not spontaneously
switch from one structure to the other. The value of the dipolar strength dc for
which δ changes sign can be obtained via interpolation with dc = 0.105 (32 × 32),
0.058 (64 × 64), 0.032 (128 × 128) and 0.016 (256 × 256), which can be fitted with
a power law: dc = 2.09�−0.86 where � = 32, 64, 128 or 256.

Size
d

32 × 32

Uniform Central vortex δ

0.01 −3.9129 −3.8956 0.01735
0.02 −3.9537 −3.9372 0.01649
0.03 −3.9948 −3.9797 0.01508
0.04 −4.0362 −4.0227 0.01341
0.05 −4.0775 −4.0659 0.01161
0.06 −4.1180 −4.1093 0.00866
0.07 −4.1598 −4.1529 0.00686
0.08 −4.2016 −4.1966 0.00499
0.09 −4.2435 −4.2404 0.00307
0.1 −4.2855 −4.2843 0.00114
0.11 −4.3274 −4.3283 −0.00084
0.12 −4.3694 −4.3723 −0.00294

Size
d

64 × 64

Uniform Central vortex δ

0.01 −3.9779 −3.9734 0.00455
0.02 −4.0210 −4.0173 0.00376
0.03 −4.0643 −4.0614 0.00291
0.04 −4.1077 −4.1058 0.00191
0.05 −4.1510 −4.1502 0.00086
0.06 −4.1945 −4.1947 −0.00021
0.07 −4.2379 −4.2392 −0.00127
0.08 −4.2814 −4.2838 −0.00236

Size
d

128 × 128

Uniform Central vortex δ

0.01 −4.0107 −4.0096 0.00113
0.02 −4.0549 −4.0543 0.00061
0.03 −4.0992 −4.0991 0.00011
0.04 −4.1435 −4.1439 −0.00041
0.05 −4.1878 −4.1888 −0.00102

Size
d

256 × 256

Uniform Central vortex δ

0.01 −4.02698 −4.02684 0.00014
0.02 −4.07175 −4.07184 −0.00009

an out-of-plane component emerge. Despite attempts with vary-
ing relaxation times and dampings, it turns out that in none of
these simulations would the system spontaneously switch from
one structure to another: the uniform samples all remained de-
void of vortices after relaxation, while the single vortex samples
all ended up as single vortex final states, even for small 32 × 32
samples. It can, of course, be argued that the durations accessible
to our simulations are too short; however, the system energies can
be monitored (after relaxation) in both situations, compared in or-
der to decide which structure has lowest energy and declare it is
likely to be the ground state. The result of this procedure is given
on Table 1 where quantity δ is the difference between the energy
of the central vortex state and the energy of the uniform state.

For 128 × 128 samples, the value of d for which the most sta-
ble structure changes from uniform to single vortex is 0.032: this
means that on Fig. 1, the snapshot for d = 0.02 does not show a
ground state as the uniform configuration has lower energy, while
for d = 0.06, the vortex will simply proceed slowly towards the
center to a ground state. It should be noted that the energy dif-
ferences between the two structures remain small although above
thermal fluctuations at this temperature.

2.3. Vortex polarity

The out-of-plane vortex-core contributions thus appear in the
intermediate d range and were fitted when present (Fig. 3) with
a Gaussian function: the height remains constant and slightly less
than 1 for d < 0.08 while the width decreases roughly as 1/

√
d,

meaning that the integrated intensity of the out-of-plane vortex
components decreases roughly as 1/d.

2.4. The effect of size

No major difference between the three samples of different
sizes is to be observed. However the appearance of a vortex for
increasing d occurs for smaller d in the larger samples (I to II in

Fig. 4): the critical size roughly varies as d− 1
0.86 following the re-

sults of Table 1. The d-range for which several vortices are present
in the sample with non-zero polarity is narrow (Figs. 1 and 2): for
these sample sizes, data storage via multi-vortex polarity might
turn out to be uneasy, larger samples would be necessary.

3. Analysis and conclusion

We thus summarize our results in the following way. The equi-
librium configurations are, as usual, obtained through the compe-
tition between the exchange (or Heisenberg) field HH,� and the
dipolar field Hd,� in Eq. (1): the exchange field tends to have all
spins parallel while the dipolar field favors loops which can only
reside in-plane in a 2-D system. When there is no dipolar field, the
exchange term of course wins: spins are all parallel, but in any di-
rection (in-plane, out-of-plane, or whatever) in the isotropic case.
When the dipolar field is strong enough to overcome exchange, we
obtain in-plane vortices [16].

For very small values of d (d ≈ 0.002), the spins escape in the
third dimension, nearly freely. When d is increased, this escape is
restricted to the vicinity of the vortex core and is more and more
reduced. Indeed, the interesting case resides in the intermediate
range when one or several vortices appear: whenever a vortex is
present, the exchange part will tend to reduce the nearest neigh-
bour spin–spin angles, so it makes the spins stick out-of-plane.
This of course costs energy because we cannot have out-of-plane
loops (in 2-D) to satisfy the dipolar term (this is why the dipolar
term produces an effective anisotropy [17], as it will tend to pull
all spins back in-plane). We can try roughly to evaluate the rel-
evant quantities that monitor this competition in a single-vortex
configuration.

The out-of-plane exchange field component will be, for a spin
within the area with an out-of-plane component surrounding a
vortex, the sum of the z-components of its four neighbour spins,

H H z,� = J z

∑
�′

(neighbour�)

sz,�′

Since nearest neighbours will have reasonably similar orientations,
this is roughly proportional to sz,� , its own out-of-plane compo-
nent:

H H z,� � J zC H sz,�

where C H is a constant.
Now, the out-of-plane component of the dipolar field is not re-

duced to nearest neighbours, but is a sum of all the contributions
of the spins surrounding a vortex, within the area where they have
out-of-plane components:
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Fig. 3. Results of fitting a Gaussian function to the out-of-plane contribution to magnetization at vortex cores for system sizes (32 × 32), (64 × 64) and (128 × 128). Top: fit
example for d = 0.08 (red: sz , green: Gaussian); middle: height of the Gaussian; bottom: width of the Gaussian and function f (d) = ad−b , a = 0.29 ± 0.03, b = 0.52 ± 0.022
(logarithmic scales). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)
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Fig. 4. Summary of structures obtained for varying system size and dipolar strength
(log–log plot): phase I stands for the no-vortex phase, II for the single vortex, with
polarity (or with out-of-plane component) phase, III for multi-vortex, polarity phase
and IV for multi-vortex in-plane. The line between I and II roughly represents a

d− 1
0.86 dependence from Table 1.

Hdz,� � dCd

∑
�′

(vortex�)

sz,�′

where Cd is a geometrical constant and the sum extends over all
spins within the same vortex surrounding. This is d times the
integrated intensity of the out-of-plane contributions within the
vortex, or, again roughly

Hdz,� � dCd P z,�

where P z,� is the integrated out-of-plane intensity of the vortex
that contains spin �,

P z,� ∝ 2π sz,�

∞∫
0

e
− r2

2ρ2 r dr = 2π sz,�ρ
2

where ρ is the width of the Gaussian function of Fig. 3. Equilib-
rium is reached when both terms, exchange and dipolar, are equal,

J zsz,� = dsz,� ρ2C

where C is a roughly constant coefficient which includes all the
previous ones; sz,� drops out, and

ρ2 ∝ 1/d

as obtained in Fig. 3. This result is essentially the consequence of
the non-locality of the dipolar interaction as opposed to the lo-
cality of the exchange term: dipoles, so-to-say, join forces beyond
nearest neighbours in order to force a vortex to appear; when ρ
drops below the lattice constant, it means that the dipoles are lo-
cally strong enough to overcome the exchange interactions. This is
the case for large dipolar interaction configurations with several
vortices for which the exchange term cannot impose significant
out-of-plane components.
The out-of-plane component of vortices only occurs in an in-
termediate range of dipolar interactions. The lower boundary is
given by the limit when vortices can appear: this limit decreases
to smaller values of d with the size of the simulated sample as the
effects of dipolar interactions add up on the whole sample, while
the exchange term is local. The upper boundary occurs when the
dipole–dipole interaction is locally strong enough to force spins in-
plane: this limit does not appear to depend on size, as it is local.
The d-range of co-existence of out-of-plane polarity and a mul-
tivortex configuration seems to be rather narrow for the sample
sizes studied here.

The issue of whether we are dealing here with ground states,
as we should if we are claiming to provide a phase diagram, was
addressed. Several symptoms are to be pointed out: firstly the con-
figuration for d = 0.06 in Fig. 1 cannot be a ground state because
of symmetry since the vortex is not central and, secondly, the en-
ergy (Table 1) shows little sensitivity to configuration changes. This
infers that many “ground states” with the same energy, or almost
the same energy, exist, as in spin glasses in which a large number
of nearly degenerate states are separated by energy barriers. Such
frustration is general in dipolar systems, even without random in-
teractions, be it magnetic systems (e.g. [19]), or liquid crystals (e.g.
[20]). This creates a technical problem as we can never be quite
sure we are studying the ground state: the obvious compromise is
to work at finite temperature in order to allow the system to ex-
plore, at least partially, the available phase space, but low enough
to avoid too large fluctuations that would blur significant features.
The relaxation procedure from a highly disordered initial state
mentioned at the end of Section 1, is a form of annealing which
also is classic in dealing with frustration, however it requires cau-
tious handling.
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