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Nonlinear Schrödinger solitons oscillate under a constant external force
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We investigate the dynamics of solitons of the cubic nonlinear Schrödinger equation with an external time-
independent force of the form f (x) = r exp(−iKx). Here the solitons travel with an oscillating velocity and all
other characteristics of the solitons (amplitude, width, momentum, and phase) also oscillate. This behavior was
predicted by a collective variable theory and confirmed by simulations. However, the reason for these oscillations
remains unclear. Moreover, the spectrum of the oscillations exhibits a second strong peak, in addition to the
intrinsic soliton peak. We show that the additional frequency belongs to a certain extended linear mode (which
we refer to as a phonon for short) close to the lower band edge of the phonon continuum. Initially the soliton
is at rest. When it starts to move it is deformed, begins to oscillate, and excites the above phonon mode such
that the total momentum in a certain moving frame is conserved. In this frame the phonon does not move.
However, not only does the soliton move in the homogeneous, time-periodic field of the phonon, but it also
oscillates.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) has numerous
applications covering practically all fields of physics, which
are listed and discussed in several review articles [1–3].
For many applications it is important to study the driven
NLSE. Parametric drivings were considered in Refs. [1,2,4–8].
Nonparametric (external) drivings were studied using time-
dependent forces, e.g., f (t) = r exp(iωt) [9–11], or a space-
and time-dependent force in the form of a plane wave f (x,t) =
r exp[i(kx − ωt)] [12,13]. The externally driven NLSE arises
in many physical situations such as charge density waves [9],
long Josephson junctions [14], optical fibers [12,15], and
plasmas driven by rf fields [16].

Recently, a force of the form f (x,t) = r exp[−iK(t)x] was
considered, where K(t) was a harmonic or biharmonic func-
tion [17,18]. Such forces were first used in the discrete form
fn(t) = r exp[−inφ(t)], where n denotes the nth resonator in
an array of coupled nonlinear optical waveguides, in which
discrete cavity solitons can be excited [19]. The array can be
modeled by a discrete NLSE, where φ is the incident angle of
a laser pump light. Both harmonic and biharmonic functions
φ(t) were considered [20].

Interestingly, the special case of a time-independent force
f (x) = r exp(−iKx) yields time-depending oscillating soli-
ton solutions, i.e., the amplitude, width, velocity, momentum,
and phase of the soliton all oscillate [17]. We study the
following forced NLSE

iψt + ψxx + g|ψ |2ψ + δψ = re−iKx, (1)

where g,δ, and K are constants. In the above-mentioned
discrete NLSE, which models cavity solitons, δ < 0 is a cavity
detuning parameter [19]. In our simulations [17], we obtained
stable solitons only for δ < 0.

Our collective coordinate (CC) theory for Eq. (1) predicts
soliton oscillations for nearly all initial conditions (ICs). This
has been confirmed by our simulations for very long integration
times [17,18]. For IC, we take the exact one-soliton solution
of the unperturbed NLS equation, i.e., Eq. (1) with r = 0.
If the initial condition is a stable stationary solution of the
CC equations, the simulations exhibit very small harmonic
oscillations. If the IC is close to a stable stationary solution,
the CC equations predict nearly harmonic oscillations, which
is confirmed by our simulations. If the IC is not close
to a stationary solution, there are two possibilities: either
anharmonic oscillations are predicted and confirmed (see
Fig. 6 of Ref. [17]), or very anharmonic oscillations are
predicted, but the soliton becomes unstable after some time
(Fig. 4 of Ref. [17]).

These instabilities can be predicted by an empirical cri-
terion, which is based on the CC theory [18]. The soliton
becomes unstable if the “stability curve” p(v), where p(t) and
v(t) are the normalized momentum and the velocity of the
soliton, has a section with a negative slope. This criterion
has a wide validity. It also holds for the NLSE with the
nonlinearity [21] g(ψ∗ψ)κψ with κ = 1/2, and it also holds
if K is not constant but a harmonic or biharmonic function of
time [18]; here κ = 1.

Two questions have not been clarified in the above work
[17,18,21]: (1) Why do the solitons oscillate, although the
driving force is time independent? (2) In the simulations, the
spectrum of the oscillations in most cases exhibits two strong
peaks, but only one of them is located near the frequency ωcc

s

which is predicted by the CC theory. What is the origin and
the role of the second peak?

The spatial periodicity of the driving force re−iKx is not the
reason for the oscillations. The period 2π/|K| is not reflected
in the soliton dynamics, because Eq. (1) can be reduced to an
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autonomous equation in a moving frame [17]. Assuming

ψ(x,t) = e−iKxu(y,t), y = x + 2Kt, (2)

then Eq. (1) becomes

iut + uyy + g|u|2u − (K2 − δ)u = r. (3)

Indeed, simulations for Eq. (3) yield the same soliton os-
cillations as Eq. (1). The only difference is that the soliton
velocity oscillates around a different mean value. The value of
K2 − δ must be positive, otherwise the homogeneous solution
u(y,t) ≡ u0 would be unstable [11].

Equation (3) has a history of applications, in particular, in
the physics of optical cavities. Originally, it was introduced as
the Lugiato-Levefer model [22] of a diffractive cavity driven
by a plane-wave stationary beam. Later it was employed to
describe a synchronously pumped ring laser with a nonlinear
dispersive fiber [23,24]. More recently, the same equation was
shown to govern the envelopes of short baroclinic Rossby
waves in a two-layer model of the atmosphere or of the ocean
[25].

Equation (3) has two exact static solutions [11,21,26]:

u±(y,t) = a + b

c ± cosh(βy)
, (4)

where a,b,c, and β are functions of the parameters g,r , and
K2 − δ = K ′2.

A numerical linear stability analysis [11] shows that u+(y,t)
is always unstable. The solution u−(y,t) is stable below a
critical value rc of the driving strength. For 0 < r < rc, there
are two eigenfrequencies in the gap between the continuum of
linear excitations (henceforth referred to as phonons) and the
ground state. For small r , the lower frequency is proportional
to

√
r , the higher frequency mode is detached from the

continuum, and the distance from the continuum increases
linearly with r . However, the above static solutions of the
autonomous equation (and small oscillations around them)
cannot answer our question, because our oscillating solitons
are moving also in the moving frame, i.e., the soliton velocity
vs generally differs from the velocity of the moving frame
vf = −2K .

In a recent paper [27], traveling solitons of the autonomous
equation were studied numerically by path-following them in
the parameter space. However, since these traveling solitons do
not exhibit oscillations, neither can they explain the oscillating
solitons which were predicted by our CC theory [17] and
confirmed by our simulations.

In this paper we essentially employ the following two ideas:
In most of our simulations the soliton is initially at rest. The
external driving force has two effects:

(1) The soliton is accelerated and starts to move. Due to
the acceleration the soliton is deformed and starts to oscillate.
This means that an eigenmode with frequency ωs is excited.

(2) Initially the momentum of the system is zero, because
the soliton is at rest and there are no other excitations. When
the soliton starts to move, it acquires a momentum Ps and
a plane wave (a linear excitation) can be excited such that
the total momentum in the moving frame is conserved. The
soliton then can move in the inhomogeneous, time-periodic
field of the plane wave. We note that much earlier there was
a very similar problem studied with driven nonplanar vortices

on a circular easy-plane Heisenberg ferromagnet. There the
vortices perform oscillations (with two frequencies) around a
mean trajectory, which is a circle. The oscillations occur due
to the interaction of the vortex with two spin-wave modes,
which are excited at the beginning of the simulation when the
vortex stars to move, in order to conserve the total energy and
total angular momentum [28]. A circular magnet is spatially
inhomogeneous due to the Coulomb force between the vortex
and its image vortex.

Our paper is organized as follows: In Sec. II we deal with
the momentum conservation and calculate the norm and the
momentum of the soliton. The spectrum, momentum, and
norm of the phonon modes are calculated in Sec. III. It turns
out that a certain phonon mode close to the lower band edge
is the only relevant mode for the soliton oscillations. In the
moving frame, this mode is a homogeneous oscillation, i.e.,
this phonon does not move in the moving frame.

The theoretical results are confirmed by simulations [direct
numerical solutions of the NLSE (1) and (3)] in Sec. IV.
A discrete Fourier transform (DFT) of the simulation data
yields the spectrum of the soliton oscillations as a function
of the driving strength r . The spectrum consists of a soliton
eigenmode and the above phonon near the band edge.

II. MOMENTUM CONSERVATION

As the force f (x) = r exp(−iKx) in Eq. (1) does not
depend on time, the energy is conserved [17]. The expression
for the energy is given in Sec. IV. The norm and the momentum
of the NLS soliton are, respectively,

M =
∫

dxψ∗ψ (5)

and

P = i

2

∫
dx(ψψ∗

x − ψ∗ψx). (6)

In Ref. [21] it was proven that

P (t) + KM(t) = Pv = const, (7)

where

Pv = i

2

∫
dx(uu∗

y − u∗uy) (8)

is the momentum in the frame moving with vf = −2K .
The conservation law (7) holds under the condition that the
boundary terms F (y → +∞,t) and F (y → −∞,t) are the
same (or zero). Here, F = −j + ru + ru∗, where j (y,t) is
the current density of the unperturbed NLS Eq. (3) in the
moving frame [21].

In our simulations we use a finite system of length 2L

and periodic boundary conditions. We now assume that in the
presence of a moving soliton there is always a plane wave
phonon (short for a linear excitation) and that

P = Ps + Pph, M = Ms + Mph. (9)

In the following we calculate separately the soliton and phonon
contributions.
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A. Soliton momentum and norm in the CC theory

We use the CC ansatz of Ref. [21] for the NLS equation with
arbitrary nonlinearity κ , but we set κ = 1, which corresponds
to our NLS equation in Eq. (1):

ψ(x,t) = β sech[β(x − q)]ei[p(x−q)+φ], (10)

with amplitude β(t) equal to the inverse of the width, position
q(t), normalized momentum p(t), and phase φ(t). Note that
ψ(x,t) is an exact solution of the unperturbed NLS equation.
It turns out that two of the four ordinary differential equations
for the collective variables are not independent [21], which
allows us to carry out one integration. This yields [21]

β(t)[p(t) + K] = const. (11)

Inserting the ansatz (10) into M and P given by (5) and (6),
respectively, we obtain the soliton norm and momentum in the
CC theory,

Mcc
s (t) = 2β(t), P cc

s (t) = 2β(t)p(t). (12)

Using (11), we see that the conservation law (7) is fulfilled by
the CC theory

P cc
s (t) + KMcc

s (t) = const, (13)

where the constant is determined by the initial conditions

P cc
v = 2β0(p0 + K), (14)

and equals the soliton momentum in the moving frame.

III. SPECTRUM OF THE LINEAR EXCITATIONS
(PHONONS)

The general solution of the linearized NLSE (Eq. (73) of
[17]) reads

ψph(x,t) = cei(kx−ωkt) − r

ωK

e−iKx, (15)

with ωk = −δ + k2,ωK = −δ + K2, and arbitrary, but small
c. The lower edge of the phonon continuum is at ω0 = −δ,
and therefore the spectrum contains a gap.

A. Phonons in the presence of a soliton

For the following, we need to know these phonons only far
away from the soliton. We assume that there is a phase shift
θ due to the interaction with the soliton, i.e., at the far left we
obtain

ψph(x,t) = cei(kx−ωkt+θ) − r

ωK

e−iKx, (16)

and at the far right the phonons are represented by Eq. (15).

B. Phonon momentum in the presence of a soliton

Equations (15) and (16) are inserted into P and M , defined
by Eqs. (6) and (5), respectively. We must distinguish two
cases: k �= −K and k = −K . In the former case the results
are complicated, but one can see in any case that

Pph(t) + KMph(t) �= const. (17)

In the case k = −K , the calculations are much simpler,
because the x-dependent parts in the integrands of P and M

drop out, and moreover θ drops out. Indeed,

ψph(x,t) =
(

ce−iωK t − r

ωK

)
e−iKx = φph(t)e−iKx, (18)

with ω−K = ωK = K2 − δ. First consider Mph(t):

Mph(t) =
∫ +L

−L

dxψphψ
∗
ph = φph(t)φ∗

ph(t)x|+L
−L, (19)

=
(

|c|2 + r2

ω2
K

)
2L − 2Re

(
cr

ωK

e−iωK t

)
2L. (20)

In the same way

Pph(t) =
∫ +L

−L

dxIm

(
∂ψph

∂x
ψ∗

ph

)
(21)

= −K

(
|c|2 + r2

ω2
K

)
2L + 2K

r

ωK

Re(ce−iωK t )2L.

(22)

Thus

Pph(t) + KMph(t) = 0, (23)

for phonons with k = −K,ωK = K2 − δ. The right-hand side
of (23) is the momentum in the moving frame. It is zero,
because the phonon does not travel in this frame: the group
velocity in the laboratory frame is vk = dωk

dk
= 2k. For the

mode with k = −K this velocity is vph = −2K . The velocity
of the moving frame is vf = −2K . The phonon velocity in
this frame is

ṽph = vph − vf = 0. (24)

Now consider an oscillating soliton plus a phonon with k =
−K . We assume that the momenta and the norms of the soliton
and the phonons are additive:

P = Ps + Pph, M = Ms + Mph. (25)

By inserting Eq. (25) into the conservation law Eq. (7) and
using Eq. (23), we obtain

Ps + KMs = Pv. (26)

Thus in the moving frame the (total) momentum is equal to
the soliton momentum, and there is no contribution from the
phonon. The phonon is simply a homogeneous oscillation, i.e.,
without x dependence:

φph(t) = ce−iωK t − r

ωK

. (27)

This will be confirmed in Sec. IV by our simulations for the
NLS Eq. (3) in the moving frame. This means that the above
additivity assumption is justified a posteriori.

In the laboratory frame the phonon is

ψph(x,t) = φph(t)e−iKx, (28)

and moves with the velocity vph = −2K .

IV. SIMULATIONS VS THEORY

In this section, we test our results by simulations, i.e., by
numerically solving the NLSE [(1) and (3)]. We have used
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a fourth-order Runge-Kutta method and periodic boundary
conditions. The parameters related with the discretization
of the system are �x = 0.02,�t = 10−4 [such that �t <

(1/2)(�x)2].
In order to compute the soliton position q(t), we fix the

time and determine the value of x for which the density of
the norm is a maximum, i.e., max(|ψ |2). Hence, we compute
β =

√
max(|ψ |2). We have also computed the momentum by

using (6) and the energy E(t),

E =
∫ +L

−L

dx

(
|ψx |2 − g

2
|ψ |4 − δ|ψ |2 + f ψ∗ + f ∗ψ

)
,

(29)

which is a conserved quantity [1]. We have verified by
decreasing �x and �t that very small oscillations of the energy
in the simulations are due to numerical errors.

As initial conditions, we take Eq. (10) with β(0) =
β0, q(0) = q0, p(0) = p0, and φ(0) = φ0. Therefore, P (0) =
2β0p0,M(0) = 2β0, and thus the right-hand side of Eq. (7) is
Pv = 2β0(p0 + K).

Our simulations have the following goals:
(1) Confirm the momentum conservation Eq. (7).
(2) Determine whether the soliton oscillation frequency ωcc

s

of the CC theory is a good approximation for the soliton
eigenfrequency ωs .

(3) Compare the r dependence of ωcc
s , which is an analytical

result from a linear stability analysis for stationary solutions
[21], with the r dependence of ωs .

(4) Search for a peak near ω−K = K2 − δ in the oscillation
spectra.

(5) Check that this frequency belongs to an extended mode,
in contrast to the intrinsic soliton oscillation mode.

(6) Confirm that the mode with ω−K = K2 − δ has zero
velocity in the moving frame.

For t > 0 we take ψ(x,t) from the simulations and deter-
mine whether the conservation law (7) is fulfilled. Figure 1
shows M(t),P (t), and Pv(t), and we see that Pv = P cc

v =
−0.32 with a numerical error of ±4 × 10−5. The same test
was made for the other ICs, e.g. for β0 = 0.96 and 1.52.

In the second row of Fig. 1 we see that the soliton velocity
q̇(t) and amplitude β(t) exhibit oscillations. The discrete
Fourier transform (DFT) of β in the lowest row has a strong
peak at ωs = 1.13, very close to the prediction ωcc

s = 1.12 of
the CC theory, and there are several higher harmonics of ωs .
Moreover, on the left shoulder of the main peak there is a very
small peak at ωph = 1.0 near the phonon band edge, plus the
linear combination ωs + ωph.

In contrast to this, in the P (t) spectrum (lowest row on
the right), the phonon peak is much stronger than the soliton
peak. This is easily explained by noticing that the soliton
amplitude β(t) is measured directly at the soliton, whereas
P (t) is obtained by an integration over the system.

Thus the simulation results clearly support that an oscillat-
ing soliton moves in the field of an extended phonon mode
with a frequency close to the lower band edge.

In Fig. 2, we present simulations for very early times
0 � t � 15 in order to study the transient behavior of the
system. The upper left-hand panel shows that the soliton is
deformed and starts to move directly after the start of the
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FIG. 1. (Colour online) Simulations for NLSE Eq. (1). First row
panels (different scales): Soliton moving to the left at t∗ = 83.3
(black); t∗ = 500 (dashed-red). Second row: position and amplitude
of the soliton. Third row: norm and energy. Fourth row: momentum in
the laboratory frame and the quantity Pv = P (t) + KM(t). Fifth row:
Discrete Fourier transform (DFT). Parameters: r = 0.05, δ = −1,
K = −0.1, g = 2 with IC β0 = 1.6, p0 = q0 = φ0 = 0. The energy
of the soliton is constant with an error of ±10−4. DFT of β shows
several frequencies, see text. DFT of P shows two frequencies, 0.99
(height 0.058) and 1.13 (height 0.024).

simulation. The upper right-hand panel shows the beginning
of the background oscillation due to the excitation of an
extended phonon mode; see also the lower right-hand panel
which presents the time evolution of the norm density at a
point far away from the soliton. In the lower left-hand panel
one can see how the momentum P (t) is built up and starts to
oscillate.
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FIG. 2. (Color online) Simulations for short time for NLSE
Eq. (1). First row panels (different scales): Soliton profiles at t∗ = 0
(black higher density), t∗ = 1.25 (dashed red line), t∗ = 3 (brown
lower density), and t∗ = 3.75 (dot-dashed blue line). Second row:
momentum and evolution of the density of the norm at x = 30. Same
parameters as in Fig. 1.

A. Regimes of ICs for the simulations

We choose q0 = p0 = φ0 = 0 and vary β0, since this choice
includes stationary solutions with β0 = βs (βs will be given
below).

We perform simulations for the following regimes:
(1) β0 lies in one of the stability windows [17], but close to

a boundary of the window, e.g., for the parameters in Fig. 1
there is a window for β0 � 1.52 [17]. In Fig. 1 we take β0 =
1.6. Here the soliton oscillations are very anharmonic; see
the DFT of β(t) in Fig. 1. In contrast to this there are no
higher harmonics in P (t), which exhibits a strong peak near
the phonon band edge ω0 = −δ = 1.

(2) As in (a) but with β0 not close to a boundary. Here the
β(t) oscillations are much more harmonic.

(3) Due to the goal number 3 above, we need simulations in
the neighbourhood of stationary solutions. Here the soliton
oscillations are small and practically harmonic [17]. The
phonon peak turns out to be strong, both in P (t) and β(t).
This helps with goal numbers 4 and 5.

Stationary solutions of the CC equations were obtained in
Ref. [17] by the ansatz q(t) = qs + vst, p(t) = ps, β(t) = βs ,
and φ(t) = φs − αst . By choosing a soliton at qs = 0 that is
initially at rest (ps = 0), a stable solution is found for φs = 0,
and an unstable solution for φs = π . Here βs is the solution of
a transcendental equation, which is solved numerically. In the
stable case, βs = 1.732 478 for the parameter set g = 2,δ =
−3,r = 0.05,K = −0.1 [17].

The stationary solution for the CC equations is naturally
not an exact solution of the driven NLS Eq. (1), but it is
very close. Our simulations yield very small oscillations in
q(t) and β(t),M(t),P (t) around a mean trajectory and around
mean values, respectively (see Fig. 3). The spectra of β(t) and
P (t) show two peaks at ωs = 0.24 and ωph = 3.02, close to
the expected value ωK = K2 − δ = 3.01. In order to check the
dependence on K , a simulation with K = −0.4 and r = 0.005
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FIG. 3. NLSE Eq. (1). Upper panels: position and amplitude of
the soliton. Middle panels: norm and momentum. Lower panels: DFT
of β shows oscillations with frequencies 3.02 (height 0.0011) and
0.23 (height 1.6 × 10−4); P (t) shows oscillations with frequencies
0.24 (height 8 × 10−5) and 3.02 (height 4.8 × 10−5). r = 0.005, δ =
−3, K = −0.1, with IC β0 = 1.732 094,p0 = q0 = φ0 = 0.

is performed and yields ωs = 0.22 and ωph = 3.17, close to
ωK = 3.16.

In order to prove that ωph is the frequency of an extended
mode, we compute the DFT of the norm density |ψ(xf ,t)|2
at fixed points xf far away from the soliton. These DFT all
exhibit only one peak at ωph = 3.02, close to the expected
value ωK = K2 − δ = 3.01. An example is given in Fig. 4.

Figure 4 shows results from a simulation for the au-
tonomous NLSE Eq. (3). In the panel on the upper right-hand
corner one can see that the soliton moves in the moving frame,
but the phonon mode simply consists of an up and down
oscillation of the background, as predicted.

In order to reveal the dependence of the soliton oscillation
frequency ωs on the driving strength r and the other parame-
ters, we compare with the result [21]

ωcc
s = (K2 − δ)1/4

√
2πr. (30)

This holds for small r because it results from a linear stability
analysis for stationary solutions of the CC equations [21].
Figure 5 shows very good agreement of ωs with ωcc

s . For
r � 0.25 the soliton is unstable.

Figure 5 also shows that ωph is always close to the phonon
band edge ω0 = −δ = 3. For r = 0.15,0.20, ωph is slightly
smaller than ω0. This would mean that the amplitude of these
excitations would be spatially attenuated. However, in our
simulations we have not observed any attenuated phonons in
front of the soliton or behind it. Taking into account the error
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FIG. 4. (Color online) Autonomous NLSE Eq. (3). First row
panels (different scales): Soliton moving to the left at t∗ = 83.3
(black); t∗ = 500 (dashed-red). Second row: q(t)−v t (v= −0.220 37
denotes the mean velocity) and amplitude of the soliton. Third row:
norm and DFT of the soliton’s amplitude. DFT of β shows frequencies
0.97 (height 0.118), 1.95 (height 0.027), and 3.98 (height 0.014). DFT
of M shows frequencies 0.97 (height 0.24), 1.95 (height 0.055), and
3.98 (height 0.028). Fourth row: Oscillations of the density of the
norm at a fixed point show the frequency 3.02 (height 0.000 39). The
momentum is conserved, Pv = P cc

v = −0.42 with a numerical error
of 10−4. Parameters: r = 0.05, δ = −3, K = −0.1, θ = 0, with IC
β0 = 2.16, p0 = q0 = φ0 = 0.

bars of 0.02 for ωph, we therefore conclude that the excitations
for r = 0.15,0.2 could also belong to the phonon band.

Finally, we want to compare our spectrum for a moving
soliton (Fig. 5) with the results from the numerical linear
stability analysis for the stable static solution u−(y,t) of the
autonomous Eq. (3) [11]. The factor K2 − δ = c2 can be
eliminated by scaling time and space by t = τ1/c

2,y = ξ/c,
and u = cφ. This yields the equation that was investigated in
Ref. [11],

iφτ1 + φξξ + 2|φ|2φ − φ = h, (31)

where h = r/c3.

0 0.05 0.1 0.15 0.2
r

0

0.5

1

1.5

2

2.5

3

ω

FIG. 5. Frequencies of the soliton and phonon oscillations as a
function of the driving strength r . The solid line represents the curve
ω = √

2πr(K2 − δ)1/4 versus r , which results from a linear stability
analysis for stationary solutions of the CC equations [21]. The points
with their error bars stem from the DFT of both β(t) and P (t) in the
simulations. The dashed line represents the phonon band edge at ω0 =
−δ = 3. Other parameters: g = 2,K = −0.1,β0 = 1.732 478,p0 =
q0 = φ0 = 0. For r � 0.25 the soliton is unstable.

Unfortunately, Fig. 1 of Ref. [11] is only schematic, and
hence a quantitative comparison cannot be made. However, a
qualitative comparison yields the following:

(1) For 0 < h < hc = 0.077 49 there are two eigenfrequen-
cies in the gap between the phonon continuum and the ground
state, and for h > hc the soliton is unstable.

(2) For small h, the lower frequency is proportional to
√

h,
the same behavior as in our Fig. 5.

(3) The higher frequency mode is detached from the
continuum and decreases linearly with h, for small h. In
contrast to this, our phonon mode is always close to the edge
of the continuum.

(4) The two modes meet at h = hc. This cannot occur in
Fig. 5, because here the soliton already becomes unstable in
the simulations for r � 0.25. This value is much smaller than
the critical value rc = c3hc = 0.404 7, which corresponds to
hc = 0.077 49.

Finally, we investigate what happens when the external
force f (x) = r exp(−iKx) is switched on adiabatically. We
multiply f (x) by the switching function h(t) = 1 − (1 +
t/τ ) exp(−t/τ ) with the properties h(0) = ḣ(0) = 0, and h →
1 for t 	 τ . We choose the same parameters as in Fig. 1
and assign τ = 100. Figure 6 shows that after a transient
time of about 500,β(t) and P (t) exhibit practically the same
intrinsic frequency ωs = 0.23 as in Fig. 1. Moreover, the DFT
do not contain a second frequency at 3.02 near the edge
of the phonon band, in fact there is only one peak. This
is confirmed by the norm density in the middle right-hand
panel, which shows no background oscillations. This means
that only the intrinsic soliton mode ωs is excited when the
driving force is switched on adiabatically (i.e., sufficiently
slowly). The amplitude aβ of the soliton oscillations is very
small (2 × 10−3) and can be further reduced by fine tuning the
IC β0. For example, for β0 = 1.731 878, the oscillations nearly
vanish (aβ = 2 × 10−4) and the soliton velocity is nearly
constant (v = 0.007 8). This means that we practically have a
traveling soliton without oscillations, i.e., a stationary solution.
Such solutions have recently been obtained numerically by
path-following them in the parameter space [27].
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FIG. 6. (Color online) Simulations for NLSE Eq. (1) where
the force is adiabatically switched on by h(t)r exp(−iKx) with
h(t) = 1 − (1 + t/τ ) exp(−t/τ ) with τ = 100. First row panels: q(t)
and β(t). Second row: P (t) and norm density for t∗ = 233.3 (black);
1400 (dashed-red). Third row: DFT of β and P show the frequency
0.23 [height 0.002 2 in β(t) and 0.000 43 in P (t)]. Parameters:
r = 0.005, δ = −3, K = −0.1, g = 2 with IC β0 = 1.732 478, p0 =
q0 = φ0 = 0.

V. CONCLUSIONS

Our simulations for the cubic NLSE Eq. (1) with the
external force f (x) = r exp(−iKx) exhibit traveling solitons
which oscillate, i.e., the soliton’s amplitude β(t) and velocity
q̇(t) oscillate around mean values of β and q̇; moreover,
the norm M(t) and total momentum P (t) of the system also
oscillate around mean values. The spectra of the oscillations
generally exhibit two strong peaks: (1) The frequency ωs is
close to ωcc

s , which is the frequency of an intrinsic soliton mode
predicted by a collective coordinate theory [17]. This theory
generally yields anharmonic oscillations. This is confirmed by
the simulations, for example, the spectrum of β(t) in Fig. 1
exhibits the higher harmonics 2ωs and 3ωs . However, P (t)
does not contain higher harmonics. (2) Generally, a second
strong peak is observed at ωph, which is close to the lower
band edge ω0 = −δ of the continuum of linear excitations
(phonons). This phonon mode is excited for the following
reason: Initially the soliton is at rest. Due to the driving force
the soliton is accelerated and deformed and starts to oscillate.
When the soliton starts to move, it acquires a momentum
and the above phonon mode is excited such that the total
momentum in a frame moving with the velocity vf = −2K

is conserved (this conservation law has been proven in Ref.
[21]). We have shown that, in this moving frame, the phonon
mode with ωK = K2 − δ ≈ ωph does not move, thus the

total momentum is equal to the soliton momentum. The
above phonon mode is an extended mode which represents
a homogeneous up and down oscillation of the background
(Fig. 4, first row on the right). Moreover, we have computed
the norm density at fixed points far away from the soliton and
we see in the spectrum only one peak near ωK = K2 − δ, as
expected (Fig. 4, fourth row on the right).

Summarizing, we conclude that the intrinsic soliton mode
and the above specific phonon mode together fully explain the
observed oscillations.
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APPENDIX: PHONONS IN THE MOVING FRAME

We first transform the solution in the laboratory frame to
the moving frame, considering

ψ(x,t) = cei(kx−ωkt) − r

ωK

e−iKx, (A1)

with ωk = k2 − δ and ωK = K2 − δ. This equation can be
rewritten as

ψ(x,t) = e−iKxu(x,t), u(x,t) = cei([k+K]x−ωkt) − r

ωK

.

(A2)

Using x = y − 2Kt,u(y,t) becomes a phonon mode in the
moving frame,

u(y,t) = cei(k̃y−ω̃k̃ t) − r

ωK

, (A3)

with k̃ = k + K and ω̃k̃ = ωk + 2Kk̃ = −δ + k̃2 + K2. In-
deed, by inserting (A3) into the linearized autonomous NLSE,
we obtain ω̃k̃ as above.

Now we calculate the phonon momentum in the moving
frame by inserting (A3) into (8) and integrating between −L

and L:

P ph
v = 2k̃|c|2L − 2r

ωK

[a cos(ω̃t) + b sin(ω̃t)] sin(k̃L).

(A4)

Clearly, P ph
v is independent of t only if sin(k̃L) = 0, i.e., k̃n =

nπ/L, with n = 0, ± 1, ± 2,.... Notice that for these k̃n, the
periodic BC u(L,t) = u(−L,t) are fulfilled. Moreover, P ph

v =
0 only if k̃ = 0; i.e. k = −K and ω̃0 = −δ + K2 = ωK , which
is the same frequency in both frames.
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