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Optical analysis of spatially periodic patterns in nematic liquid crystals:
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Optical methods are most convenient for analyzing spatially periodic patterns with wave vector q in a thin
layer of a nematic liquid crystal. In the standard experimental setup a beam of parallel light with a “short”
wavelength λ � 2π/q passes the nematic layer. Recording the transmitted light the patterns are either directly
visualized by shadowgraphy or characterized more indirectly by the diffraction fringes due to the optical-grating
effects of the pattern. In this work we present a systematic short-wavelength analysis of these methods for the
commonly used planar orientation of the optical axis of liquid crystal at the confining surfaces. Our approach
covers general three-dimensional experimental geometries with respect to the relative orientation of q and of the
wave vector k of the incident light. In particular, we emphasize the importance of phase-grating effects, which are
not accessible in a pure geometric optics approach. Finally, as a by-product we present also an optical analysis of
convection rolls in Rayleigh-Bénard convection, where the refraction index of the fluid is isotropic in contrast to
its uniaxial symmetry in nematic liquid crystals. Our analysis is in excellent agreement with an earlier physical
optics approach by Trainoff and Cannell [Phys. Fluids 14, 1340 (2002)], which is restricted to a two-dimensional
geometry and technically much more demanding.
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I. INTRODUCTION

Increasing an external stress on a homogeneous fluid
layer leads typically to a spontaneous generation of spatially
periodic structures (patterns) in the plane of the layer [1].
The structures are characterized by a wave vector q and a
certain amplitude, which depends on the amount of stress.
Corresponding periodic structures are induced into the re-
fraction index of the fluid layer, which thus acts as an
optical grating when illuminated, for instance, with a parallel
light beam with wavelength λ � 2π/q. The transmitted
light may be analyzed in terms of the arising diffraction
fringes. They give insight into the intensity of the Fourier
modes representing the periodicity of the planforms and more
indirectly into the mechanism driving the pattern forming
instabilities. Alternatively, shadowgraphy is often applied to
visualize directly the periodically distorted fluid layer. An
important paradigm is Rayleigh-Bénard convection (RBC)
driven by a temperature gradient [2], where the common array
of convection rolls is mapped to a sequence of black-and-white
stripes in shadowgraphy [3].

In this paper, however, we refer mainly to patterns in
nematic liquid crystals, which are anisotropic uniaxial fluids.
The preferred direction (roughly speaking the mean orientation
of the non-spherical molecules in the nematic phase) is
described by the director n̂ with n̂2 = 1, which also determines
the local optical axis. The nematic layer of thickness d and
large lateral extension is confined between two coplanar glass
plates (parallel to the xy plane). They are specially treated
to enforce a fixed director orientation n̂ = n0 at the two
surfaces at z = 0,d. We consider exclusively the so-called
planar director configuration where n0 points along the x axis
(parallel to the unit vector x̂). In the basic state a uniform
orientation of n̂ = n0 is then induced throughout the whole
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nematic layer, corresponding to a minimum of the orientational
elastic free energy. A thoroughly studied pattern forming
instability of the basic state is the electroconvection instability
(EC), where the glass plates are coated in addition with thin
transparent electrodes to apply an ac voltage U = U0 cos(�t)
across the layer. For a voltage amplitude U0 above a certain
threshold Uc a stripe pattern appears in EC [4]. However,
the application of magnetic fields, temperature gradients, or
shearing the nematic layer also leads easily to patterns (see,
for instance, [5]). Revealing the character and the mechanisms
of the instabilities requires relating the director distortions and
the corresponding optical signals.

The theory of shadowgraphy has been developed in several
steps over the years. At first geometric (ray) optics has been
applied to RBC in Ref. [6]. There a simple model was proposed
to describe the deflection of the incoming light rays towards
the optically denser (cold) regions of the RBC convection
patterns. The model makes use of the fact that the scale
of the spatial variations of the refraction index in the fluid
layer (of the order of 0.5 cm in typical RBC experiments) is
much larger than the light wavelength λ ≈ 0.6 μm used. Since
the effects of diffraction are neglected, this theory predicts
divergent intensities (caustics) in pictures recorded at a certain
level z = zF above the cell. In Ref. [6] zF is treated as an
adjustable parameter and the theoretical pictures calculated
for some distance z < zF above the cell, look very similar to
the experimental ones. The analysis in RBC on the basis of
ray optics has been considerably refined by Rehberg and co-
workers Refs. [7,8] by calculating the ray paths using Fermat’s
principle. In addition, they considered also shadowgraphy for
optically anisotropic nematics on the example of EC pattern
(see also [9]). Here the scale of the spatial variations of the
refraction index is typically governed by the thickness of the
nematic layer (typically 10 μm � d � 100 μm) and thus is
still considerably larger than λ ≈ 0.6 μm of the light used.
Roughly speaking, in Refs. [7,8] a theoretical description of
zF as a function of the pattern amplitudes and the two nematic
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refraction indices is achieved. Focusing in experiments to
positions z < zF above the cell, the contrast between minimal
and maximal amplitudes in shadowgraph pictures seems to
agree quite well with the theoretical predictions.

The most comprehensive theoretical treatment of shadowg-
raphy so far has been presented by Trainoff and Cannell [10],
where some problematic aspects of the prior analyses become
evident [11]. In geometric optics only the amplitude-grating
effects of the patterns but not their phase-grating contributions
are taken into account. They determine, for instance, the weight
of higher harmonics with wave vector 2q in shadowgraph
pictures and are essential for the interpretation of patterns
driven by thermal fluctuations below onset of convection (see,
e.g., Refs. [10,12]). Furthermore, geometric optics is not used
outside the fluid layer as in Refs. [7,8] and the propagation
and interference of the light waves when leaving the fluid
layer are treated rigorously. As a result, the electromagnetic
patterns with maximal contrast above the fluid layer reoccur
at regular distances along the z axis perpendicular to the layer
plane. The corresponding period is given as 8π2/(q2λ) and
does not depend on the pattern amplitudes. This is in distinct
contrast to the caustics in geometric optics. Here the position of
shadowgraph pictures with maximal contrast above the layer
is determined by zF , which even diverges when the pattern
amplitude approaches zero. It is noteworthy that the periodicity
of the electromagnetic field along the z direction was already
described almost 200 years ago by Talbot [13], who studied
light incident on a periodic diffraction grating. The intriguing
transition from the periodic sequence of the finite-intensity
patterns along the z axis to caustics in the limit λ → 0 has
been discussed recently in Ref. [14].

In [10] shadowgraphy in RBC has been discussed in detail,
while EC is only briefly touched. A more detailed recent
investigation [15] on EC patterns is, on one hand, devoted
to the theoretical description of the diffraction spots (on the
basis of phase grating). The main theoretical predictions are
consistent with corresponding experiments. This paper con-
tains also references to earlier investigations of the problem.
In particular, in Ref. [16] the importance of phase grating had
been already stressed.

The physical optics approach in Refs. [10,15] is, however,
quite complicated to use since amplitude- and phase-grating
effects are still treated separately. Furthermore the analysis is
restricted to a special, though often utilized, two-dimensional
(2D) geometry, where n̂ lies in plane spanned by the wave
vector q and the polarization of the plane wave transversing
the nematic layer. The goal of the present work is a systematic,
more transparent analysis of the problem on the basis of
the common short-wavelength approximation in theoretical
optics [17]. The starting point is a systematic expansion of
the solutions of the Maxwell equations in terms of the small
parameter λq/(2π ). We have benefited considerably from an
analysis of light propagation in nematic fluid layer presented
in Ref. [18]. As a result, for the first time diffraction and
shadowgraphy for patterns in nematics are thus described
quasianalytically for quite general configurations of the
incident light wave (polarization, wave vector) and of the
orientation of the director. In the case of dissipative convection
rolls as in EC the presence of fluid flow plays an essential role.
The wave vector q, characterizing the pattern periodicity, is

then often parallel to the basic planar director configuration
n0 ≡ x̂ or includes only a small angle with n0. Alternatively,
one finds so called equilibrium transitions when the minima of
orientational free energy exchange in the presence of electric
or magnetic fields, where q ⊥ n0. Interesting examples are
the flexoelectric stripe patterns [19] driven electrically or the
splay-twist Freedericksz pattern [20] driven either by electric
or magnetic fields.

The paper is organized as follows. In Sec. II we first review
briefly the salient features of the pattern forming instabilities in
nematics. Furthermore, we sketch the theoretical background
of light propagation in nematics, partly in order to fix
our notation. Section III deals with the short-wavelength
approximation of the Maxwell equations, which is appropriate
to describe optics in media with a slowly varying refraction
index in space. Based on this approximation we rederive and
confirm in Sec. IV the results of [10] in their 2D geometry. The
following two sections contain the main results of the paper,
on which one might concentrate on a first reading. In Sec. V
we discuss the optics of 3D patterns. The treatment covers, in
particular, the case where q ⊥ n0, which cannot be described
by pure geometric optics. Section VI is devoted to a general
discussion and summary of our results. The paper concludes
with some final remarks also on future perspectives in Sec. VII.
In several appendixes, we provide details of our calculations.
In particular, Appendix F is devoted to our complementary
optical analysis of roll patterns in RBC.

II. GENERAL THEORETICAL BACKGROUND

In this section some well known basic facts on pattern
forming instabilities in nematics are briefly summarized.
Furthermore, since the patterns are analyzed by optical
methods, we mention briefly the standard description of light
propagation in uniaxial materials mainly in order to fix the
notation.

A. Pattern forming instabilities in nematics

At first we address briefly some main features of the typical
stripe patterns in nematic layers in the planar configuration
defined in the Introduction. For a sufficiently strong external
stress the basic state is destabilized. The director develops a
distortion �n(x,y,z) of n0 for 0 < z < d, which is periodic in
the xy plane. The periodicity is characterized by a critical
wave vector q; i.e., �n can be represented as a Fourier
series in terms of ei q·x with x = (x,y). At the confining
plates, however, the director orientation remains fixed (strong
anchoring): �n(x,z = 0,d) = 0. In this paper we concentrate
on the weakly nonlinear regime just above the onset of
the pattern forming instability, where the director distortion
�n(x,z) is small. It is convenient to introduce the following
decomposition of �n:

�n(x,z) = −δnx(x,z) x̂ + θmδn(x,z), with
(1)

δn = (0,δny,δnz) and δn · x̂ = 0.

Exploiting the normalization condition n̂2 = 1 with n̂ = n0 +
�n(x,y,z) determines δnx in terms of δn:

n̂2 = [(1 − δnx)x̂ + θmδn]2 = 1; thus,
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(2)
δnx = 1

2θ2
m(δn)2 + O

(
θ4
m

)
.

The amplitude θm measures the maximal local tilt angle of n̂
with respect to the xy plane, i.e., the out-of-plane distortion
of n0. It has turned out in many cases that the director field
is surprisingly well described already within a “one-mode”
approximation of the form

n̂(x,z) = (
1 − 1

2θ2
m(δn)2,0,0

) + θmδn,
(3)

δn = ϑ(z)(0,ay sin(q · x), cos(q · x)),

with ϑ(z) = sin(πz/d) to fulfill the boundary condition
n̂(x,z = 0,d) = n0. The amplitude ay of the twist distortion
(δny) of the director is small for dissipative patterns like in
EC and of the order one for the equilibrium patterns like the
flexoelectric ones. The standard optical analysis reflects thus
directly the wave vector q, the amplitudes θm, ay , and two
refraction indices ne and no of uniaxial materials (see also
following Sec. II B).

For convenience we choose the well studied EC as a
representative example to show some details, but our analysis
makes no particular use of this special case. The experimental
setup consists of an extended nematic fluid layer of small
thickness d � 100 μm oriented parallel to the xy plane,
where the lateral extension are much larger than d. The
amplitude coefficients θm and ay are in general periodic
functions in time governed by the ac frequency (up to 104 Hz
in some experiments) of the applied voltage. In many cases
the coefficients are already well described by their temporal
average and thus considered to be constant. In any case the
time dependence of the amplitude can be treated in an adiabatic
approximation for optical methods, since the frequency ω of
the monochromatic light waves to probe the patterns is by
many orders of magnitude larger than the ac frequency �.
Convection sets in at a critical amplitude U0 = Uc (typically
some volts), where q is determined by the critical wave vector
qc with |qc| of the order of π/d. These critical data as well
as the detailed director configuration depend on the material
parameters of the specific nematic material, the cell thickness,
and the ac frequency �. They are available from a linear
stability analysis of the spatially homogeneous basic state,
which has been extensively carried through in the last two
decades (see, e.g., Refs. [21,22]). The EC instability, as most
pattern forming instabilities in nematics, is supercritical, which
means that for U0 � Uc the amplitude θm grows continuously
with the reduced control parameter ε ≡ (U 2

0 − U 2
c )/U 2

c like√
ε. For the nematic material MBBA, which has been used in

the majority of EC experiments, the proportionality factor is
about 80◦ [21], such that ε = 0.1 corresponds to θm about 25◦.

To analyze the pattern forming instabilities driven by other
external stresses alluded to above, one has to follow the same
strategy as in EC. At first the critical stress value like Uc in
EC and the critical wave vector qc together with the distorted
director configuration are determined in the framework of a
linear stability analysis. Then a weakly nonlinear analysis has
to be used to calculate the amplitude of the director distortion
as a function of the stress parameter. It should be realized
that the range of validity of a weakly nonlinear analysis is,
in general, confined to small amplitudes θm. Increasing the
external stress and thus θm leads to secondary instabilities (see,

e.g., [23,24]). The resulting patterns are typically characterized
by the appearance of spatial periodicities with wave vectors not
parallel to qc. That the growth of the out-of-plane distortion
of ∝θm with increasing ε must be limited is obvious, since,
for instance, the stabilizing orientational elastic energy grows.
For the nematic material MBBA, which has been used in the
majority of EC experiments, the secondary instabilities set
in for angles θm between 20◦ and 30◦. The often complex
spatiotemporal pattern developing due to such secondary
instabilities are outside the scope of this paper.

B. Light propagation in nematics

In the following we review briefly the propagation of
monochromatic light waves with circular frequency ω in a
nematic liquid crystal, which has uniaxial optical symmetry. In
general, we follow closely the notations of Born and Wolf [17].
The starting point comprises the general Maxwell equations
(in cgs units), where the factor e−iωt has been split off,

∇ × H = −ik0 ε · E, ∇ × E = ik0 B, (4a)

∇ · D = 0, ∇ · B = 0, (4b)

with k0 = ω/c and c the vacuum speed of light. All fields
depend, in general, on r = (x,z). The constitutive equations
which connect the dielectric displacement D to the electric
field E and the magnetic induction B to the magnetic field H
are given as

D = ε · E, B = μH . (5)

The magnetic permeability μ is a scalar which can be safely
put to one for our materials. The optical dielectric tensor ε of
the uniaxial nematics is given as

ε = ε⊥I + (ε‖ − ε⊥)n̂ ⊗ n̂. (6)

Here we have introduced the standard definition of the tensor
(dyadic) product a ⊗ b of two vectors a,b with the components
aibj , i,j = x,y,z; I denotes the unit matrix. The frequency
dependent dielectric constants ε⊥,ε‖ are taken at the frequency
ω. They are considered to be real; i.e., light absorption plays
no role. The case of optically isotropic materials like glass or
air are characterized by ε⊥ = ε‖ ≡ ε̄.

After eliminating B from Eq. (4a) we arrive at

rot rotE = �E − ∇(∇ · E) = k2
0μ ε · E. (7)

The corresponding elimination of the electric field E is
possible as well, which leads to

rot[ε−1rotB] = k2
0μB. (8)

Plane-wave solutions. In the case of constant n̂ the Maxwell
equations (4) allow for plane wave solutions (characterized
by a wave vector k = k0k′), which play an important role
in the following. For instance, the electric field E has the
representation

E = E0 exp[ik0k′ · r], with r = (x,z) and k0 = ω

c
. (9)

The amplitude E0 is a constant vector. Note that the use of
nondimensionalized wave vectors (indicated by a dash) like
k′ = k/k0 in Eq. (9) turns out to be very convenient in the
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following. For instance, the refraction index nrf fulfills relation
(k′)2 = (nrf )2.

Representing the other fields in analogy to Eq. (9) with
amplitudes D0,B0,H0 we arrive from Eqs. (9) at

k′ × H0 = −D0 = ε · E0, k′ × E0 = μH0, (10a)

k′ · D0 = 0, k′ · B0 = 0. (10b)

According to Eqs. (10) the vectors k′,D0,H0 are pairwise
orthogonal. Furthermore, E0 is orthogonal to H0, i.e., lies in
the plane of k′,D0. It is easy to see that Eq. (7) reduces for the
plane wave E used in Eq. (9) to

{(k′)2 − k′ ⊗ k′ − μ[ε⊥ + ( ε‖ − ε⊥)n̂ ⊗ n̂ ]} · E0

≡ M[k′] · E0 = 0. (11)

For definiteness we concentrate in the following on the
typical (planar) experimental setup of a nematic layer parallel
to the xy plane with a constant n̂ = x̂ sandwiched by the
coplanar glass plates. Let a monochromatic plane wave enter
this configuration from air with the wave vector k′ = k′‖ +
k′
z êz,k

′
z > 0. At each interface the wave is reflected (k′

z reverses
sign) and diffracted; i.e., it propagates above the interface
with a modified k′

z. According to Snellius’s law the in-plane
components of the wave vector k′ in the various material
layers are equal. The z components of k′ are determined by
the respective refraction indices, nrf , i.e., by the condition
(k′)2 = (k′‖)2 + (k′

z)
2 = n2

rf .
In isotropic media where ε‖ = ε⊥ = ε̄ we obtain from

Eqs. (11) the well known relation nrf = √
ε̄μ. Since ε̄k′ ·

E0 = 0 according to Eq. (4) the orientation of the electric field
vector E0 (the polarization) has to be perpendicular to k′ but is
otherwise undetermined. According to Eqs. (4) the magnetic
field vector, which is also perpendicular to k′, has to be
perpendicular to E0. For finite k′

‖ we speak of TM (transverse
magnetic) waves in our geometry when the electric field is
in the incidence plane spanned by k′, ẑ; i.e., the magnetic
field is perpendicular to that plane. Alternatively, for the TE
(transverse electric) waves the directions of the electric and
magnetic fields are interchanged. For k′

‖ = 0 the TM waves
are defined to be polarized along the x̂ axis and the TE waves
along the ŷ axis. Incoming waves with arbitrary polarization
obviously correspond to a certain linear superposition of TM
and TE waves.

In uniaxial nematic layers nrf depends, in general, on the
ordinary refraction index, no = √

ε⊥μ, and the extraordinary
one, ne = √

ε‖μ. In addition, the angle between n̂ and k′ comes
into play. In view of the condition k′ · D0 = k′ · (ε · E0) = 0
[see Eq. (10)] the linear equation M · E0 = 0 [see Eq. (11)]
allows for the two linear independent solutions E0 = o0[k′

o]
(ordinary) and E0 = e0[k′

e] (extraordinary), which are repre-
sented as the following unit vectors:

o0[k′
o] = k′

o × n̂
|k′

o × n̂| , e0[k′
e] = ε⊥n̂ − k′

e(k′
e · n̂)

|ε⊥n̂ − k′
e(k′

e · n̂)| . (12)

The parallel components of the wave vectors k′
e and k′

o are
given by k′

‖ of the incident plane wave, as discussed before.
Their z components are determined by the refraction indices

nord,next given as follows:

M[k′
o] · o0[k′

o] = 0 ⇒ (k′
o)2 = n2

ord = n2
o,

M[k′
e] · e0(k′

e) = 0 ⇒ (k′
e)2 = n2

ext = n2
e − β(k′

e · n̂)2 = 0,

with β = n2
e

n2
o

− 1. (13)

The corresponding magnetic field vectors are easy to calculate,
since they are perpendicular to e0[k′

e],k′
e and to o0[k′

o],k′
o,

respectively [see Eq. (4)].
To determine the amplitudes of the diffracted and reflected

plane waves in dependence on the wave vector and the
polarization of the incident plane wave one makes use of
the continuity of the tangential components of the electric
and magnetic fields at any interface. In addition, the normal
components of the displacement D and the magnetic induction
B have to be continuous as well. The calculational details are
presented in Appendix A.

III. THE SHORT-WAVELENGTH APPROXIMATION FOR
THE OPTICS OF MATERIALS WITH UNIAXIAL

SYMMETRY

As demonstrated in Sec. II B the general monochromatic
Maxwell equations (7) and (8) can easily be solved in terms
of plane waves for a constant dielectric tensor ε. We are now
interested in the case where ε varies slowly in space on a
scale 2π/q which is much larger than the wavelength λ =
2π/k0,k0 = ω/c of the light wave in vacuum. The position
dependence of ε is induced by the spatial variations of n̂.

As described, for instance, in Ref. [17] (Chap. III), it is
appropriate to solve the monochromatic Maxwell equations
[Eqs. (10)] by using the ansatz

E(r) = E0(r)ei k0S(r), H(r) = H0(r)ei k0S(r). (14)

The eikonal S is a real scalar function of position, while
the field amplitudes E0,H0 are, in general, complex vector
functions of position. The ansatz for E(r) in Eq. (14) is now
inserted into Eq. (7) where we make use of the general identity:

∇ × {∇ × (V exp[ik0S])}
= exp[ik0S] (∇ + ik0∇S)[(∇ + ik0∇S) × V ] (15)

for an arbitrary vector V and a scalar S, which are both space
dependent. Collecting the terms O(k2

0) we arrive at the eikonal
equation:

{(∇S)2 − ∇S ⊗ ∇S − μ[ε⊥ + ( ε‖ − ε⊥)n̂ ⊗ n̂ ]} · E0 = 0.

(16)

Comparison with Eq. (11) shows that ∇S corresponds to a local
version of the (dimensionless) wave vector k′ in the case of
constant n̂. Accordingly, we introduce local representations oN

and eN of the ordinary and extraordinary polarization vectors
o0 and e0 defined in Eq. (12),

oN (r) = ∇So(r) × n̂(r)

|∇So(r) × n̂(r)| ,
(17)

eN (r) = ε⊥n̂(r) − ∇Se(r)[∇Se(r) · n̂(r)]

|ε⊥n̂(r) − ∇Se(r)[∇Se(r) · n̂(r)]| ,
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the position dependence of which is often suppressed in the
following. Thus, we have to distinguish between the ordinary
eikonal solution, So, and the extraordinary one, Se, of Eq. (16),
which correspond to the solutions E0 = oN and E0 = eN in
Eq. (17). Obviously, the expressions for k′

e, k′
o in Eq. (13)

translate immediately into the following equations for the local
wave vectors ∇So and ∇Se:

(∇So)2 = n2
o, (18a)

(∇Se)2 + β(Se · n̂)2 = n2
e . (18b)

The solutions S0
e ,S

0
o of Eqs. (18) for the homogeneous basic

planar state where n̂ = n̂0 = x̂, which are associated with
a plane wave with wave vector k′ = (k′

x,k
′
y,k

′
z) ≡ k′

‖ + k′
zez,

read as follows:

S0
o (x,z) = k′

‖ · x + k′
z

o(k′) z, S0
e (x,z) = k′

‖ · x + k′
z

e(k′) z,

(19)

with

k′
z

o(k′) = no

[
1 − k′

x
2 + k′

y
2

n2
o

]1/2

,

(20)

k′
z

e(k′) = ne

[
1 − k′

x
2

n2
o

− k′
y

2

n2
e

]1/2

.

It is convenient to split off from the eikonal Se in Eq. (18b)
the contribution S0

e in Eq. (19) of the basic state by using the
ansatz Se = S0

e + S̄e. Thus, one arrives at a modified eikonal
equation for S̄e as a quadratic form in the partial derivatives
∂zS̄e:

A

(
∂

∂z
S̄e

)2

+ 2B

(
∂

∂z
S̄e

)
− C = 0, S̄e = Se − S0

e . (21)

The coefficients A, B, and C depend on the derivatives
∂xS̄e,∂yS̄e and on the director distortion �n. In analogy to [18],
Eq. (21) can be rewritten as

∂

∂z
S̄e = −B + √

B2 + AC

A
= C

B + √
B2 + AC

. (22)

Equation (22) has to be solved with the initial condition
S̄e(x,z = 0) = 0, since Se(x,0) ≡ S0

e (x,0), which is already
split off in Eq. (21). Note that for the same reason we had to
exclude the negative square root in the transition from Eqs. (21)
to (22).

For the director distortion �n given in Eq. (1) we restrict
ourselves to solutions of Eq. (22) up to second order in the
small quantities θm and |k′

‖|, i.e., allowing only for small
deviations from perpendicular incidence (|k′

‖| = 0). Thus, we
represent S̄e in the form

S̄e(x,z) = θmS(1,0,0)(x,z) + k′
xθmS(1,1,0)(x,z)

+ k′
yθnS

(1,0,1)(x,z) + θ2
mS̄(2)(x,z) + · · · . (23)

Note that θm-independent terms do not appear; they are
already covered by S0

e (x,z) [see Eq. (19)]. To proceed it is
sufficient to keep in the coefficients A,B,C of Eq. (22) only
the terms contributing to the expansions coefficients of S̄e in
Eq. (23). After simple algebra we thus arrive at the following
leading terms which depend on the components of the director

distortion �n [see Eq. (1)] and on the components of k′ as
follows:

A = 1, B = k′
z

e + βθmδnzk
′
x,

(24)
C = −βn2

eθ
2
m(δnz)

2 − 2βk′
xneδnz.

Using these expressions we obtain the following ordinary
differential equations for S(1,1,0)(x,z) and S(2)(x,z):

∂S(1,1,0)(x,z)

∂z
= −βδnz(x,z),

(25)
∂S(2)(x,z)

∂z
= −β

2
ne (δnz(x,z))2,

while S(1,0,0) ≡ 0 and S(1,0,1) ≡ 0. Note, that neither a twist
of the director in the plane (δny �= 0) nor finite values of k′

y

are reflected in S̄e in this order. According to Eq. (25) the
calculation of the eikonal solution requires only z integrations.
Choosing for δnz(x,z) in particular the one-mode representa-
tion in Eq. (3) we obtain in this way

S̄e(x,z) = −θmd
β

4π
cos(q · x)

{
8k′

x sin2(πz/2d)

+ θm

ne

2

[
2zπ

d
− sin(2πz/d)

]
cos(q · x)

}
. (26)

In Appendix E we discuss the general solution of Eq. (22) up
to orders O(θ2

m) and |k′
‖|2, where the impact of finite k′

y and
δny becomes visible.

In a next step we have to determine the amplitude E0

[Eq. (14)] of the electric field, which is expanded in terms
of oN and eN and a third linearly independent vector, sN .
Following [18], sN is defined as

sN = ∇(So + Se)

|∇(So + Se)| ; thus, sN = ẑ for k′
‖ = 0, (27)

and the electric field is finally represented as

E(r) = O(r)oN (r)ei k0So + E(r)eN (r)ei k0Se

+ i Z(r)
sN (r)

k0
ei k0(Se+So)/2, (28)

with amplitudes O, E, and Z and the eikonal solutions
So(r),Se(r) of Eqs. (18). Introducing the ansatz Eq. (28)
into Eq. (7) and making use of Eq. (15) leads eventually
to coupled partial differential equations for O(x,z),E(x,z)
presented in Appendix B. The equations are solved iteratively
as power series in θm, where the power series expansion of the
extraordinary eikonal S̄e(x,z) [see Eq. (26)] serves as input.
Some explicit results will be given in Secs. IV and V and
discussed in Sec. VI. In the following section, however, it will
be demonstrated that the determination of the amplitudes O,E
can be circumvented in the frequently used two-dimensional
experimental geometry.

It should be emphasized that in the approach used in
Ref. [10] the steps of our procedure are just reversed. First the
field amplitudes are determined by using Fermat’s principle
to determine the light ray trajectories, which is technically
cumbersome. Then the eikonal Se is obtained by summing up
the phases along the ray path.
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IV. THE SHORT-WAVELENGTH APPROXIMATION
IN A 2D GEOMETRY

In this section we restrict ourselves to the special case
of an incident TM wave, where the wave vector k′ and the
electric field amplitude E0 of the plane wave propagating into
the nematic layer are confined to the xz plane. Furthermore,
the director distortion δn defined in Eq. (3) is assumed to
be parallel to this plane as well. Finally, we consider only
stripe pattern (called “normal” rolls in EC), where the wave
vector q characterizing δn in Eq. (1) is parallel to n0 = x̂,
the director orientation in the basic state. Thus, all quantities
depend only on x,z. Inspection of the Maxwell equations
reveals that E remains in the xz plane inside the nematic
layer, i.e., O(x,z) ≡ 0. Only this exclusively extraordinary
configuration has been discussed in the literature [7,10,15] so
far.

Instead of analyzing equations for the electric field [see
Eqs. (B3) in Appendix B] we approach the problem from a
slightly different perspective. In the 2D geometry the magnetic
induction B has only a nonvanishing y component, By , and it is
expected that an analysis based on the y component of Eq. (8),
a scalar equation, is more transparent and straightforward than
the analysis based on the electric field. First of all, we use the
fact that in the present geometry Eq. (8) leads to the following
scalar equation for By(x,z):

∇ · (ε · ∇By) + ε‖ε⊥μk2
0By = 0. (29)

Instead of solving Eq. (29) by using a representation of By

with a complex phase as in Ref. [16] we follow closely the
approach discussed in Sec. III using the ansatz

By(x,z) = B̄(x,z) exp[ik0Se(x,z)], (30)

which requires much less effort. We arrive again at the eikonal
equation (18b) for Se discussed before in Sec. III and to the
following equation for B̄(x,z):

∇S · [ε · ∇B̄(x,z)] + ∇[B̄(x,z)(ε · ∇S̄e)] = 0, (31)

with S̄e = Se − S0
e [see Eq. (21)].

We concentrate on the case of small θm and small k′
x and

use the following expansion for the magnetic field amplitude
B̄(x,z) (31):

B̄(x,z) = B0 + θmB(1)(x,z) + θ2
mB(2)(x,z)

+ θm k′
xB

(1,1)(x,z). (32)

To order θm Eq. (31) reduces to

2
∂

∂z
B(1)(x,z) = −βB0

∂

∂x
δnz(x,z), (33)

which has to be solved with the initial condition B(1)(x,z =
0) = 0. When using again the one-mode approximation for
δnz(x,z) in Eq. (3) we arrive by direct integration at

B(1)(x,z) = B0qd
β

2π
sin(qx)[1 − cos(πz/d)]. (34)

The higher order amplitudes defined in Eq. (32), which give
also contributions to the amplitude-grating efficiency of the
distorted nematic layer, are given in Appendix C. For small
director distortion amplitudes θm, considered in this work, they
are much smaller than the corresponding phase-grating terms

∝k0S̄e(x,z) [see Eq. (26)]. Thus, in the following only the
leading amplitude term ∝θm like B(1) will be kept.

The expansion coefficients of the total magnetic field
amplitude B̄(x,d)/B0 defined in Eq. (32) agree with those
given in Ref. [16]. Furthermore, they allow for the calculation
of the electric field by using the general Maxwell equations (4).
In fact, we arrive in this way at the electric field amplitudes
E(x,d)/E0 [see Eq. (28)], as calculated in Ref. [10] by
considerably more intricate calculations. For completeness
we have convinced ourselves that also the direct solution of
Eqs. (B3) leads to the same result. This perfect agreement (for
more details, see Ref. [25]) serves as a most convincing test of
our procedure.

V. OPTICAL ANALYSIS OF GENERAL 3D PATTERN

In the following we describe the optical properties of
general 3D configurations in nematics. First, the wave vector
q characterizing the periodic distortion δn [see Eq. (3)] may
not be parallel to n0 = x̂. Furthermore, both the electric field
polarization and the orientation of the wave vector k = k0k′ of
the incident plane wave are, in principle, arbitrary. In general,
we use the following representation for the (dimensionless)
wave vector k′ of the plane wave, which enters the nematic
layer from a glass plate (refraction index ng):

k′ = k′
‖ + k′

z ẑ

= [
sin(ϑg) cos φ, sin(ϑg) sin φ,

√
n2

g − sin2(ϑg)
]
. (35)

Thus, |k′|2 = n2
g (see Sec. II B) is automatically guaranteed.

The polar angle ϑg describes the inclination of the incoming
ray with respect to the layer normal (parallel to ẑ) and the
azimuthal angle, φ, a rotation of k′ about this axis. It is obvious
that the angles ϑg and φ can be alternatively interpreted in
terms of a tilt and a rotation of the nematic layer at fixed k′. In
line with the typical experimental setup we restrict ourselves
in the following to small |k′

‖|, i.e., to small ϑg . Then up to
order O(sin(ϑg)) the wave vectors of the extraordinary and
the ordinary waves inside the nematic layer are given as k′ =
(k′

‖,ne) and k′ = (k′
‖,no), respectively (see Sec. II B).

Let us start with a “toy model” of a periodic twist
modulation of the director confined to the xy plane of the
form

n̂ = (cos α(x,z), sin α(x,z),0), (36)

with the twist angle α(x,z) = αmϑ(z) cos(qx), where ϑ(z) = 0
for z = 0,d. In the absence of x variations this director
configuration is realized in the planar geometry as the result
of a twist Freedericksz transition, when a static magnetic
field with amplitude H above a critical threshold field Hc

is applied along the y direction. The maximal twist amplitude
αm varies then like (H 2 − H 2

c )1/2. An additional x variation is,
for instance, characteristic for the so called chevron patterns in
EC [26], when the applied ac voltage is turned off after some
time.

We consider the special case of an incident TM wave
in the xz plane, which leads to an extraordinary wave with
amplitude E0 at the lower surface z = 0 of the nematic layer
[see Eq. (28)]. At z = d we find a TM wave as well, since the
polarization of a plane wave follows adiabatically (Mauguin
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principle) the orientation of eN (x,z) (17) and is thus again
parallel to x̂ at z = d. Due to the twist in the director field,
however, a TE electric field component is observable as well
in the upper glass plate, since also an ordinary wave with
amplitude O(x,z) develops in the layer. To leading order in
αm,kx we obtain easily from Eqs. (B3) the following partial
differential equation for O(x,z):(

no

∂

∂z
+ kx

∂

∂x

)
O(x,z)

= ei k0(ne−no)zE0

(
ne

∂

∂z
+ kx

∂

∂x

)
cos(qx)ϑ(z). (37)

The solution of Eq. (37) in Fourier space by using the ansatz

O(x,z) = O′(q,z) exp[i qx] + O′(−q,z) exp[−i qx] (38)

reads as follows:

O′(x,±q) = E0αmax
ne

2no

exp[±i qk′
xz]

×
∫ z

0
dz′ exp[i k0(ne − no ∓ k′

xq)z]

× (∂z′ ± ik′
xq)ϑ(z′). (39)

For perpendicular incidence (k′
x = 0), we obtain thus

O(x,z) = E0αm

ne

no

cos(qx)
∫ z

0
dz′ei k0(ne−no)z′ d

dz′ ϑ(z′). (40)

This expression was first derived in Ref. [27] for q = 0
by a different method. There it has been emphasized that
the electric field intensity |O(z = d)|2, which is singled out
and measured by using crossed polarizers at z = 0,d, gives
valuable information on the elastic constants of nematics. Note
also the sensitive dependence of |O(z = d)|2 on ω,d via the
large exponent k0d(ne − no). It should be mentioned that the
amplitudeO(x,z) in Eq. (40) has been also derived in Ref. [28]
by using the Jones matrix method, except that the prefactor
ne/no is approximated by one.

After these introductory considerations we now deal with
the general and mostly realized case of director distortions
which contain also a tilt contribution [see Eq. (3)]. The
corresponding eikonals, So,Se, have been already given in
Sec. III [see Eqs. (19) and (26)]. To determine the field
amplitudesE(x,z),O(x,z) defined in Eq. (28) we have to solve
Eqs. (B3). We restrict ourselves to solutions up to order θm and
may neglect, as discussed in Appendix C, the dependence of
the amplitudes on |k′

‖|. Thus, the field amplitudes are expanded
as follows:

O = O0 + θmO
(1)(x,z), E = E0 + θmE

(1)(x,z). (41)

To first order in θm we arrive from Eqs. (B3) easily at the
following partial differential equations for O(1),E(1) in terms
of the components of �n [see Eq. (1)]:

∂

∂z
E(1)(x,z) = −E0

β

2

∂

∂x
δnz(x,z) − O0

a2
−no

ne

∂

∂z
δny(x,z),

(42a)

∂

∂z
O(1)(x,z) = E0

a2
+ne

no

[
∂

∂z
δny(x,z) + β

2

∂

∂y
δnz(x,z)

]
.

(42b)

According to Eqs. (B3) the functions a2
±(x,z) are given as

a2
±(x,z) = exp[±i k0((ne − no)z + S̄e(x,z))], (43)

where S̄e within the one-mode approximation can be found
in Eq. (26). Inspection of the transmission coefficients in
Eq. (A4) shows that the initial ordinary and extraordinary
electric field amplitudes O0,E0 at z = 0 can be realized by
using the incident electric field as a superposition of a TM
wave and a TE wave.

Equations (42) are easy to solve and we obtain

E(1)(x,z) = E0

[
1 − β

2

∫ z

0
dz′ ∂

∂x
δnz(x,z′)

]
−O0

no

ne

∫ z

0
dz′a2

−(x,z′)
∂

∂z
δny(x,z′), (44a)

O(1)(x,z) = O0 + E0
ne

no

∫ z

0
dz′a2

+(x,z′)

×
[

∂

∂z
δny(x,z′) + β

2

∂

∂y
δnz(x,z′)

]
. (44b)

The final expressions in Eqs. (44) are not difficult to interpret.
First of all, the extraordinary field amplitude E(1), obtained be-
fore in the 2D geometry [see Eq. (33)], where O0 = 0 and q =
(q,0), is recovered, as it should be. Of particular importance
is the fact that according to Eq. (44a) a finite incident ordinary
field amplitude O0 at z = 0 is sufficient to generate an extraor-
dinary field component for finite z and thus also at z = d [9].
Analogously, we obtain in Eq. (44b) from a nonzero E0 a finite
ordinary field amplitude O(x,d). In close analogy to Eq. (40)
one needs in any case a twist of the director field (δny �= 0) or
a finite angle between the wave vector q and n0 [leading to a y

dependence of δnz; see Eq. (3)]. Note that given the amplitudes
E(1) and O(1) the full extraordinary and ordinary electric fields
are obtained according to Eq. (28) by a multiplication with the
corresponding phase factors and the polarization vectors. The
detailed discussion is postponed to Sec. VI.

We have demonstrated in this section and before in Sec. IV
that the electromagnetic field at the upper surface z = d

of the nematic layer shows periodic variations with wave
vector q both in the amplitude (amplitude grating) and in
the the phase (phase grating). Using these data the field in
the isotropic media (glass, air) above the nematic layer has
to be constructed by solving the isotropic Maxwell equations
with constant dielectric constants. This task is formally easy
by expanding the fields at z = d into Fourier series in
terms of ei nq·x,n = ±1,±2 . . . ; i.e., the field is represented
as a superposition of plane waves. The whole procedure
and its implications have been discussed in Ref. [10] for
RBC. The corresponding analysis for nematics is presented
in Appendix D. The moduli of the Fourier components give
directly the intensity of the diffraction fringes. The interference
of the plane waves produces the shadowgraph picture. The
main results are collected and discussed in the following
section.

VI. SUMMARY AND DISCUSSION

In the previous sections we have analyzed the optical
properties of a thin nematic layer of thickness d in the presence
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of small director perturbations �n(x,z) [Eq. (1)] of the planar
basic state (n0 = x̂,0 � z � d). The perturbation is periodic
in the xy plane with wave vector q. The optical properties of
the layer are probed using a monochromatic plane wave with
frequency ω and wave vector k [see Eq. (35)], which enters
the layer at z = 0 from a glass plate with refraction index ng .
The goal of this section is to summarize and discuss the main
results on the optical analysis, which have been described in
Secs. IV and V, as well as in several Appendixes.

The incident wave can, in general, be decomposed into a
superposition of a TE and TM wave with polarization vectors
pE, pM defined in Appendix A. Using the transfer coefficients
given there the amplitudes O0 and E0 of the ordinary and
extraordinary waves just at the lower surface at z = 0 of the
nematic layer are directly given. Inside the nematic layer (0 �
z � d) the electric field is represented by an amplitude and a
phase factor as discussed in Sec. III. Let us first concentrate on
the extraordinary waves which are almost exclusively utilized
in EC experiments, where q includes, at most, a moderate angle
with n0 ‖ x̂. Furthermore, only the leading terms in inclination
angle ϑg [Eq. (35)] of the incident plane wave are kept. In this
approximation the extraordinary electric field Ee(x) at z = d

given in Eq. (D1) reads as

Ee(x) = E0 exp[i k0(k′
‖ · x + ned)]

×
∞∑

n=−∞
CN (n)ei n(q·x) e0[k′

‖]. (45)

The Fourier coefficients CN (n) describe the optical-grating
characteristics of the nematic fluid layer at z = d and eventu-
ally also the intensity of the TM wave in air above the nematic
layer [see Eq. (D12)].

The intensity of the two diffraction spots of order n relative
to the intensity |E0TegTga|2 of the transmitted wave [see
Eq. (D12)] is, in general, given as |CN (n)|2. The diffraction
spots characterized by the wave vectors k = (k0k

′ ± nq)x̂ +
k0 ẑ are observed in directions which enclose small angles γ±n

with ẑ given by

γ±n = arctan

[ |k0k′
‖ ± nq|
k0

]
, (46)

where we have neglected the terms of the order O(n2q2/k2
0).

Let us start with the contribution of the leading Fourier
coefficients CN (±1). The relative intensities of the diffraction
spots are determined by |CN (±1)|2, which, according to
Eq. (D4), are given as follows:

|CN (±1)|2 = θ2
m

4
|cE1|2

∣∣∣∣1 ∓ cS1

cE1

∣∣∣∣2

, with

(47)
cS1

cE1
= −2k0

qx

sin(ϑg) cos φ.

Here we have inserted the expressions for the coefficients
cS1,cE1 in Eq. (D3).

At first a small asymmetry between n = 1 and n = −1
in the case of oblique incidence (ϑg �= 0) is evident. The
asymmetry is reflected both in the angles γ±1 [Eq. (46)] and
in the intensities [Eq. (47)]. A closer look at the intensities
reveals a competition between the amplitude-grating (cE1) and
phase-grating coefficients (cS1). For φ = 0 already at the small

inclination angle ϑg = qx/(2k0) phase grating starts to prevail.
For standard EC experiments and medium ac frequencies �

where typically qd ≈ 1.5π we obtain thus ϑg ≈ 0.012 ≈ 0.7◦
when using visible light with λ = 0.6 μm and a layer thickness
of 20 μm. Consequently, for an angle of 7◦, say, the intensity
|CN (1)|2 is larger by a factor of 100 compared to perpendicular
incidence (ϑg = 0). For smaller � in EC often oblique rolls
appear; the angle between q and n0 becomes finite, while
the modulus of q remains practically unchanged. Since thus
the x component, qx , of the wave vector q decreases, the
denominator of the ratio cS1/cE1 [Eq. (47)] gets larger and
phase grating becomes dominant at even smaller ϑg . On the
other hand, an azimuthal rotation of the incidence plane of the
incident light (φ finite) leads to a reduction of the phase-grating
effect due to the factor cos φ in the ratio cS1/cE1. In conclusion,
we have demonstrated that even a small inclination of the
incoming ray leads to a dramatic increase of the intensity of the
first order fringes. So far we are only aware of one systematic
investigation of this effect [15], where the main experimental
findings have been well described exclusively on the basis
of phase grating (cE1 = 0). For completeness, we refer to
a later work [29], where a small inclination of the nematic
has been applied as well to enhance the intensity of the first
order fringe.

Let us now consider the intensity of the second order fringes
(n = ±2), in particular in relation to the intensity of the first
order fringes. In the case of perpendicular incidence of the light
and φ = 0 we have thus to compare |CN (2)| = θ2

mnek0dβ/16
[see Eq. (D4)] with |CN (1)| = θmqxdβ/(2π ). Using as in
the previous paragraph the ratio qx/k0 = 1/40 we find that
for θm > θm2 = 8qx/(k0neπ ) ≈ 0.064/ne the intensities of
the second order fringes start to outcompete the first order
ones. For MBBA where ne = 1.75 one has θm2 = 2◦. Using
the relation θm = 80◦ √

ε between the maximal tilt angle
θm and the control parameter ε = (U 2

0 − U 2
c )/U 2

c in MBBA
mentioned at the end of Sec. II A the value of θm2 = 2◦
corresponds to ε = 0.0007. It means that already not too far
from threshold the the intensity of the second order fringe
becomes considerably larger than the intensity of the first
order fringe. This general trend has been clearly demonstrated
in experiments [15], where the first order fringes are not
visible at all in the case of perpendicular incidence. When
inclining the layer, however, we have to compare θmcS1/2 with
θ2
mcS2/4, i.e., (k0d)β sin(ϑg)/π with θm(k0d)neβ/16. Thus, for

ϑg > θmneπ/16 the first order fringe prevails. For MBBA this
is, for instance, the case for ϑg > 2◦ at ε = 0.005.

Let us now briefly analyze the shadowgraph intensity.
First we concentrating on the contribution, I 1

s , which is
characterized by the wave vector q. According to Appendix D,
we obtain the following expression to order O(θm):

I 1
s (x,z) = (E0TegTga)2

{
1 + 2θm

[
cS1 cos(q · x) sin

(
q2

2k0
z′

)
+ cE1 sin(q · x) cos

(
q2

2k0
z′

)]}
, (48)

with z′ = z − (d + dg). At first we observe the well known
periodicity of the intensity as a function z characterized by the
Talbot wavelength λT = 4πk0/q

2. For the values q = 1.5π/d

and λ = 2π/k0 = 0.6 μm we obtain thus λT = 1.1 mm for
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d = 20 μm. The Talbot periodicity, in clear contrast to the
caustics in geometric optics as discussed in Ref. [10] in detail,
can be easily demonstrated by focusing a microscope on
different z levels. There exists always a contribution to I 1

s

due to amplitude grating (∝cE1) but as discussed before the
contrast can be considerably increased via the phase-grating
coefficient (∝cS1) in the case of oblique incidence. The Fourier
modes ∝exp[±2i q · x] of the shadowgraph intensity, I 2

s ,
derive from the terms O(θ2

m) in Eq. (D4). As mentioned before
the coefficient cS2 gives, in general, the dominant contribution.
Thus, we find in second order

I 2
s (x,z) = (E0TegTga)2θ2

mcS2 cos(2q · x) cos

(
4q2

2k0
z′

)
. (49)

It has been already stressed before that in the case of
perpendicular incidence this terms dominates the Fourier
coefficients of I 1

s with respect to x even at small θm, in line
with the typical experimental observations.

So far we have demonstrated that the use of obliquely
incident light is certainly very important to increase the
contrast, since we obtain phase-grating contributions with
wave vector q. One might ask whether a rotation of
the incident plane about the z axis with an angle φ might
have some additional advantages. It is for sure that we
have only to analyze a possible impact on phase grating
since amplitude-grating effects are much smaller. For this
purpose we have given the eikonal solutions also with
respect to the φ dependence in Appendix E [see Eqs. (E7)
and (E10)]. The only term of the order O(sin(ϑg)) is the term
fc(d) ∝ cos(φ) in Eq. (E9) [corresponding to cS1 in Eq. (D3)],
which is maximal for φ = 0. First in order O(sin2(ϑg)) terms
∝sin(2φ) appear. There seems to be no chance to disentangle
these terms from the other ones in experiment. The same
problem appears in the contributions with wave vector 2q
[see Eqs. (E11)]. Also here the term k0d f (2)

c (d) in Eq. (E11a)
[corresponding to cS2 in Eq. (D3)] dominates the other ones.
Thus, a rotation of the incidence plane does not yield any
advantage.

Finally, we come to a more detailed discussion of the
expressions for electric field amplitudes derived in Eqs. (44),
which describe a possible rotation of the polarization vectors.
Let us first consider the first term ∝E0 on the right-hand side
of Eq. (44a). The z integral gives a nonzero contribution when
the q vector has a finite x component qx and one recovers in the
one-mode approximation for δn [Eq. (3)] the coefficient cE1 in
Eq. (D3) and discussed after Eq. (47). The integrals containing
the factors a2

±(x,z) in Eq. (44) can be easily evaluated in
the one-mode approximation ϑ(z) = sin(πz/d) by exploiting
k0d � 1. We use the identity

a2
±(x,z) = {±i k0

[
ne − n0 − βδn2

z(x,z)/2 − k′
xβδnz

]}−1

× ∂

∂z
a2

±(x,z), (50)

where we have explicitly introduced the z derivatives of the
eikonal solution in the exponents of a2

± [Eq. (43)] by using
Eqs. (25). Then we rewrite the integral in Eq. (44b) with
the help of an integration by parts, where only the term
∝∂zδny(x,z) gives a nonzero contribution at the boundaries

z = 0,d. Thus, we arrive at

E(1)(x,d) = E0

[
1 + β

π
(qxd) sin(q · x)

]
− O0θmay

× no

ne

i π{1 + exp[−i k0�(x)]}
k0d(ne − no)

sin(q · x),

with �(x) = Se(x,d) = (ne − no)d + S̄e(x,d), (51)

where S̄e(x,d) is explicitly given in Eq. (26). According to
Eq. (28) the amplitude E(1)(x,d) has now to be multiplied by
the factor exp[ik0Se(x,d)] e0[k′] to obtain the extraordinary
electric field. In any case, as long as δny �= 0, we obtain a small
amplitude-grating term ∝O0θm sin(q · x)(k0d)−1, where the
polarization vector of the incident wave is rotated by 90◦, when
leaving the layer. Even for qx = 0, but nonzero k′

‖ ∝ sin(ϑg)
and E0, however, we obtain a much larger phase-grating
contribution ∝(k0d)θm sin(ϑg) cos(q · x), corresponding to the
coefficient cS1 discussed before.

In a similar manner we may discuss the amplitudeO(1)(x,d)
in Eq. (44b). The integral is evaluated again in the one-mode
approximation as before, where only the term ∝∂zδny survives
in leading order in (k0d)−1. The total ordinary field is obtained
by multiplication of O(1) with o0 and with the phase factor
exp[i k0S

0
o (x,d)], where S0

o [see Eq. (19)] does not contain
periodic phase modulation terms. Thus, only the term ∝E0

leads to optical-grating effects and we obtain the total ordinary
electric field amplitude Eo up to order (k0d)−1 at z = d in the
form

Eo(x,d) = O(1) exp[ik0S0] o0[k′] + E0θmay

× ne

no

i π{1 + exp[i k0�(x)]}
k0d(ne − no)

sin(q · x)o0[k′],

(52)

where �(x) has been given in Eq. (51). In analogy to Eq. (51)
a twist in the director field (ay �= 0) leads again to a rotation
of the incident polarization by 90◦.

The main result of the general discussion of amplitude
solutions in Eqs. (44) is that one should observe, even for
equilibrium patterns like the flexoelectric domains or the
splay-twist Freedericksz pattern (q ‖ ŷ), diffraction fringes
and shadowgraph pictures. This is confirmed in experiments
[19,20,30,31]. By the way, restricting the light rays by aper-
tures or using a slightly divergent light beam, as happens often
in experiments, amounts, in principle, also to the generation
of obliquely incident rays as well; this effect might be worth
analyzing in the future. It is needless to say that an analysis
based on pure geometric optics is unable to capture at all the
optical properties of such patterns.

VII. CONCLUDING REMARKS

In the previous sections we have demonstrated that the
optics of a nematic layer with a periodically distorted director
field can be convincingly described by a standard short-wave
length approximation. The new calculational scheme is much
easier to handle than the previous treatments of the problem
based on Fermat’s principle and the summation of the phases
along the ray path. It is not necessary to distinguish carefully
between phase- and ray-refraction indices, which has, in fact,
caused some problems in the earlier work. A big advantage
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of our approach is that it covers from the beginning 3D
experimental geometries where the polarization of the incident
light and the orientation of the wave vector are arbitrary.
Thus, for instance, the optical analysis of equilibrium patterns
with q ⊥ n0 is put on a firm basis. In general, it has been
demonstrated that even a slight tilt of the nematic layer leads
to a large increase of the intensity contrast of the patterns.
Note that also a so called pretilt of the director at the confining
substrates corresponds to an inclination of the cell. This
feature is based on the phase-grating effects of patterns in the
nematic layer and thus is not accessible in the framework of
pure geometric optics. We have explicitly discussed only roll
solutions characterized by a wave vector q. The generalization
to patterns characterized by several wave vectors like squares
or hexagons is straightforward. Furthermore, topological
defects in the pattern, like dislocations, have their counterpart
in the corresponding shadowgraph theory as well. It would
be certainly a rewarding task to reconsider their present,
highly sophisticated mathematical description. It is based on
geometric optics and the ensuing caustics (see, e.g., Ref. [32]
and references therein) and should be related to the present
approach including diffraction effects.

In this work we have concentrated on the presentation of
the theoretical method and, in particular, on analytical results
to leading order in the distortion amplitude of the originally
planar director configuration. This makes it possible to asses
easily the impact of the various experimental input parameters.
A detailed comparison with experimental results, in particular
with those presented in Ref. [33], is planned in the near future.
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APPENDIX A: REFLECTION AND REFRACTION IN
HOMOGENEOUS NEMATIC LAYERS

The amplitude-grating effect of a distorted nematic layer
depends on the amplitude E(x,d) (O(x,d)) of the electric
field component with extraordinary (ordinary) polarization at
the upper surface, z = d [see Eq. (28)]. The amplitudes depend
linearly on their values E0 (O0) at z = 0. To make a full
description of an experiment we have to connect the field
amplitudes at the surfaces of the nematic layer to those of the
adjacent glass plates.

According to Eq. (35) the wave vector k = k0k′ =
k0(k′

‖,k
′
z) of the incident plane wave can be represented in

terms of the polar angle ϑg and the azimuthal angle φ of k′ with
respect to the normal (‖ ẑ) of the nematic layer. As indicated
in Sec. II B we have to distinguish between TE waves with the
polarization vector pE(k′) and the TM ones with polarization
vector pM (k′) where

pE(k′) = ẑ × k′

| ẑ × k′| , pM (k′) = pE × k′

| pE × k′| . (A1)

In the case of perpendicular incidence (ϑg = 0) we chose pE =
ŷ and pM = x̂.

An incident TE wave with amplitude A and wave vector
k′ = (k′

‖,k
′
z > 0) is partially reflected [wave vector k′

r =

(k′
‖, − k′

z)] and partially transmitted at the glass-nematic
interface. The parallel components of all participating wave
vectors are the same, while |k′

z| is determined by |k′
‖| and

the respective refraction indices nrf in the different media
as discussed in Sec. II B. The general procedure to calculate
reflection and transmission of monochromatic plane waves at
interfaces is discussed in many textbooks like [17]. A very
clear presentation for nematics can be found in Ref. [34].

The continuity of the tangential electric field components
leads at the glass-nematic interface z = 0 to the condition

A(t · pE(k′)) = A t · {REE pE(k′) + REM pM (k′
r )

+ TEe e[k′
e] + TEo o[k′

o]}, (A2)

for both t = x̂ and t = ŷ, where the nematic polarization
vectors e0[k′

e],o0[k′
o] are defined in Eq. (12). Note that

according to Eq. (A2) an incident TE wave will, in general,
produce TE and TM reflected waves with amplitudes given
by the reflection coefficients REE,REM . In the nematic layer
both ordinary and extraordinary contributions may exist
with amplitudes determined by the transmission coefficients
TEo,TEe. In analogy to Eq. (A2) we have to exploit in addition
the continuity of the tangential magnetic field components
on the basis of Eqs. (10). It turns out that the necessary
continuity of the normal components of the magnetic induction
B = μH and of the dielectric displacement D is automatically
fulfilled via the tangential conditions on E,H . Thus, we have
to solve four linear equations for the coefficients REE,REM

and TEe,TEo. Alternatively, if the incident field is parallel
to pM we need the reflection coefficients RMM , RME and
the transmission coefficients TMe, TMo, which are defined in
analogy to Eq. (A2). At the nematic-glass interface (z = d)
we have to distinguish between incident ordinary plane waves
(E ‖ o0) and extraordinary ones (E ‖ e0) [see Eq. (12)].
Thus, we have to calculate the corresponding reflection and
transmission coefficients Ree,Reo,TeE,TeM and, analogously,
Roe,Roo,ToE,ToM . For instance, if the incident electric field
is parallel to e0, the continuity condition for the tangential
electric field reads as follows:

A (t · e0[k′
e]) = A t · {Ree e[(k′

e)r ] + Reo o[(k′
o)r ]

+ TeE pE(k′) + TeM pM (k′)}. (A3)

All reflection and transmission coefficients, which require
only the solution of linear equations, depend on the azimuth
and polar angles φ,ϑg of k′ defined in Eq. (35) and on
the refraction indices ng,no,ne. The resulting general final
expressions are, however, lengthy and not very transparent;
thus, they are not reproduced here. In the special case of
perpendicular incidence (ϑg = 0) we arrive at

(TEo,TMo) = (cos φ,− sin φ)
2ng

ng + no

,

(TMe,TEe) = (cos φ, sin φ)
2ng

ng + ne

,

(A4)

(ToE,ToM ) = (cos φ,− sin φ)
2no

ng + no

,

(TeM,TeE) = (cos φ, sin φ)
2ne

ng + ne

.
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In experiments at most small ϑg are used. It then turns out that
the transmission coefficients in Eqs. (A4) remain unchanged to
order O(ϑg) and that only the wave vectors and the polarization
vectors pM , e0 acquire corrections ∝sin(ϑg). If we concentrate
in addition on incident TM waves with φ = 0, only the
transmission coefficients TMe, TeM come into play. In other
words, an incident TM wave leads only to a TM wave above
the nematic layer.

In this Appendix we have concentrated on the electric
field components of the electromagnetic field. Corresponding
reflection and transmission coefficients can be defined as well
for the magnetic field components. They are obtained, for
instance, from the electric ones with the help of the Maxwell
equations (4).

APPENDIX B: DETERMINATION OF THE
FIELD AMPLITUDES

Here we sketch the derivation of the differential equations
(see [18]) which determine the field amplitudes O, E, and Z
in Eq. (28). First of all, the terms of the order O(k2

0) from
V = oN and V = eN vanish by construction of the eikonal
equations. Furthermore, sN does not give a contribution in this
order since ∇(Se + S0)/2 ‖ sN .

The terms ∝k0 from Eq. (15) can be represented in terms
of the vector operator G[[V |S]] = (Gx,Gy,Gz)[[V |S]] defined
as

Gi[[V |S]] = 2(∂mS)(∂mVi) + (∂m∂mS)Vi − ∂i[(∂mS)Vm)]

− (∂iS)(∂mVm), with
(B1)

V = (Vx,Vy,Vz) and i,m = (x,y,z).

As usual, summation over the repeated indices m is assumed.
Injecting the ansatz for E [Eq. (28)] into Eq. (7) and collecting
all terms ∝k0 we arrive at

ei k0So G[[OoN |So]] + ei k0Se G[[EeN |Se]]

−ei k0(Se+So)/2Z A = 0, A := ε · sN . (B2)

In line with [18] the amplitude Z is now eliminated by
multiplying the term with i = x in Eq. (B2) with Az and
subtracting the term with i = z after a multiplication with Ax .
The analogous procedure is applied to the term with i = y.
Thus, we arrive at the final equations to determine the field
amplitudes E(x,z),O(x,z):

Az(a−Gx[[OoN |So]] + a+Gx[[EeN |Se]])

= Ax(a−Gz[[OoN |So]] + a+Gz[[EeN |Se]]),

Az(a−Gy[[OoN |So]] + a+Gy[[EeN |Se]])

= Ay(a−Gz[[OoN |So]] + a+Gz[[EeN |Se]]), where

a± = exp[±ik0(Se − S0)/2]. (B3)

APPENDIX C: MAGNETIC FIELD IN ORDER O(θ2
m)

Expanding Eq. (31) to second order in θ2
m yields the

following equation for the expansion coefficient B(2)(x,z)

defined in Eq. (32):

2ne

∂

∂z
B(2)(x,z)

= −2βneδnz(x,z)

[
B0

∂

∂z
δnz(x,z) + ∂

∂x
B(1)(x,z)

]
− neβB(1)(x,z)

∂

∂x
δnz(x,z)

−B0

[
n2

e

n2
o

∂xxS
(2)(x,z) + ∂zzS

(2)(x,z)

]
, (C1)

where B(1)(x,z) [Eq. (34)] and S(2)(x,z) [see Eq. (25)] have
been already calculated. After straightforward integration over
z we obtain

B(2)(x,d) = −B0
q2d2β

8π2
{2β + [6β + π2(β + 1) ] cos(2qx)}.

(C2)

Furthermore, by collecting the terms ∝θm|k′
‖| in Eq. (31) we

obtain the following equation for B(1,1)
y in Eq. (32):

2ne

∂

∂z
B(1,1)(x,z) = −B0neβ

∂

∂x
δnz − B0k

′
xβ

∂δnz

∂z

− 2
k′
xn

2
e

n2
o

∂B(1)(x,z)

∂x
− B0

n2
e

n2
o

∂2S(1,1)

∂x2

−B0
∂2S(1,1)

∂z2
. (C3)

By performing the z integration within the one-mode approx-
imation we arrive at

B(1,1)(x,d) = B0β
ne

n2
oπ

d2q2 cos(qx). (C4)

APPENDIX D: THE NEMATIC LAYER AS
A DIFFRACTION GRATING

The electric field of the wave propagating through the
nematic layer from z = 0 to z = d is, in general, described
by Eq. (28); finally, we need the field at the upper surface
of the layer (z = d). At first we may safely neglect the
O(k−1

0 ) contribution ∝Z. In any case, since sN ≈ ẑ for small
ϑg the associated plane waves propagate practically in the
xy plane and are thus not relevant in the present context.
With respect to the extraordinary and the ordinary field
components their polarization vectors simplify considerably
at z = d. We have oN → o0[k′

o], eN → e0[k′
e], where the

constant vectors o0,e0 are defined in Eq. (12) with n̂ = x̂.
The corresponding amplitudes O,E, which are periodic in
the horizontal coordinates x = (x,y), describe obviously the
amplitude-grating effect of the nematic layer. In view of
the general decomposition Se(x,z) = S0

e (x,z) + S̄e(x,z) [see
Eqs. (19) and (23)], the phase-grating effect of the nematic
layer is captured by S̄e(x,d). This quantity is periodic in x
as well due to the sums of trigonometric functions with the
arguments q · x and 2q · x originating from the solutions of
the eikonal equation Eq. (21) to order O(θ2

m). For simplicity we
concentrate on the discussion of the crucial extraordinary con-
tribution Ee(x)e0[k′

e] with Ee(x) = E(x,d) exp[i Se(x,d)].
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The total electric field Ee(x,d) can be written as a Fourier
series as

Ee(x,d) = E0 exp
[
i k0

(
k′

‖ · x + k′
z

e(k′)d
)]

×
∞∑

n=−∞
CN (n)ei n(q·x) e0[nq/k0 + k′], (D1)

where the phase prefactor comes from S0
e [Eq. (19)] evaluated

at z = d. The Fourier series contains the product of the
corresponding ones from E(x,d) and from the phase factor
exp[i k0S̄e(x,d)]. The latter can be transformed into a Fourier
series by exploiting the identities

ei α sin β =
∞∑

n=−∞
Jn(α)ei nβ, ei α cos β =

∞∑
n=−∞

inJn(α)ei nβ,

(D2)

where Jn(α) denotes the Bessel function of the first kind. For
small θm, on which we mainly concentrate, it is sufficient
to truncate the expansion of E(x,d) at θm, since, in general,
k0S̄e(x,d) prevails. To obtain closed analytical expressions we
use the one-mode approximation for δn [Eq. (3)] to evaluate
the terms given in Eqs. (44a) and (26) and arrive at

E(x,d) = E0[1 + cE1θm sin(q · x)], cE1 = (qxd)
β

π
,

k0S̄(x,d) = cos(q · x)[θmcS1 + θ2
mcS2 cos(q · x)], with

cS1 = −(k0d)
2β

π
cos(φ) sin(ϑg) , cS2 = −(k0d)ne

β

4
.

(D3)

Expanding thus the productE(x,d) exp[i k0S̄e(x,d)] we obtain
the following approximations for the expansion coefficients
CN (n) in Eq. (D1):

CN (0) = 1 + θ2
m

1
4

[
2i cS2 − c2

S1

]
,

CN (±1) = i θm
1
2 (cS1 ∓ cE1), (D4)

CN (±2) = i θ2
m

1
8

(
2cS2 + ic2

S1 ± i 2cS1cE1
)
.

Since the electric field [Eq. (45)] at z = d is expressed as a
superposition of plane waves, it is easy to construct the electric
field in the adjacent glass plate of thickness dg . Here we have,
in general, a superposition of TM and TE waves. Let us start
with the TM waves which have the general representation

EG
M (x,z) = E0 exp[ik0k′

‖ · x]
∞∑

n=−∞
CG(n) exp

[
i
(
nq · x

+ zkG
z (n)

)]
pM (k′ + nq/k0), for

d � z � d + dg with kG
z (n) = k0

√
n2

g − (k′
‖ + nq/k0)2.

(D5)

We are only interested in the propagating waves where the
argument of the square root in Eq. (D5) is positive, which
restricts the summation over n to a cutoff n = ncut. For the
typical nematic pattern ncut � 1 holds. The contributions for
|n| > ncut which decay exponentially with increasing z, i.e.,
the “evanescent” waves, are not recorded in the standard exper-
iments. In fact, only the Fourier coefficients for small |n| < 3
will play an important role for small distortion amplitudes

θm. Thus, besides the leading terms in |k′
‖| = sin(ϑg) only the

leading terms in the small quantity |nq|/k0 are kept in the
following. For instance, the transmission coefficient Tga from
a glass to an air layer with refraction index na = 1 is given in
this approximation as [17]

Tga(k′ + nq/k0) = 2ng

ng + na

. (D6)

Matching to the electric field [Eq. (45)] in the nematic layer at
z = d yields

CG(n) exp
[
i kG

z (n)d
] = TeM (k′) exp

[
i k0k

′
z

e(n)d
]
CN (n).

(D7)

The wave gets then refracted again at the glass-air interface
(z = d + dg) and propagates further in air. The electric field
in air for z � d + dg has the same representation as in
Eq. (D5) with Fourier coefficients CA(n) instead of CG(n).
Furthermore, we need kA

z (n), where ng in kG
z (n) [Eq. (D5)]

is replaced with na = 1. Matching the electric fields at z =
d + dg yields

CA(n) exp
[
i kA

z (n)(d + dg)
]

= Tga(k′ + nq/k0) exp
[
i k0k

G
z (n)(d + dg)

]
CG(n), (D8)

where Tga is given in Eq. (D6). At the end we arrive at

EA(x,z) = E0 exp[i k0(k′
‖ · x + z′)]S(x,z′) with

z′ = z − (d + dg) and (D9)

S =
ncut∑

n=−ncut

CN
n T (dg,n) exp

[
i (nq · x)

+ i z′(kA
z (n) − kA

z (0)
)]

pM (k′ + nq/k0). (D10)

The transfer function T (dg,n) describes the effect of the glass
layer where

T (dg,n) = TeM (k′ + nq/k0)Tga(k′ + nq/k0)

× exp
[
idgk

G
z (n) + ike

zd
]
. (D11)

The quantitative evaluation of the electric field in Eq. (D9) is
straightforward but requires numerical effort. We concentrate
here on analytical expressions which describe all relevant
features for small θm very well. According to Eq. (D4)
only the Fourier coefficients for |n| < 3 come into play.
Exploiting in addition the smallness of ϑg and of |nq|/k0

all transmission coefficients like Tga [see Eq. (D6)] can be
safely replaced by their values for perpendicular incidence and
can be taken out from the sums. An analogous approximation
applies also to the polarization vectors. In the exponents of
exp[i k0(kA

z (n) − kA
z (0))z′] we keep in the spirit of the paraxial

approximation the leading term by expanding inside the square
roots with respect to the small quantity q2/k2

0. Thus, starting
from Eq. (D9) the electric field is well approximated by

EA(x,z) = E0TeMTga exp[i k0(k′
‖ · x + z′)] S′(x,z′) pM (k′),

(D12)
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S′ = CN (0) + {CN (+1) exp[i q · x]

+CN (−1) exp[−i q · x]} exp

[
−i

q2

2k0
z′

]
+{CN (+2) exp[i 2q · x] + CN (−2) exp[−i 2q · x]}

× exp

[
−i

4q2

2k0
z′

]
+ · · · , (D13)

with z′ = z − (d + dg). Hence, from the knowledge of the
CN (n) we obtain immediately the relative intensity of the
refraction fringes In = |CN (n)|2; the shadowgraph intensity
IS(x,z) is determined by |EA(x,z)|2. Further details are
discussed in Sec. VI.

We have given explicit results for TM waves entering the
nematic layer at z = 0 and leaving at z = d. In this case the
coupling to the extraordinary waves in the nematic layer, which
are associated with strong phase-grating effects, is guaranteed.
This is the situation used in the typical experimental setups.
The analysis of other cases, however, would follow step by step
the same calculational scheme. We had to use the ordinary field
amplitude O in the nematic layer which would then couple to
the polarization vectors pE in the glass plates.

APPENDIX E: DISCUSSION OF THE
EIKONAL SOLUTIONS

In Sec. VI we demonstrated that an inclination of the wave
vector k′ of the incident light even by a small polar angle ϑg

with respect to the ẑ [see Eq. (35)] may have a strong effect:
Both the intensity of the first order (n = 1) diffraction fringes

and the contrast of the shadowgraph pictures considerably
increase. So far we have concentrated on the terms linear in ϑg

and to zero azimuthal angle φ. This section is devoted to the
question of whether the use of a rotation of the incidence plane
about the z axis, i.e., finite φ, will give additional advantages.
For that purpose we have performed a systematic expansion of
S̄e [see Eq. (21)] up to second order in the director amplitude
θm by using the following ansatz:

S̄e(x,z) = θmS(1)
e (x,z) + θ2

mS(2)
e (x,z). (E1)

The expressions for the coefficients A, B [see Eq. (24)] to
be used in Eq. (22) have not to be modified, but C has to be
generalized as follows:

C = θn

(
C1

δn + C1
S

) + θ2
n

(
C2

δn + C2
S

)
, with

C1
δn = −2βk′

x

(
k′
z

e
δnz + k′

yδny

)
,

C1
S = −

[
k′
y

∂

∂y
S̄e + (ne/no)2k′

x

∂

∂x
S̄e

]
,

C2
δn = β

[−2k′
yk

′
z

e
δnzδny + (

k′2
x − k′2

y

)
δn2

y

+ (k′
x)2 − (

k′
z

e)2
δn2

z

]
,

C2
S = −

[
2βk′

xδny + n2
e

n2
o

∂

∂y
S̄e

]
∂

∂y
S̄e

−
[

∂

∂x
S̄e + 2β(k′

yδny + k′
z

e
δnz)

]
∂

∂x
S̄e, (E2)

where k′
z
e has been defined in Eq. (20).

To expand the eikonal solution of Eq. (22) to order O(θ2
m)

we need also the following relation:

(B +
√

B2 + AC)−1 = 1

2k′
z
e

[
1 − θm

4k′
z
e
βk′

x

(
k′
yδny − k′

z
e
δnz

) + k′
y

∂
∂y

S̄e − (ne/no)2 ∂
∂x

S̄e

4
(
k′
z
e
)2

]
. (E3)

In order θm we obviously arrive from Eq. (22) at the following differential equation for S(1)
e :

∂

∂z
S(1)

e − 1

2k′
z
e S(1)

e −
[
k′
y

∂

∂y
S(1)

e + (ne/no)2k′
x

∂

∂x
S(1)

e

]
= inh(x,z) ≡ C1

δn. (E4)

Let us now switch to Fourier space,

S(1)
e (x,z) = S̃(1)

e (q,z) exp[i q · x] + c.c., inh(x,z) = ĩnh(q,z) exp[i q · x] + c.c., (E5)

where ∂x → iq in Eq. (E4). Thus, the solution of Eq. (E4) in Fourier space with initial condition S̃1
e (q,z) = 0 for z = 0 is easily

obtained as

S̃1
e (q,z) = exp[−i λ(k′,q)z/d]

∫ z

0
dz′ exp[i λ(k′,q)(z′/d)] ĩnh(q,z′), with λ(k′,q) = −k′

yqy + (ne/no)2k′
xqx

k′
z
e . (E6)

Returning to position space we arrive from Eq. (E5) at the following general representation of S(1)
e (x,z):

S(1)
e (x,z) = sin(q · x)fs(z) + cos(q · x)fc(z). (E7)

The functions fs , fc are obtained by performing the z integration in Eq. (E6). Their specific form depends on the ansatz chosen for
δny , δnz, which, according to Eq. (E4), determines inh(x,z). The phase-grating effect to order θm is determined by S(1)

e (x,z = d);
an explicit analytical expression is obtained again within the one-mode approximation for δn [Eq. (3)]. The lengthy expressions
simplify considerably if we confine ourselves in addition to the leading terms in |k′

‖| ∝ sin(ϑg) according to Eq. (35), which give
already the main insight into the relevance of the various contributions to S(1)

e (x,z = d). Restricting ourselves to the terms up to
order O(sin2(ϑg)) leads to

fs(d) = −dβ
sin(ϑg)2 cos φ

n2
oπ

(
2n2

oay sin φ + n2
e cos φqx + n2

o sin φqy

) + O(sin4(ϑg)), (E8)
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fc(d) = −d
2β

π
sin(ϑg) cos φ + O(sin3(ϑg)). (E9)

Note that in the case of perpendicular incidence (k′
x,k

′
y = 0) we get no contribution to phase grating of the order O(θm); the only

linear contribution ∝k′
x cos(q · x), which we have obtained already before in Eq. (25), requires a nonzero ϑg . We have to keep

the terms ∝sin2(ϑg) in order to identify a contribution of the director twist(∼δny) and of an in-plane rotation of q (finite qy).
Turning to quadratic order in θ2

m we have to solve an equation for the expansion coefficient S̄(2)
e [see Eq. (E1)], which has the

same structure as Eq. (E4) except a different inhomogeneity inh2(x,z). Here we have contributions from C2
δn and from C2

S in
Eq. (E2) where the solution S̄(1)

e given in Eq. (E7) has to be used. In addition, we find contributions from the product of the term
∝θm in Eq. (E3) and the terms (C1

δn + C1
S) in Eq. (E2). In analogy to the treatment of Eq. (E4) and its solution shown in Eq. (E8)

we arrive at the following general representation for S(2)
e (x,z):

S(2)
e (x,z) = f

(2)
0 (z) + sin(2q · x)f (2)

s (z) + cos(2q · x)f 2
c (z). (E10)

Performing the required z integrations within the one-mode approximation and restricting ourselves to the terms up to order
O(sin(ϑg)) the analytical expressions read as follows:

f
(2)
0 (d) + f (2)

c (d) cos(2q · x) = −d
neβ

8
[1 + cos(2q · x)] + O(sin2(ϑg)), (E11a)

f (2)
s (d) = −dβ

sin(ϑg)

8

[
ay sin φ + 4

(
β/π2 + n2

e

n2
o

)
qxd cos φ + qyd sin φ

]
+ O(sin3(ϑg)). (E11b)

As to be expected the ϑg-independent contribution to S(2)
e (x,d) in Eq. (E11a) is equal to the one already derived in Eq. (26).

The new term f (2)
s (d) ∝ sin(ϑg) reveals the impact of a director twist (∼δny) and of an in-plane rotation of q (finite qy).

APPENDIX F: SHADOWGRAPHY IN OPTICALLY
ISOTROPIC MEDIA: RAYLEIGH-BÉNARD CONVECTION

In the following we comment briefly on the short-
wavelength expansion technique for RBC, where we follow
closely the notations in Ref. [10]. The convection cell has
the thickness d (0 < z < d) with T1 > T2 the prescribed
temperatures at the lower and upper plates, respectively. In
the convective state the temperature distribution is given as

T (x,y,z) = T0 − �T
z − d/2

d
+ �conv(x,y,z), with

(F1)

T0 = T1 + T2

2
,�T = (T1 − T2),

where �conv(x,y,z) denotes the convective temperature con-
tribution, which is available as a Galerkin expansion from
standard codes. We consider the fluid as an isotropic medium
with a space-dependent dielectric permeability ε(x,y,z) and
constant magnetic permeability μ = 1. Thus, the refraction
index is given as n2 = ε. It depends on the density ρ, which
varies with temperature in the RBC case. Thus, we use an
expansion about the mean temperature T0:

n(ρ(T )) = n(ρ(T0)) + ∂n

∂ρ

dρ

dT

∣∣∣∣
T =T0

×
[
−�T

z − d/2

d
+ �conv(x,y,z)

]
. (F2)

According to Eq. (1) in Ref. [10], the three terms on the right-
hand side of Eq. (F2) are parametrized as

n(x,y,z) = n0 + nheat + nconv

≡ n0 + n2z/d + n1

N∑
i=1

ai(x,y)bi(z), (F3)

where the coefficients n0, n2 describe the heat conduction state,
while the term nconv ∝ n1 measures the overall amplitude of
�conv in an Galerkin expansion.

The starting point for the optical analysis of RBC patterns
are the following wave equations for the electric field, E, and
the magnetic field, H , with a monochromatic time dependence
(see, e.g., Eqs. (5) and (6) in Ref. [17]):

�E + n2k2
0 E + 2∇[E · ∇(ln n)] = 0,

(F4)
�H + n2k2

0 H + 2[∇(ln n)] ∧ rotH = 0.

The short-wave expansion is based on the ansatz:

E = e(r) exp[ik0S(r)],

H = h(r) exp[ik0S(r)], (F5)

r = (x,y,z).

It is easy to see that we arrive from Eqs. (F4) at the following
equations for e(r) [see [17], Eqs. (16)]:

[n2 − (∇S)2]e − 1

ik0
Le(e,S,n) = 0 + O

(
k−2

0

)
with

Le(e,S,n) = {�S e + 2[e · ∇(ln n)]}∇S + 2(∇S · ∇) · e.

(F6)

Analogously we obtain

[n2 − (∇S)2]h − 1

ik0
Lh(e,S,n) = 0 + O

(
k−2

0

)
, with

Lh(h,S,n) = [2∇S · ∇(ln n) − �S] h

− 2[h · ∇(ln n)]∇S − 2[∇S · ∇]h. (F7)

The leading order terms in Eqs. (F6) and (F7) yield the
eikonal equation

(∇S(x,y,z))2 = n2(x,y,z), (F8)
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while the next order terms (∝k−1
0 ) determine the amplitudes

e,h, respectively [see the remarks in Ref. [17] before Eqs. (41)
and (42) there].

We here only address a 2D configuration with perpendicu-
larly incident light in analogy to the planar case in nematics.
The refraction index [Eq. (F3)] varies thus only in the xz plane
(“convection rolls”), which is also the incidence plane of the
light with H in the y direction. In the heat conduction state
[ai ≡ 0 in Eq. (F3)] we obtain immediately

S ≡ S(0)(z) = n0z + n2
z2

2d
. (F9)

Using the ansatz,

S = S0 + S ′ ≡ S0 + n1S
(1) + n2

1S
(2) + · · · (F10)

and Eq. (F3) for the refraction index, we obtain from Eq. (F8)

2(n0 + n2z)
∂

∂z
S ′(x,z) +

(
∂

∂x
S ′

)2

= 2(n0 + n2z)nconv(x,z) + n2
conv(x,z). (F11)

In linear order in n1, n2 Eq. (F11) can be directly solved and
we arrive at

S(1)(x,z) =
N∑

i=1

∂

∂x
ai(x)

∫ z

0
dz′bi(z

′). (F12)

Thus, in contrast to the nematic case we obtain already
phase modulation in first order in n1. For the solution S(2)

proportional to n2
1 [see Eq. (F10)] we obtain from Eq. (F11)

the following ODE in z:

n2
1

{
2(n0 + n2z)

∂

∂z
S(2)(x,z) +

[
∂

∂x
S(1)(x,z)

]2

+
[

∂

∂z
S(1)(x,z)

]2}
= n2

conv(x,z), (F13)

which can be solved by a simple z integration. Note that the
term n2

conv on the right-hand side of Eq. (F13) cancels against
[∂zS

(1)]2. Thus, we arrive at

S(2)(x,d) = − 1

2n0

∫ d

0
dz

∑
i,j

dai(x)

dx

daj (x)

dx

×
∫ z

0

∫ z

0
dz′dz′′bi(z

′)bj (z′). (F14)

Consequently, one obtains the following expression for the
total phase modulation term at z = d:

k0S(x,y,d) = k0S
(0) + k0n1S

(1)(x,d) + k0n
2
1S

(2)(x,d).

(F15)

When we use the expression for S(0),S(1),S(2) given in
Eqs. (F9), (F12), and (F14) we agree with Ref. [10] up to
order n1 but disagree in order n2

1, though the corresponding
terms look very similar.

Since h has only a nonzero y component, hy , in the
present geometry, it is convenient to determine the amplitude
modulation contribution from Eq. (F7). To order k−1

0 , starting
from Eq. (F7), we have to solve Lhhy(x,z) = 0 with the
boundary condition hy(x,0) = H0, where H0 denotes the
magnetic field amplitude of the incident plane wave. Explicitly
written, Lhhy = 0 reads as follows:{

2

[
∂

∂x
S

∂

∂x
+ ∂

∂z
S

∂

∂z

]
ln(n(x,z)) − �S

}
hy(x,z)

− 2

[
∂

∂x
S

∂

∂x
+ ∂

∂z
S

∂

∂z

]
hy(x,z) = 0. (F16)

Note that the term ∇S[h · ∇ ln n] in Eq. (F7) has vanished
identically. Equation (F16) is solved iteratively by using the
ansatz:

hy(x,z) = h0
y(z) + n1h

(1)
y (x,z) + O

(
n2

1

)
. (F17)

In the heat conducting state (no x dependence) Eq. (F16)
simplifies to[

∂

∂z
S

∂

∂z
ln(n0z + n2z

2/d) − ∂zzS

]
hy(z)

− 2
∂

∂z
S

∂

∂z
hy(x,z) = 0, (F18)

where only S ≡ S0 from Eq. (F9) has to be used. Neglecting
the small n2 contributions (they can easily be incorporated),
the incident amplitude is not modified, i.e., h0

y(z) ≡ H0. In
order n1 we obtain the ODE,

2n0
∂

∂z
h(1)(x,z) = −∂xxS

(1)(x,z), (F19)

which leads to the following magnetic field amplitude:

hy(x,z) = H0

{
1 − n1

2n0

N∑
i=1

[
∂2

∂x2
ai(x)

] ∫ z

0
dz′bi(z

′)
}
.

(F20)

This expression agrees perfectly with Eq. (20) in Ref. [10].
Thus, it has been proven that also in RBC our calculational
scheme needs only a few systematic steps to reproduce the
previous results in [10], which were obtained after tedious
calculations. It is obvious that oblique incidence can be treated
without difficulty within our calculational scheme as well. Also
proceeding to higher order terms in n1 is straightforward.
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[5] Á. Buka and L. Kramer (eds.), Pattern Formation in Liquid
Crystals (Springer, New York, 1996).

[6] D. R. Jenkins, J. Fluid. Mech. 190, 451 (1988).
[7] S. Rasenat, G. Hartung, B. L. Winkler, and I. Rehberg, Exp.

Fluids 7, 412 (1989).
[8] I. Rehberg, F. Horner, and G. Hartung, J. Stat. Phys. 64, 1017

(1989).

052504-15

http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1146/annurev.fluid.32.1.709
http://dx.doi.org/10.1063/1.1147511
http://dx.doi.org/10.1016/j.physrep.2007.02.013
http://dx.doi.org/10.1017/S0022112088001405
http://dx.doi.org/10.1007/BF00193424
http://dx.doi.org/10.1007/BF00193424
http://dx.doi.org/10.1007/BF01048811
http://dx.doi.org/10.1007/BF01048811


WERNER PESCH AND ALEXEI KREKHOV PHYSICAL REVIEW E 87, 052504 (2013)

[9] E. Plaut, A. Joets, and R. Ribotta, J. Phys. III France 7, 2495
(1997).

[10] S. P. Trainoff and D. Cannell, Phys. Fluids 14, 1340 (2002).
[11] For general deficiencies of geometric optics see, for instance,

the Introduction of [10]. In Sec. VI of this paper a minor
technical error in Refs. [7,8] is mentioned and also an unphysical
divergence in second order in the pattern amplitude there.

[12] M. Wu, G. Ahlers, and D. S. Cannell, Phys. Rev. Lett. 75, 1743
(1995).

[13] H. F. Talbot, Philos. Mag. Series 3 9, 401 (1836).
[14] M. V. Berry and E. Bodenschatz, J. Mod. Opt. 46, 349 (1999).
[15] T. John, U. Behn, and R. Stannarius, Eur. Phys. J. B 35, 267

(2003).
[16] H. M. Zenginoglou and J. A. Kosmopoulos, J. Opt. Soc. Am. A

14, 669 (1997).
[17] M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford,

1996).
[18] G. Panasyuk, J. Kelly, E. C. Gartland, and D. W. Allender, Phys.

Rev. E 67, 041702 (2003).
[19] M. I. Barnik, L. M. Blinov, A. N. Trufanov, and B. A. Umanski,

J. Exp. Theor. Phys. 46, 1016 (1977); J. Phys. (France) 39, 417
(1978).

[20] F. Lonberg and R. B. Meyer, Phys. Rev. Lett. 55, 718
(1985).

[21] E. Bodenschatz, W. Zimmermann, and L. Kramer, J. Phys.
(Paris) 49, 1875 (1988).
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