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We investigate hydrodynamic interaction effects between colloidal particles in the vicinity of a
wall in the low Reynolds-number limit. Hydrodynamically interacting pairs of beads being dragged
by a force parallel to a wall, as for instance during sedimentation, are repelled by the boundary.
If a pair of beads is trapped by harmonic potentials parallel to the external flow and at the same
distance to a wall, then the particle upstream is repelled from the boundary while its neighbor
downstream is attracted. The free end of a semiflexible bead-spring polymer-model, which is fixed
at one end in a flow near a wall, is bent towards the wall by the same reason. The results obtained
for point-like particles are exemplarily confirmed by fluid particle dynamics simulations of beads of
finite radii, where the shear induced particle rotations either weaken or enhance the effects obtained
for point-like particles.

I. INTRODUCTION

The flow properties of suspensions depend very much
on the interaction between particles via the fluid, the
so-called hydrodynamic interaction (HI) [1–4]. In mi-
crofludics, where the distance between particles and walls
becomes often small, the dynamics of particles can be
strongly influenced by the wall-induced hydrodynamic in-
teraction effects between rigid as well as for soft particles,
such as vesicles or polymers. Accordingly, particles may
experience displacements across the unperturbed stream-
lines of an external flow and therefore, may lead to par-
ticle redistributions across the pipe diameter, if HI and
inertia effects are taken into account. Thus, studies of
suspensions are essential both from the fundamental and
from the practical point of view.

In the case of small but finite values of the Reynolds
number, Segré and Silberberg discovered the effect of
cross-stream migration of particles to specific positions
away from the centerline of a tube flow [5–10]. This parti-
cle focusing is understood to arise from the force balance
between a wall effect that drives the particles to the cen-
ter of a channel and a shear-gradient-induced migration
pushing the particles towards the boundary.

In the over-damped Stokes limit in fluid dynamics the
interplay between the HI and the deformability of soft
particles like tank-treading vesicles in shear flows leads
to a lift force close to boundaries [11–13]. For single soft
particles such as oil drops or vesicles, their deformability
combined with the shear gradient in Poiseuille flow causes
cross-stream migration [7, 14], even in the absence of
wall effects. In these cases the interesting question arises,
whether and to which extend particle-wall HI affects the
cross-streamline migration too [15]. Wall-induced cross-
stream migration may occur also for polymers in suspen-
sion in a pipe flow, which is a long studied and impor-
tant problem with a number of recent insights [16–20], or
during sedimentation [21] with particle depletions close
to a boundary [22] and during active motions of micro-
swimmers in confinement [23]. Moreover, it has been

found experimentally and theoretically that swimming
microorganisms may be attracted by solid walls [24].

Wall-grafted polymer-brushes, which are also used
for tuning surface properties in microchannels, are an-
other example [25–27], where the particle-wall interac-
tions play an important role for the dynamics of poly-
mers and which differs significantly from that in the
bulk. For instance, the cyclic motion of polymers teth-
ered at a surface depends crucially on the interplay be-
tween the polymer-wall interaction and the shear flow
[28–34]. Here, the HI plays a major role similar as for
the related oscillatory motion of three trapped and hy-
drodynamically interacting particles in shear flow [35].
A related problem is the dynamics of cellulose fiber sus-
pensions close to a wall, which is important for paper-
manufacturing and therefore intensively investigated in
order to better control the fiber orientation [36].

The examples mentioned so far focus mainly on the
behavior of single rigid or soft particles (with more dy-
namical degrees of freedom) in fluid flow. For several
disconnected particles there are a number of other inter-
esting hydrodynamically induced interaction effects even
in the bulk and in the absence of fluctuations. Besides
the oscillatory dynamics of three sedimenting free par-
ticles [37] and of three trapped particles in shear flow
[35], one finds also HI induced attraction or repulsion be-
tween asymmetric rotors [38], and an attraction between
tethered polymers in plug flow [39]. For a diluted sus-
pension of Brownian particles in shear flow an enhanced
self-diffusion in shear flows is reported [40], which is ex-
plained by a wall-induced migration of free particles [41].

In this work we focus on boundary induced hydrody-
namic interaction effects between particles fixed closed
to a wall in Stokes flow or dragged particles in a qui-
escent fluid as described by the well known technique
introduced by Blake for point particles [42] (whereof ex-
tensions may be found for instance in Refs. [17, 43, 44]).
The reminder of the article is organized as follows: The
related basic equations of motion for point-like particles
are presented in Sec. II, including a summary of Blake’s
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results. The results of our numerical and analytical inves-
tigations on the particle-wall HI are presented in Sec. III,
where as a basis of our analysis the flow lines around
a single particle close to a wall are given in Sec. IIIA.
Two or more sedimenting particles near a boundary are
considered in Sec. III B, where a cross-streamline migra-
tion away from the wall can be qualitatively explained in
terms of the flow lines around a single particle. The case
of two trapped point like particles exposed to a flow is
described in Sec. III C. The results of the two trapped
particles are qualitatively confirmed by fluid particle dy-
namics simulations [45, 46] for particles with finite radii
and they illustrate the major effects that are relevant
for the applications to semiflexible bead-spring models
in Sec. IV. In Sec. IVA a semiflexible bead-spring chain
tethered close to a wall and exposed to a flow is treated
and in Sec. IVB semiflexible polymers perpendicularly
anchored at a wall in shear flow. The article closes in
Sec. V with a discussion of the results and suggestions of
possible experiments.

II. MODEL EQUATIONS

We consider the dynamics of colloidal particles in the
limit of a vanishing Reynolds number, where the laminar
flow is described by the Stokes equation for an incom-
pressible Newtonian fluid. If not stated otherwise we as-
sume point-like particles with an effective hydrodynamic
radius a.
The dynamics of the N beads at the positions ri (i =

1, . . . , N) is governed by N coupled equations

ṙi = HijFj + u0(ri) , (1)

where u0(ri) is an externally applied flow as for example
a linear shear flow

u0(r) = u0(z)x̂ = γ̇zx̂ , (2)

with the shear rate γ̇. The force Fj is the sum over all
potential forces acting on the j-th bead. Depending on
the specific system, these may include stretch or bending
forces as well as forces due to trap potentials, which can
be derived from a potential V according to

Fj = −∇jV, (3)

where ∇j denotes the gradient with respect to rj . The
relevant expressions for V are specified in Sec. III and
Sec. IV.
Hij refers to the mobility matrix describing the HI be-

tween the beads i and j. In the presence of a plane wall
with a no-slip boundary condition for the fluid at the
wall, Hij is given by the Blake tensor [42],

Hij(ri, rj) =
S
Hij(ri, rj)−

S
Hij(ri, r

′

j)

+ D
Hij(ri, r

′

j)−
SD

Hij(ri, r
′

j) , (4)

where r
′
j = (xj , yj ,−zj) is the position of the mirror

image of bead j at the opposite side of the boundary.

The first contribution to Hij accounts for the HI in the
unbounded domain described by the Oseen tensor [3],

S
H

αβ
ij (ri, rj) =







1
8πηrij

(

δαβ +
rαijr

β
ij

r2ij

)

for i 6= j ,

1
6πηa δαβ for i = j ,

(5)
and the second one for the HI between the beads and
their mirror images,

S
H

αβ
ij (ri, r

′

j) =
1

8πηr̃ij

(

δαβ +
r̃αij r̃

β
ij

r̃2ij

)

, (6)

where η is the viscosity of the fluid. We furthermore use
the abbreviations

rij = ri − rj = rij r̂ij , (7a)

r̃ij = ri − r
′

j = r̃ij ˆ̃rij (7b)

and the components of the vector rij (r̃ij) are denoted by
rαij (r̃αij), where α = x, y, z. In Eq. (4) the contribution

D
H

αβ
ij (ri, r

′

j) =
1

4πηr̃3ij
z2j (1− 2δβz)

(

δαβ − 3
r̃αij r̃

β
ij

r̃2ij

)

(8)
is the Stokes doublet (D) and

SD
H

αβ
ij (ri, r

′

j) =
1

4πηr̃3ij
zj(1− 2δβz)

(

δαβ r̃
z
ij − δαz r̃

β
ij + δβz r̃

α
ij − 3

r̃αij r̃
β
ij r̃

z
ij

r̃2ij

)

(9)

is the source doublet (SD). In our numerical calculations
higher order corrections to Hij due to the finite size of
the spheres are included up to the order a2 (Rotne-Prager
approximation). The final equations of motion are given
by

ṙi = H̃ijFj + u0(ri) , (10)

where the mobility matrices

H̃ij =

(

1 +
a2

6
∇2

i +
a2

6
∇2

j

)

Hij (11)

fulfill the relation Hij = H
T
ji , which is important for the

overall symmetry of the problem - as pointed out in
Ref. [44].

III. RESULTS FOR BASIC MODELS

In this section we determine the influence of wall-
induced hydrodynamic interactions on the dynamics of
two and three beads which are either dragged in a fluid
parallel to a boundary or hold in potentials near a wall
and exposed to flows. To this end Eq. (10) with Eq. (11)
is solved numerically for the viscosity η = 1 and approx-
imate analytical solutions are given in some cases.
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A. A single trapped bead in shear flow close to a

wall

The influence of a wall on the HI between two beads
can be illustrated by the streamlines around one point-
like particle with an effective hydrodynamic radius a at
a distance dw from a solid boundary. The particle is
exposed to the flow given by Eq. (2) and is trapped by a
harmonic potential

V =
kpot
2

(rb − rpot)
2 , (12)

where rb is the position vector of the particle, rpot the
position of the potential minimum, with a spring constant
of kpot = 1. Equivalently, one could consider a point-like
particle dragged by a constant external force F = f x̂
parallel to the wall in a quiescent fluid. The streamlines
around the point-like particle are the same in both cases if
a comoving frame is chosen, where the particle’s position
is held fixed by the potential at rpot = (0, 0, dw).

The trap force F
s = −kpot (rb − rpot) as a function

of the unperturbed flow velocity u0(r) is obtained by
solving Eq. (10) for a vanishing bead velocity ṙb = 0:

0 = H̃(rb, rb)F
s + u0(rb) . (13)

We find for the Oseen approximation

F s
x = fx

16dw
16dw − 9a

and F s
y = F s

z = 0 , (14)

with fx = −6πηau0(dw) the force required to keep the
particle fixed in the absence of a wall, if it is exposed to a
flow with the velocity u0(dw). When u0(dw) is constant
for varying dw, e.g., by adjusting the shear rate appro-
priately, the force F s

x exerted on the bead increases with
decreasing dw. This effect will be investigated further in
subsection III C.
The vanishing force F s

z = 0 perpendicular to the wall
in Eq. (14) reflects the time reversibility of the Stokes
equation [1]. If a single bead in shear flow would mi-
grate perpendicularly to the wall, i.e. F s

z 6= 0, then for
symmetry reasons the drift would point in the same di-
rection after reversing the flow. But then the motion
would not be reciprocal and the time-reversibility of the
Stokes equation would be violated. Therefore, F s

z 6= 0
is forbidden and there is no migration of a single bead
perpendicular to the wall.
The flow field u(r) around a bead fixed at rb =

(0, 0, dw) shown in Fig. 1 is given by

u(r) =

(

1 +
a2

6
∆

)

H(r, rb)F
s + u0(r) . (15)

In the absence of a boundary, where only the first con-
tribution in Eq. (4) has to be taken into account, the
streamlines are up/down and left/right symmetric with
respect to the center of the bead. In the presence of a
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FIG. 1. In the xz plane the streamlines around the bead fixed
at rb = (0, 0, dw = 3) are in the presence of a plane no-slip
boundary at z = 0 asymmetric with respect to the axis at
z = dw. One obtains the same asymmetry of the flow lines
in the co-moving frame of a point particle dragged parallel to
the boundary along the dotted line at z = dw. The flow lines
were calculated via Eq. (15), whereby the red line marks the
trajectory of a test particle starting and terminating below
the center of the bead but passing the bead on top.

wall this up/down symmetry is broken and the stream-
lines are deformed as indicated in Fig. 1. This effect is
caused by the HI between the fixed bead and the bound-
ary, which is described by the second, third, and fourth
contribution to the mobility matrix in Eq. (4).
If one introduces a small tracer particle, starting at

x < 0 at a height z < dw, it follows one of the dis-
played streamlines as indicated by the red streamline in
Fig. 1 and may pass the bead at the side opposite from
the wall, i.e. z > dw. According to the ±x symmetry
the streamline reaches the range z < dw again for large
x. This is a consequence of the time-reversibility of the
Stokes equation, which is also valid in the presence of
a solid boundary. The wall-induced deformation of the
streamlines has interesting consequences as discussed in
the following sections.

B. Particles dragged parallel to a boundary - a

model for sedimentation

Here we investigate the motion of several particles
which are dragged by a constant external force F par-
allel to a wall, as for example by the gravitational force
during the sedimentation of particles.
We first consider the motion of two beads dragged in an

unbounded fluid. If the force F acts parallel or perpen-
dicular to the connection vector between both particles,
r12 = r1 − r2, cf. Fig. 2(a) and (b), they move in either
case parallel to the force, as indicated in Fig. 2 by part
a) and b). If r12 encloses an angle Θ 6= 0 and Θ 6= π/2
with the force F, the particles move obliquely with re-
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FIG. 2. Two particles are dragged through a fluid by a force
F anti-parallel to the vertical z axis. The beads move parallel
to F, if the connection vector r12 encloses with F an angle
Θ = π/2, as in part (a), or Θ = 0, as in part (b). For
other values of Θ the HI effects cause an angle φ between the
direction of the particle velocity v and F, as indicated in (c)
[48]. An approximation of the dependence of φ on Θ is given
by Eq. (16) and plotted in (d).

spect to the drag force due to the HI between the beads
as indicated in Fig. 2(c) (see also [48]). The deflection
angle φ between the direction of the particle motion and
the force has its maximum value at Θ = ±π/4 and is in
the Oseen approximation given by

φ = arctan

(

sinΘ cosΘ

1 + 4d
3a + cos2 Θ

)

, (16)

where d = |r12| is the distance between the particles.
In the presence of a boundary the particle-particle

hydrodynamic interaction via the boundary comes into
play. As already indicated by the flow lines around a sin-
gle particle in Fig. 1, a wall breaks the symmetry around
the particle with respect to the z direction. For two parti-
cles, which are initially located at the same distance from
a wall and pulled parallel to it, as depicted in Fig. 3(a),
we show in Fig. 4 the trajectories of point particle’s de-
termined numerically from Eq. (10). The open and the
filled circles in Fig. 4 represent the particle positions at
equal times.
The bead in front is repelled by the wall immediately

from the start, while the particle behind is at first at-
tracted to the wall, as indicated in Fig. 3a). Later on
the rear bead moves away from the wall as well. In order
to understand this effect it is useful to consider the early
and the later stage of the motion shown in Fig. 4 for each
particle. For the early regime the flow-lines around a sin-
gle bead, as shown in Fig. 1, allow an estimate about the

FIG. 3. Each of the two beads in part a) is dragged by a force
F parallel to a wall. The particle in front is repelled from the
wall, while the bead behind is attracted, as expected by the
form of the streamlines around a single bead in Fig. 1. In
part b) the time has been reversed and thus the direction of
the applied force and the particle motion are reversed too.
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FIG. 4. The trajectories of two beads in the xz plane are
shown, which are dragged through the fluid by an external
force F ‖ x̂ parallel to the boundary at z = 0. The initial
positions of both beads are located at r1 = (0, 0, dw) and
r2 = (db, 0, dw) with db = 3a and dw = 4.5a. The particle
positions are indicated by open and filled circles along the
trajectories at equal times. The bead behind (dashed line) is
at first attracted towards the wall due to the wall-mediated
HI, whereas the particle in front (solid line) is always repelled.
Later on the bulk HI dominates and both particles move away
from the wall, as expected according to Eq. (16).

motion of the two particles along the z direction. In the
front of a pulled particle the velocity of the fluid has a
component in the positive z direction and in the negative
z direction behind it. Accordingly, in the case of a pair
of dragged beads the particle in front is repelled from
the wall whereas the one behind is attracted towards the
boundary as sketched in Fig. 3(a). During this process
of wall-particle repulsion and attraction the connection
vector r12 becomes skewly oriented to the drag force, i.
e. Θ 6= 0 as indicated in Fig. 2c), with the particle closer
to the wall behind the other.

If the connection vector is skewly oriented, the bulk
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effect, as described above, comes into play in the second
stage of the motion. It causes in the case, when the par-
ticle closer to the wall moves behind the other one, a drift
of both particles perpendicular to the external force and
away from the wall. The bead closer to the wall moves
slower than the other one because its effective friction is
enhanced closer to the wall (cf. Eq. (14)) and therefore
the bead distance d increases and Θ decreases. Conse-
quently |φ| decreases in agreement with Eq.(16). In the
long-time limit the particles’ trajectories align with the
applied forces, in which case the wall distance of both
particles practically saturate. Therefore, the essential
effect of the hydrodynamic particle-wall-particle interac-
tion on the motion of the beads shown in Fig. 4 is the
reorientation of their connection vector r12. When r12

is oblique to the drag force, the bulk effect provides the
major contribution to the migration of the particles away
from the wall.
Near a point-like particle at r = (0, 0, dw), which is

dragged parallel to a boundary, the induced velocity
of the fluid around it can be determined analytically
by taking the wall effects into account in the Oseen-
approximation. In this case the non-zero z-component of
the velocity of the fluid at the positions r± = (±db, 0, dw)
is as follows:

vz± = ±
3

2

f

πη

dbd
3
w

(4d2w + d2b)
5/2

. (17)

If a free test particle is placed at r± near the dragged
particle, it moves with the fluid and its induced vertical
velocity component is given by the fluid velocity vz± .
These velocity components have the same magnitude in
the front and in the rear of the dragged particle, whereas
they point in opposite directions as indicated also by the
streamlines shown in Fig. 1. According to this qualitative
reasoning one expects in the case of a pair of beads, which
are dragged parallel to a wall, that the particle in front is
repelled from the wall whereas the rear one is attracted
towards the wall.
Eq. (17) displays also the reciprocity of trajectories

in Stokes flow. If the time and therefore the direction
of the applied forces are reversed, then in the discussed
setup the bead in front is again repelled from the wall
and the rear one is driven to the wall, as indicated in
Fig. 3(b). After the time-reversal the role of the beads is
interchanged, with vz+ = −vz− and the motion is recipro-
cal to the one before, thus obeying the time reversibility
of the Stokes-equation.
Fig. 5 shows the trajectories of two particles as ob-

tained by integrating Eq. (10) for two particles dragged
by a force F ‖ x̂ along a wall at z = 0 and interacting
via the Rotne-Prager approximation. The bead connec-
tion vector r12 at the initial position encloses an angle
Θ < π/2 with F. In this case, the bead closer to the wall,
i.e. z = 0, is slightly in front of the other one, and due to
the bulk effect described above (cf. Fig. 2), both beads
first approach the wall. As the HI with the boundary
and thus the friction becomes stronger the bead closer to

the wall becomes slower than the more distant particle
(cf. Eq. (14)). Consequently, the particle further from
the boundary finally overtakes the other one and in this
case r12 becomes again oblique with respect to F with
Θ > π/2 leading to a repulsion of both beads from the
wall due to the bulk effect.
Besides the examples in Fig. 4 and Fig. 5 we investi-

gated many other orientation angles between r12 and F

(Θ = 0, Θ = π/2, Θ ≷ π/2). We obtain for all orien-
tations of the connection vector finally a drift of both
particles away from the wall. Hence, the wall-induced
hydrodynamic particle-wall-particle interaction between
two beads being dragged by a force parallel to a bound-
ary eventually causes a repulsion of the particles from the
wall for arbitrary initial conditions.
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FIG. 5. The trajectories of two beads in the xz plane, which
are dragged by an external force F ‖ x̂ parallel to the bound-
ary at the xy plane, i.e. z = 0. The initial bead connection
vector r12 is slightly tilted with respect to the z axis so that
the bead which is closer to the wall is slightly in front of the
other one. The open and the filled circles visualize the po-
sitions of the two particles at equal times. First the beads
approach the wall until the boundary effect causes a reorien-
tation of r12, so that the particles are finally repelled from
the wall.

The trajectories of three particles which are initially
aligned perpendicularly to a wall are shown in Fig. 6.
The initial distances between the beads and between the
lowest particle and the wall are 3a. As explained be-
fore, the bead which is furthest from the boundary is
often slightly faster than the other two. Due to the bulk
HI between the particles, which then have different x
positions, the lowest and the highest bead perturb the
flow in such a way that the middle particle experiences
friction just as small as for the upper one. For the ex-
ample in Fig. 6 the upper two particles finally build a
pair and move away from the wall in a similar manner
as in the case of two beads described above in Fig. 5,
whereas the lower (third) particle moves similar to a sin-
gle particle nearly parallel to the wall. For other initial
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conditions similar formations of pairs of beads are found,
which move finally away from the wall.
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FIG. 6. The trajectories of three beads in the xz plane, which
are dragged by an external force F ‖ x̂ away from their initial
positions: (0, 0, 3a), (0, 0, 6a) and (0, 0, 9a). The positions of
the particles at equal times are indicated by open, grey and
black filled circles along the trajectories. Due to the interplay
of bulk and wall HI effects the upper beads form a pair after
an intermediate regime and finally drift away from the wall
due to bulk HI effects. The third bead remains nearly at its
initial distance from the wall.

The motion of an assembly of many particles is gov-
erned by the same principles as described above. By a
complex interplay of bulk and wall effects pairs of beads
form and dissolve, but the overall tendency is a migra-
tion of the particles away from the wall, similar to the
results reported in Ref. [22], where the situation of small
but finite values of the Reynolds number is investigated.
Another case, where the hydrodynamic particle-wall-

particle interaction has to be considered, is when two
beads are dragged perpendicularly to a wall with identi-
cal wall distances. This is equivalent to the situation of
two sedimenting particles, when they approach the bot-
tom boundary. In this case, the two beads repel each
other slightly and the repulsion becomes significant at
wall distances smaller than 10a. Possible experimental
setups for investigations of the effects predicted in this
subsection are discussed in Sec. V.

C. Two trapped beads in shear flow close to a wall

In this section wall-induced HI effects are investigated
for a system composed of two trapped particles in a linear
shear flow near a wall. The harmonic trap potential is
given by

V =
kpot
2

[

(r1 − rpot,1)
2 + (r2 − rpot,2)

2
]

, (18)

where kpot = 1 is the spring constant and r1 and r2

are the positions of the two beads. The locations of
the potential minima are rpot,1 = (0, 0, dw) and rpot,2 =
(db, 0, dw) with the connection vector rpot,1 − rpot,2 par-
allel to the wall. The results discussed are obtained for
point-like particles and compared to the case of finite-
sized beads which undergo in addition shear-induced ro-
tation.

FIG. 7. Two point-like particles are trapped in a shear flow
u0(z) by harmonic potentials with their minima at a distance
dw from the wall at z = 0 and a mutual separation db. With
the coordinate z2 of the particle downstream ∆b = dw − z2
measures its displacement from the potential minimum.

The two point-like particles are displaced by the flow
in x direction away from the minima of the trapping po-
tential. Simultaneously, the wall-induced HI causes dis-
placements along the z direction until the influence of
the boundary is balanced by the potential forces. Sim-
ilar to the previous section, the bead upstream is effec-
tively repelled from the wall and the bead downstream is
attracted. Note, that the deflection of the particle down-
stream is different from the displacement of the bead up-
stream, which is due to the bulk effect described in the
previous subsection III B and can be explained as fol-
lows: Because of the finite angle Θ between the bead
connection vector and the trap forces, cf. Fig. (2), both
particles are shifted away from the wall. The boundary
effect dominates, because the trap forces prevent the an-
gle Θ from becoming too large, but due to the described
shift the bead downstream is attracted towards the wall
by a smaller distance than the one upstream is repelled
from the wall.
The wall-induced particle displacement along the z di-

rection is characterized by the shift

∆b = dw − z2 , (19)

where z2 is the steady-state position of the bead down-
stream.
In the following we determine the displacement ∆b at

the steady-state as a function of the flow velocity as well
as of the distances dw and db. As a first approach, ∆b

is approximated analytically for two point-like particles
as shown in Fig. 7. The forces needed to hold the beads
in place in an external flow can be estimated in a similar
manner as described in Sec. IIIA, cf. Eq. (14). In the
Oseen approximation their x components are given by

F s
x = fx

16dbdw
8dw(2db + 3a)− 9adb

(20)
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with fx = −6πηau0(dw). For the particle downstream
one obtains the initial velocity vz− in z direction via
Eq. (17) with f = F s

x . The resulting Stokes force
F s
z = 6πηavz− can be used to estimate the elonga-

tion ∆b in the steady state via the counteracting force
F pot
z = kpot∆b, which must fulfill F s

z + F pot
z = 0. This

calculation yields

∆b =
864πηa2d2bd

4
wu0(dw)

kpot(4d2w + d2b)
5/2 [8dw(2db + 3a)− 9adb]

. (21)

∆b depends linearly on the unperturbed flow velocity
u0(dw), which itself increases linearly as a function of
dw according to Eq. (2). Since we are mainly inter-
ested in the dw-dependence of the wall-induced HI ef-
fects and not in its dependence on the absolute value of
u0(dw), we adjust the shear rate according to the rela-
tion γ̇ = u0(dw)/dw, such that the flow velocity u0(dw)
becomes independent of dw:

u0 = u0(dw)
z

dw
x̂ . (22)

 0

 0.5
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FIG. 8. The bead deflection ∆b is plotted as a function of
the wall distance dw for two different distances db = 10a, 20a
between the potential minima, as indicated in Fig. 7, and
for the flow field given by Eq. (22) with u0(dw) = 0.004.
The dash-dotted line (second from above) and the dashed
line (lowest one) correspond to the analytical approximations
according to Eq. (21).

The analytical expression for ∆b in Eq. (21) exhibits
characteristic maxima as a function of dw and as a func-
tion of db. The dependence of ∆b on dw is shown in Fig. 8
for the two different values db = 10a, 20a. In this figure
the analytical results are compared with the numerically
determined values, which were obtained via Eq. (10). De-
spite the assumptions included in Eq. (21), both curves
agree with each other surprisingly well qualitatively, es-
pecially at larger distances dw and db.

The maximum of ∆b(dw) in Fig. 8 can be traced back
to Eq. (17), which represents the z component of the
perturbed fluid velocity due to a dragged particle near
a wall. This expression already exhibits a maximum
as a function of dw. However, for very large wall dis-
tances dw ≫ db the influence of the boundary must van-
ish and ∆b must approach 0. The dependence of ∆b on

 0

 1

 2

 3

 4

 3  4  5  6  7

∆b
a

db / a

point-like particlesrotating particles

analytical

x10
-2

FIG. 9. ∆b is plotted as a function of the bead distance db for
the setup shown in Fig. 7 and Fig. 10. The distance to the
wall is dw = 2.5a and the flow velocity is u0(dw) = 0.004. The
solid line represents the results for point-like particles, where
the effects of particle rotation are neglected. The squares are
the result of simulations for particles of a finite size, which
rotate in the external shear flow (cf. Fig. 10). The dash-
dotted line is the result of the analytical approximation given
by Eq. (21).

the particle-particle distance db is shown in Fig. 9 for
dw = 2.5a and for the flow velocity u0(dw) = 0.004. The
maximum of ∆b(db) in the numerical solution (solid line),
is less pronounced than in the corresponding analytical
expression (dash-dotted line).

Up to this point we considered finite size effects of the
particles up to second order in a (bead radius). Parti-
cles with a finite diameter also rotate in shear flows and
therefore cause an additional contribution of third order,
which is neglected. What is more, the rotation is also
influenced by the vicinity of a wall [49, 50]. In order to
quantify the influence of the rotation on the wall-induced
HI and ∆b, we performed computer simulations for finite-
sized particles using the method of fluid particle dynam-
ics (FPD) [45, 46]. In these simulations the particles are
trapped in harmonic potentials at a distance dw = 2.5a
to the wall and, as indicated in Fig. 10, they can freely
rotate when exposed to a linear shear flow. In the FPD
simulations for rotating particles the flow velocity at the
particle positions u0(dw) = 0.004 is the same as in sim-
ulations of the point-like partiles. The squares in Fig. 9
represent the results from FPD simulations.

As displayed in Fig. 10 the shear flow profile in FPD



8

simulations was realized by moving the upper and the
lower boundary into opposite directions by a constant
velocity v0. For such a configuration the shear induced
particle rotation counteracts the effects of a wall (cf.
Fig. 10). In spite of this counteraction the particle down-
stream is again effectively attracted to the wall and the
particle upstream repelled, similar to the case of point-
like particles. Accordingly, ∆b is smaller for rotating par-
ticles than for point like particles of the same effective ra-
dius. In Fig. 7 and Fig. 10 the shear rates at the position
of the particles have an opposite sign. This has for point
like particles no influence on the elongation ∆b. However,
in FPD simulations of particles of a finite bead-diameter
the bead rotations change their sign with the shear rate.
In contrast to the case sketched in Fig. 10, shear induced
bead rotations as indicated in Fig. 7 support the elonga-
tion ∆b and ∆b becomes in this case larger than for point
like particles.

FIG. 10. The shear-induced particle rotation influences the
wall-induced particle attraction and repulsion. For the given
setup the deflection of both beads from their initial position
z = dw is reduced due to the rotation effects. The influence of
the rotational interaction is investigated exemplarily by fluid
particle dynamics simulations of two trapped particles.

The shear rate in the FPD simulations was chosen such
that the ratio between the difference of the flow velocity
at the lower and at the upper side of the sphere, ∆us, and
the mean velocity u0(dw) was ∆us

u0(dw) = 2aγ̇
u0(dw) = 0.37.

This causes a reasonably strong particle rotation and
therefore a comparatively strong rotational HI. Despite
this quite large ratio, the major contribution to ∆b is
caused by the wall-induced HI since ∆b > 0 (cf. Fig. 9).
This result supports our approach to use point-like par-
ticles during the rest of this work for the analysis of the
major trends of the wall-induced HI effects.
∆b becomes large for small values of db and dw. In

order to estimate ∆b for possible experiments, we choose
db = 3a and dw = 2a. Additionally, a typical potential
strength is kpot ≃ 10−6N/m, the viscosity of water is
η ≃ 10−3Ns/m2 and typical flow velocities in microflu-
idic environments are of the order of u0(dw) ≃ 10−6m/s.
Using these values one obtains

∆b

a
≃

ηu0(dw)

kpot
≃ 10−3 , (23)

which might be below the currently possible experimen-
tal resolution. However, ∆b can be enhanced by using a

liquid with a higher viscosity than water as for example
glycerol with η ≃ 1Ns/m2, but then the maximum at-
tainable flow velocities may be smaller. Furthermore, the
effect can be amplified by placing several beads in a row
and measuring the deflection of the final bead. An am-
plification of ∆b by about 10% can be reached by using
five beads in a row. Compared to this estimate, sedimen-
tation experiments close to a wall, as described in section
V, seem to be more appropriate for the detection of the
wall-induced HI effects.
The results discussed until now apply to linear shear

flow, but the most important property, that the stream-
lines are parallel to the wall, is also shared by other flow
profiles like plane Poiseuille flow. The spatially varying
shear rate in Poiseuille flow causes higher order effects,
but the major results presented here remain qualitatively
valid to Poiseuille flow, as well.

IV. APPLICATIONS TO SEMIFLEXIBLE

BEAD-SPRING CHAINS

In this section we explore applications of the wall-
mediated HI effects of tethered semiflexible bead-spring
models in a flow and fixed near a wall in Sec. IVA or
grafted to the boundary in Sec. IVB.

A. Polymer model fixed near a wall

Polymers tethered with one end in a uniform flow is a
model system for exploring the importance of HI along
polymers at various stages of its flow-induced conforma-
tions [51–56]. Here we consider a semiflexible bead-spring
polymer model with its first bead tethered at a distance
dw from a wall as shown in Fig. 11 and we explore the
importance of wall-induced hydrodynamic interaction ef-
fects.
The stationary chain conformation in shear flow is

again determined via Eq. (10) by using the potential en-
ergy for the elastic forces along the polymer

V =
ktrap
2

(r1 − rtrap)
2 +

N−1
∑

i=1

kstr
2

(|ri − ri+1| − dn)
2

+

N−1
∑

i=2

kbend
2

ln (1 + cosχi) , (24)

with rtrap = (0, 0, dw) the location of the minimum of
the trap potential of strength ktrap = 1. kstr = 500 is the
stretching stiffness of the springs and dn = 5a is the equi-
librium distance between neighboring beads. The bend-
ing stiffness is kbend = 100 and the bending angle at the i-
th bead is χi = arccos [(ri − ri−1) · (ri+1 − ri)]. The dis-
tances between the beads along the chain are practically
fixed on the time scale of the bending dynamics, which
can be seen by the ratio of the relaxation times of stretch-
ing and bending: τstr/τbend = 2kbend/(d

2
nkstr) ≃ 1/60.
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In the following we consider chains consisting of N = 10
beads as an example.

FIG. 11. A semiflexible chain, fixed with one end at a distance
dw from a wall and exposed to a linear shear flow, is attracted
towards the wall with its free end by a distance ∆c. This
shift depends on dw as shown in Fig. 12. For the displayed
configuration the parameters are dw = 5.5a and u0(dw) =
0.004.

In an unbounded fluid the tethered polymer would as-
sume a straight conformation, parallel to the streamlines
of the external flow. However, in the presence of a wall
the free end of the chain is attracted via the wall-induced
HI. This is similar to the bead attraction downstream
investigated in the previous section and to the hydrody-
namically induced attraction between two tethered poly-
mers in plug flow and Brownian motion as described in
Ref. [39]. A measure of the effective wall attraction is
the deflection ∆c = dw − zN of the N -th bead towards
the wall, which is shown in Fig. 11 for dw = 5.5a and the
flow profile (22) with u0(dw) = 0.004.

 0

 0.2

 3  6  9  12  15

∆c
a

dw / a

(b)
 0.8

 0.9

 1

∆c
a

(a)

FIG. 12. The deflection ∆c of the free end of a tethered
chain consisting of N = 10 beads (cf. Fig. 11) is shown as a
function of the distance dw to the wall for the flow field given
by Eq. (22) with u0(dw) = 0.004. For the solid line in (a)
the wall-mediated HI between all beads is taken into account.
The dotted line in (b) corresponds to the model assumption
where the wall-induced HI has only been taken into account
for nearest neighbors and has been neglected otherwise.

∆c is plotted as a function of the wall distance in
Fig. 12 for the constant flow velocity u0(dw) = 0.004
at z = dw. The solid line in part (a) describes the case

wherein the wall-mediated HI between all beads is taken
into account. In contrast to the curve for two beads
in Fig. 8, it displays two maxima and decreases mono-
tonically afterwards. The first maximum of ∆c(dw) at
dw ≃ 3a is mainly caused by the wall-induced HI between
nearest-neighbor beads along the chain. In order to sub-
stantiate this interpretation, we plot ∆c(dw) in Fig. 12(b)
for the model situation where the wall-mediated HI is
only taken into account between nearest neighbor beads.
In this case, the magnitude of ∆c(dw) is much smaller and
has indeed only one maximum at dw ≃ 2.9a. The small
shift between this maximum and the first maximum of
the curve in Fig. 12(a) is caused by the boundary-induced
HI between beads which are further apart. The second
maximum at dw = 7.3a in Fig. 12(a) is also a result of
hydrodynamic bead-bead interactions via the wall over
larger distances than nearest neighbors.
Besides the deflection of the free end, the chain exhibits

also a small curvature. This can be explained as follows:
The trapping potential prevents the fixed end of the chain
from moving away from the wall. On the other hand each
bead is driven to the wall due to the flow perturbations
from all its neighbors upstream. Therefore, the beads
closer to the free end are increasingly attracted towards
the wall, which leads to a slight bending of the chain.

B. Perpendicularly anchored semiflexible chains in

flow

As wall-grafted polymers are relevant in several appli-
cations [27] we investigate the influence of the boundary
on the behavior of semiflexible chains, which are perpen-
dicularly grafted to a wall and exposed to a shear flow as
shown in Fig. 13.
For our model calculations we use a potential energy

describing the bending and stretching of the Nc chains
as given by

V =

Nc
∑

j=1

V j with (25)

V j =

N−1
∑

i=1

kstr
2

(|rji − r
j
i+1| − dn)

2

+

N−1
∑

i=0

kbend
2

ln (1 + cosχj
i ) . (26)

Here r
j
i and χj

i are the position vector and the bending
angle of the i-th bead in the j-th chain. The constants
kstr, dn and kbend have the same values as in the previous
subsection, but the chains are now composed of N = 9
beads. However, the second sum in Eq. 26 starts with i =
0 and therefore includes additional bending contributions
at the boundary in order to ensure that the chain relaxes
back to an orientation perpendicular to the wall after
switching off the flow.
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A single chain is bent towards the flow direction un-
til the forces exerted on the beads due to the external
drag are balanced by the stretching and bending forces
according to Eq. (26). If the flow velocity is very large,
the chain even goes beyond the alignment with the flow
lines and bends towards the wall similar to the results
presented in Sec. IVA.

FIG. 13. Three bead-spring chains, which are perpendicularly
anchored at a boundary and exposed to a linear shear flow.
For the grey conformation the wall-mediated HI is neglected
and only the bulk HI effects are taken into account.

For three chains, which are perpendicularly grafted to
a wall, Fig. 13 shows the steady state chain conforma-
tions for the case in which the wall-mediated contribu-
tions to the HI are neglected (grey) and for the case in
which the HI via the boundary is completely included
(black). In the free draining limit, where the HI between
the beads are disregarded, the three perpendicularly an-
chored polymers would be bent identically by the flow.
If only the effects of bulk HI are taken into account, the
outer polymers perturb the flow in such a way, that the
middle polymer experiences a smaller drag force. Hence,
the first and the last polymer, i.e. the left and the right
one in Fig. 13, are bent almost identically, while the one
in between is bent less strongly, which is indicated by the
grey configuration in Fig. 13.

Similar to the results from the previous subsection,
the wall-mediated HI leads to a stronger bending of the
chains towards the wall, which is displayed by the de-
viation of the black chain configurations from the grey
ones in Fig. 13. This attractive effect increases for
chains which lie further downstream, because the wall-
attraction of each chain bead is enhanced by its neighbors
upstream as described in Sec. IVA. The screening effect
for the middle chain due to the interactions in the bulk
is therefore superimposed by the wall-induced effect.

Consequently, the wall-mediated HI along this semi-
flexible brush leads to a stronger bending of the chains
and thus to a reduction of the brush height. So the effec-
tive diameter of a polymer-grafted tube is increased and
the flow resistance of the grafted chains is reduced, which
might be interesting for studies on wall-grafted brushes
of semiflexible polymers or for a wall decorated by thin
flexible pillars.

V. CONCLUSIONS

In our investigations of wall-induced effects on the stat-
ics and the dynamics of hydrodynamically interacting
particles we first calculated the streamline deformation
around a single trapped point-like particle close to a
wall in order to develop a qualitative picture about the
particle-particle interaction near a wall. It was shown
how the deformations of the flow lines around a fixed
particle allow an estimation of the direction of the force
acting on a nearby second particle, which was confirmed
by numerical calculations.
For two or three beads being dragged parallel to a wall,

a scenario with resemblance to sedimenting particles un-
der gravity, it was shown that the beads always migrate
away from the wall. The origin of this behavior is due
to the interplay between effects from the bulk and the
boundary, and it is similar to the lift force discussed for
vesicles and polymers [11, 12, 17, 34].
The analysis of the configurations of two beads, which

are trapped by harmonic potentials close to a wall and ex-
posed to an external shear flow, provided further insight
about the hydrodynamically mediated particle wall inter-
action. We found a repulsion from the wall for the parti-
cle upstream and an attraction towards the boundary for
the one downstream. Varying the particle-wall distance
and the particle-particle distance a characteristic max-
imum in the deflection of the downstream particle was
found, which could be described also analytically giving
further insight on the parameter dependence of this phe-
nomenon. The behavior obtained for two point-like par-
ticles was confirmed by using the complementary method
of Fluid Particle Dynamics [45, 46], which accounts for
the finite particle radii and the effects of particle rotation
on the hydrodynamic particle-particle interaction.
As an application of the basic effects found for the two-

bead configuration, we investigated a semiflexible bead-
spring chain, where one end is held in a linear shear flow
at a distance dw from the boundary. The chain is at-
tracted towards the boundary as a function of dw and we
identified the wall-induced contributions to the HI as the
source for this behavior. The phenomenon is related to
a recent study on the flow induced polymer-polymer at-
traction [39] mediated through inter-chain HI, where the
second polymer causes very similar effects as the bound-
ary in this work. Both are examples of hydrodynamically
induced particle-particle attraction, which has recently
been found for rotors as well [38].
What is more, three perpendicularly anchored semi-

flexible bead-spring chains were investigated as a simple
model for a polymer brush and their response to an ex-
ternal linear shear flow was obtained. It was found , that
wall-effects cause a stronger effective attraction towards
the wall for the polymers downstream than for the ones
upstream. Whether three semiflexible polymers, perpen-
dicularly anchored at a wall, but not along a line, and
of different length, have also the propensity to oscilla-
tory motion as reported for three beads in shear flow in
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Ref. [35], is an interesting further question.
While our analysis in this work is exclusively used for a

linear shear flow as external stimulus, we nonetheless ex-
pect a similar qualitative behavior for other flow profiles
with parallel streamlines. The reason is, that the defor-
mations of the streamlines near walls as shown in Fig. 1
are in general the same for other laminar flow profiles
with parallel streamlines.
Our results may be tested by different experiments. A

first one would be to measure the wall-induced displace-
ment of an array of beads trapped close to wall by laser
tweezers while imposing an external flow similar to the
setups shown in Fig. 7 and Fig. 11. A variation of the
above setup may be to measure the deflection of a can-
tilever in proximity of a wall and exposed to a flow as
illustrated for a model polymer in Sec. IVA.
Another alternative to probe our findings is to line up

two particles in a row close to the wall of a container,
extended in its vertical direction, and to track the tra-

jectories of the two sedimenting particles. According to
our predictions, the particle moving in front should be re-
pelled from the wall whereas the particle behind should
at first be attracted. As soon as the connection vector
between the particles becomes sufficiently oblique with
respect to the boundary, the bulk effect is expected to
become dominant, so that both beads are carried both
away from the wall.
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