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We study the dynamic self-assembly and propulsion of a ribbon formed from paramagnetic col-
loids in a dynamic magnetic field. The sedimented ribbon assembles due to time averaged dipolar
interactions between the beads. The time dependence of the dipolar interactions together with hy-
drodynamic interactions cause a twisted ribbon conformation. Domain walls of high twist connect
domains of nearly constant orientation and negligible twist and travel through the ribbon. The
particular form of the domain walls can be controlled via the frequency and the eccentricity of the
modulation. The flux of twist walls - a true ribbon property absent in slender bodies - provides the
thrust onto the surrounding liquid that propels this biomimetic flagellum into the opposite direction.
The propulsion efficiency increases with frequency and ceases abruptly at a critical frequency where
the conformation changes discontinuously to a flat standing ribbon conformation.

PACS numbers: 82.70.Dd Colloids, 87.15.hm Folding dynamics, 87.19.St Movement and locomotion

Nature dynamically self-assembles a rich variety of
swimmers of different size and geometry[1, 2]. Large
swimmers move at high Reynolds number. They gen-
erate eddies thereby efficiently producing inertial thrust.
Micron sized small swimmers lack these possibilities and
must use non reciprocal less efficient conformational dy-
namics [3–6]. Swimming strategies of low Reynolds num-
ber swimmers vary. ”Squirmers” are stationary swim-
mers of large volume to surface ratio that maintain their
shape. Propulsion is achieved by a steady flux of surface,
from a source at the front to the sink at the rear. Other
swimmers change geometry cycling through a series of
conformations of their shape. Slender swimmers [7] of
small volume to surface ratio use non reciprocal bending
beats to move [3, 4, 8]. Swimmers of moderate volume
to surface ratio perform more complex shape changes to
propel.

Technology [9] usually tries to mimic this variety [10]
and rebuild [11, 12] such swimmers using top down ap-
proaches. Bibette et al. [12] built artificial flagella by
connecting paramagnetic colloidal particles with DNA-
links to form a semiflexible chain attached to a larger
particle at the rear of the swimmer. Bending waves in-
duced via magnetic fields propel this biomimetic swim-
mer. Slender body hydrodynamics, i.e treating the swim-
mer as a one dimensional semiflexible object could ex-
plain the propulsion mechanism. Its efficiency depends
on the sperm number i.e. the ratio of elastic bending
torques to viscous torques of the fluid.

Using bottom up methods to build artificial swim-
mers are rare exceptions successfully used only for high
Reynolds number swimmers. Prominent examples of
swimmers dynamically self-assembled from their compo-
nents are magnetic snakes [13] and rings [14]. Here we
dynamically self-assemble an artificial low Reynolds num-
ber swimmer from the same paramagnetic particles used

by Bibette. A complex magnetic field instead of DNA
links forces the particles into two particle chains that
bind side by side and form a ribbon. In contrast to Bi-
bettes swimmer our swimmer propels due to twist of the
anisotopic cross section of the ribbon. A theoretical de-
scription beyond slender body hydrodynamics is needed
to explain this ribbon specific propulsion mechanism.

Mathematically a ribbon differs from a curve since it
additionally has a one dimensional cross section. While
a curve can bend and wind a ribbon can additionally
twist. The conformation of a ribbon can be described by
its twist and its writhe. The sum of twist - a local ribbon
property - and writhe - a global conformation property
of the neutral line and thus a curve property - add up
to the link number. Beating cilia or flagella can be de-
scribed by curves and propel by changes in writhe. In
our ribbons the neutral line remains a straight line and
writhe vanishes. The ribbon does not propel in the flat
but in the twisted conformation. We can define the twist
density as well as a flux of twist. Open ends of the rib-
bons allow a steady flux of twist through the ribbon. A
parametrically modulated magnetic torque acting on the
colloidal ribbon serves as a control parameter for the dy-
namically self-assembled shape. Shape transitions occur
in the form of π- or π/2- walls that travel along the rib-
bon. The number determining the propulsion is the ratio
of twist- and viscous torques, not the sperm number and
the assembly is propelled by a ribbon specific mechanism.

The ribbon (fig. 1) is formed in water from negatively
charged (COOH−) paramagnetic Dynabeads M-270 of
radius a = 1.4 µm. The polystyrene beads have a core
filled with superparamagnetic nanograins that render the
bead paramagnetic. The beads were diluted in Millipore
water (5 × 10−6beads/ml). Due to gravity along the z-
direction the colloids sedimented on top of a glass surface
that was pretreated with a solution of PSS (poly sodium
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FIG. 1: Top: Microscopy image (top view) of a healed col-
loidal ribbon on a glass surface. The ribbon prepared at a
frequency of Ω/2π < 18Hz and ε ≈ −0.05 lies in an untwisted
conformation. Ω/2π = 11 − 40Hz: Microscopy images (top
view) of the conformation of the ribbon for different frequen-
cies and an eccentricity of ε ≈ +0.05. At the highest frequency
Ω/2π = 40Hz the ribbon is standing on the glass surface. At
low frequencies lying domains (sketched in red in the scheme
at the bottom) are separated by π-walls (sketched in gray)
that when approaching Ω/2π < 40Hz split into π/2-walls
separating lying from standing (cyan in the sketch) domains.
Movies of motion are shown in [15].

4-styrene sulfonate) to prevent adhesion. Without mag-
netic field the lateral distribution of beads is random.

The magnetic field H(t) induces magnetic moments
m(t) = µ0V χ · H(t). Here µ0 denotes the permeabil-
ity of vacuum, V the volume of the ensemble and χ the
effective susceptibility. The magnetic moments of the
beads hence interact via dipolar interactions. The di-
mensionless Mason numberM = ηΩ/µ0χ

2H2 character-
izes the ratio of viscous vs. magnetic interactions, where
η = 10−3Nsm−2 denotes the water viscosity, and Ω the
modulation frequency at which the direction of the mag-
netic field changes. At the conditions used here the Ma-
son number is large M > 1 and the motion of the beads
is with a lower rate ω < Ω than that of the magnetic
field because viscous forces are too strong to allow for a
synchronous (ω = Ω) motion. Frequencies Ω/2π > 11Hz
were necessary to prevent disintegration of the ribbon.

Our system is driven by a magnetic field
H(t) = Ĥ(cos θextex + sin θext

√
2(1− ε)ey cos(Ωt) +

sin θext
√

2(1 + ε)ez sin(Ωt)) of the average precession
angle θext and eccentricity ε that moves around the
director along the x−axes. In this external field we
consider a pair of paramagnetic beads separated by
the bond vector rb enclosing a polar angle θb with the
director and an azimuthal angle φb with the y-axis (fig.
2). The dipolar energy of this pair is then given by

W (t) = −µ0χ
2
beadV

2H2(t)

4πr3
b

P2(cos γ(t)), where γ(t) denotes

FIG. 2: left scheme showing the definitions of angles defined
between the director (green), the magnetic field and the bond
vector. The magnetic field precesses on an ellipse (purple)
that deviates from a circle (blue) but on average encloses the
same angle θext as the average blue field vector with the direc-
tor. The right image shows the color coded averaged dipole
interactions of a pair of dipoles in various directions for neg-
ative eccentricity. Dipoles form bonds in the attractive (pur-
ple) direction and avoid bonds in the repulsive (red) direction.
Along the cyan direction the averaged pair interaction is in-
different, and the formation of bonds or no bonds is decided
by collective higher order effects.

the angle between the magnetic field and the bond vector.
The time averaging can be done by measuring both the
orientation of the magnetic field and the bond vector with
respect to the director. The time averaged dipolar in-

teraction between two beads reads W̄ = −µ0χ
2
beadV

2Ĥ2

4πr3 ×(
P2(cos θext)P2(cos θb)− εP 2

2 (cos θext)P
2
2 (cos θb) cos(2φb)

)
where P2 and P 2

2 are Legendre polynomials of degree 2
and associated Legendre polynomials of degree 2 and
order 2. We assembled our ribbons with a magnetic field
of Ĥ = 2200A/m, a precession angle of θext = π/6 and
negative eccentricities ε ≈ −0.05, for which the time
averaged dipole interactions are attractive for a pair of
beads spearated along the x-direction (θb = 0), weakly
attractive to indifferent along the y direction (θb = π/2,
φb = 0), and repulsive along the z-direction (θb = π/2,
φb = π/2). Since the interaction is weak along the y
direction collective demagnetization effects involving
three or more beads play a role along this direction. Yan
et al [16] used those collective effects to form hollow
tubes. Here collective effects lead to weak attraction in
the y-direction between single chains, but to repulsion
between a ribbon and a third chain or additional bead.
We can create ribbons of typical length of up to 50
beads per chain. Defects in the form of vacancies on the
ribbon or adsorbed beads starting a third chain can be
eliminated by using an annealing procedure [15]. The
top part in fig. 1 shows an annealed ribbon.

Once the ribbon is healed of defects we switch to a
positive eccentricity. This turns the y direction repul-
sive and the z direction attractive favoring an upright
orientation. Fig. 1 (40Hz) shows the conformation for
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FIG. 3: Three space time plots of the orientation angle φb(x, t)
for different frequencies Ω/2π. The inset magnifies the region
of one end of the ribbon.

ε ≈ 0.05 at Ω/2π = 40 Hz and a magnetic field of
Ĥ = 2200A/m strong enough to force the ribbon against
gravity into an upright conformation. The separation
of the field modulation frequency from the rate of rota-
tion is strong enough to wipe out all dynamic effects of
the modulation onto the ribbon. This is no longer the
case if we decrease the modulation frequency. Dynamic
torques may now distort the conformation. The neutal
line remains along the x-direction and the conformation
is entirely described by the angle φb(x) the normal vec-
tor to the ribbon plane encloses with the z-direction. For
frequencies below Ω/2π < 40Hz twist walls between sub-
sequent quasi stable orientations travel in the form of
solitons with a speed vwall through the ribbon. These
walls form via spontaneous symmetry breaking. The rib-
bon rotates always with the same sense as the magnetic
field. Twist walls of left and right chirality nucleate with
equal probability and travel into opposite directions on
the ribbon. Once a steady state is reached only walls
of one chirality travel on one ribbon. For low frequen-

cies 11Hz < Ω/2π < 18Hz such walls are π-walls con-
necting a lying ribbon section with another lying ribbon
section. For frequencies 18Hz < Ω/2π < 28Hz these π-
walls split into two π/2-walls, the first connecting a lying
section with a standing section and the second connect-
ing a standing section with a lying section twisted by π
with respect to the first lying section. For frequencies
28Hz < Ω/2π < 40Hz the π/2-walls merge again to π-
walls that connect two standing segments. Finally, above
Ω/2π > 40Hz a standing flat ribbon remains.

In fig. 3 we show space time plots of the angle φb(x, t)
extracted from the videos for three frequencies. These
plots show the behaviour of the twist walls traveling at
relatively large velocities and the forward propulsion with
a much smaller propulsion velocity opposing the motion
of the walls. A spatially more resolved version of the
propulsion is shown in the inset of the top figure. The
space time plots span the range xb(t) < x < xe(t), where
xb,e(t) = x0b,e+vpropt denote the propelling beginning and
end of the ribbon. The color coding of the plot encodes
the angle φb, red colors correspond to a lying (φb = 0)
section and cyan colors to standing (φb = π/2). The
dominating color shows whether the ribbon is lying or
standing. Abrupt changes in color occur within the twist
walls. π-walls connect regions of similar color while the
color changes from red to cyan when passing a π/2-wall.

In fig. 4 we plot the domain wall and the propulsion
speed as a function of the modulation frequency. Domain
walls and propulsion are observed in the frequency band
11Hz < Ω/2π < 40Hz. We define a geometric propul-
sion efficiency e = vprop/vwall analogue to [17] plotted in
the third graph in fig. 4 versus Ω/2π. It measures the dis-
tance a ribbon propels during the motion of one domain
wall by the wavelength. The efficiency increases with
frequency. We express it in terms of the frequency f of
rotation of the ribbon and the density of walls n = L/λ
as e = n × vprop/Lf where L is the length of the rib-
bon and λ the wave length. Since both the propulsion
velocity and rotation frequency of the ribbon are fairly
independent of the modulation frequency Ω the efficiency
increases as the density of domain walls increases. It re-
quires soft ribbons to achieve high densities of walls.

We can understand the behaviour by a damped relax-
ation equation ∂2φb/∂t

2 +γ∂φb/∂t = −δF/δφb(x) where
F =

∫
dx
{
Ugrav(φb) + ∆χUmagn(φb, t) + (∂φb/∂x)2/2

}
is a rescaled functional of the field φb(x, t) with
Ugrav(φb) = | sinφb| the gravitational potential,
Umagn(φb, t) = h2+ cos(2φb − 2Ωt) + 2h+h− cos(2φb) +
h2− cos(2φb + 2Ωt) the magnetic potential arising due to
the magnetic torque density acting onto the anisotropic
cross section of the two chains in a ribbon. h+ and
h− are rescaled left and right circularly polarized mag-
netic field amplitudes. The prefactor ∆χ denotes the
anisotropy of the effective susceptibility of the ribbon
cross section. The last term in the functional denotes
the torsional rigidity. Following [18–20], we decompose
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FIG. 4: Domain-wall velocity, propagation velocity, and the
propulsion efficiency e versus modulation frequency Ω/2π.
The error bars represent the standard deviation over 3-7 mea-
surements for each point.

the local orientation into a fast and a slow component
φb = φs + φf , expand in terms of the fast component
and equate the resulting terms of the fast components
and the time averaged slow components. This results in
a time averaged equation of the slow component of the
form ∂2φs/∂t

2+γ∂φs/∂t−∂2φs/∂x2 = feff−dUeff/dφs
with an effective potential of the form Ueff = | sinφs|+
∆χ2h+h− cos(2φs)−∆χ2h2+h

2
− cos(4φs)/2Ω2 and an ef-

fective force feff = γ∆χ2(h4+ − h4−)/2Ω3. The slow
component tends to stay within the minima of the effec-
tive potential, while the fast component will algebraically
vanish with increasing frequency, reducing fluctuations
around the average orientation at large frequencies. Fluc-
tuations render the time averaged cross section more
isotropic. The anisotropy of the susceptibility also results
self-consistently from depolarization fields of neighboring
cross sections. When applying an elliptical external mag-
netic field with the major axis along the z-axis, then the
eccentricity of the magnetic moment will be enhanced for
an upright orientation and reduced for a horizontal ori-
entation. This behavior can be modelled by a frequency

dependent increasing ∆χ(Ω), which shifts the global min-
ima from φb = 0 to φb = π/2 with frequency. Whether
the effective potential exhibits minima at one or at both
locations decides whether the domain walls are π-walls
respectively π/2-walls. For very high frequencies the ef-
fective force and the fluctuations around the minima are
too weak to overcome the barrier between two minima
separated by π and the ribbon is forced into the fully
upright conformation, where no propulsion is possible.

In conclusion dipolar interactions and gravity force an
ensemble of paramagnetic beads into a ribbon. The rib-
bon changes from a flat lying ribbon via travelling twist
walls toward a standing ribbon. For frequencies where
domain walls are formed, the ribbon is propelled with an
efficiency that scales with the domain wall density.
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