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Abstract

The dynamics of microphase separation and the orientafitamellae in diblock copolymers is
investigated in terms of a mean-field model. The formatioraofellar structures and their stable
states are explored and it is shown that lamellae are staltlenty for the period of the structure
corresponding to the minimum of the free energy. The rangaadelengths of stable lamellae is
determined by a functional approach, introduced with thaskywwhich is in agreement with the results
of a linear stability analysis. The effects of the interatof block copolymers with confining plane
boundaries on the lamellae orientation are studied by agnsixte analysis of the free energy. By
changing the surface property at one boundary, a trandittn a preferentially perpendicular to a
parallel lamellar orientatiomvith respect to the boundarids found, which is rather independent of
the distance between the boundaries. Computer simulatwesl, that the time scale of the lamellar
orientational order dynamics, which is quantitatively rettaerized in terms of an orientational order
parameter and the structure factor, depends significantth@ properties of the confining boundaries
as well as on the quench depth.

1 Introduction entational ordet® Near a substrate lamellae are
oriented parallel or perpendicularly onto it. The
During microphase separation diblock copolymers orientation is a direct result of a surface and inter-
can form various nanoscopic structures like lamel-facial energy minimizatiod! When coating a sub-
lae, cylinders, spheres or bicontinuous gyroids, strate with the same material as one block of a di-
depending on their compositidr® These self-  plock copolymer, this block is selected and lamel-
organized periodic nanoscale patterns in bulk ma-jae orient parallel to the substrate. Covering the
terials as well as in block copolymer (BCP) films substrate with a thin film of a equimolar random
attract great attention because of interesting phecopolymer, its interaction with the two dissimi-
nomena in these systems and promising applicaiar BCP blocks can be balanced, so that the sub-
tions in nanofabrication, see, e.g., the reviéWs.  strate behaves neutrafyt? In this case the lamel-
For lamellar structures the typical width of |ae orient perpendicularly near the substrate but
lamellae is of the order of the length of two cova- the lamellae orientation in the plane of the sub-
lently bonded polymers and range from-1Q00  strate is disordered at large length scales.
nm. They are readily tunable by varying the Various strategies are investigated to achieve
molecular weights of both blocks of the copoly- a long-range orientational order of the lamel-

mer. In bulk materials lamellae are locally ordered |ae in BCP films by the application of electric
but on larger length scales one finds a random ori-fields 13-16 shear flond’=19 directional solidifica-
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tion,29=23 use of topographical#=2° or chemi-  opment of the orientational order of lamellae be-

cally®2’ patterned substrates. tween two boundaries is investigated in Selc. 5.
By chemical patterning of substrates with a pe- The final Sed.6 includes besides a discussion also

riodicity close to the lamellae width, a long range experimental suggestions.

orientational order of lamellae can be indudgd.

Such long range order can be achieved even in the .

case of small mismatches between both periodic-2 Model equatlon

ities. This raises the question, whether straight o _ )

lamellae are also stable at a wavelength apart fromlicrophase separation in an incompressiaig

the optimal one at the minimum of the free energy, diPlock copolymer meit is described in terms of

Ae. Does for lamellae in BCPs also exist a con- & time-dependent anzburg-Landau model for the

tinuous wave number band arount/2e, similar conserved mean-field order parametefr,t) ~

as in other common pattern forming syste?#€?  ®a(r,t) — @s(r,t), with the local concentrations

even further below the critical temperature of mi- $as Of the componenta andB. _

crophase separation? This question is investigated SPatial variations of the order parameter involve

in Sec.[B, where we introduce a general method® SPatial dependence of the chemical potential

for the determination of stable wave number bandsH("»t) and the mass currenfr,t), which deter-

in pattern forming systems with a potential, like Min€ the dynamics ofj(r,t) via the continuity

BCPs. We determine by this method the stable€duation

wave number range of lamellae and we find also W) _ —0j(r,t). (1)

perfect agreement with the results of a standard ot

linear stability analysis of straight lamellae (see Gradients of the chemical potential drive the mass

also AppendiXA an@B). In Se] 3 we calculate in current

addition analytical solutions for the lamellar struc- j(r.t) =—-M0Opu(r,t), (2)

ture in the weak as well as in the strong segregationyjth the Onsager coefficieritl(> 0)32 that de-
limit and present also analytical results for the sta- s¢ripes the mobility of the monomesswith re-
bility range in the weak segregation limit in part spect toB. The functional derivative of a free en-
B.3 ergy functionaF {/} with respect to the order pa-

der in the plane of BCP films with the lamellae per-
SRy

pendicular to the substrate, the film may be con- (r,) 3)

fined between two lateral boundaries at small and HT oy ’

medium distances as in Rel8! It depends again  anq via Eq.[(B) and EqC](2) also the dynamics of

on the surface preparation of the lateral bound-w(r,w

aries, whether lamellae become oriented by en-

ergetic reasons either parallel or perpendicularly oy(r,t) MD25F{L[J} @

with respect to them. The homogeneous lamellar ot Sy

structures in such quasi two-dimensional systems

confined between two boundaries are analysed inThe free energy{{/} acts as a global Lyapunov

Sec.[% and AppendiX]C. We determine for vari- functional and is always decreasing with time to-

ous selectivities at the boundaries the lamellar ori-wards its minimum:

entation corresponding to the lowest free energy.

For nonsymmetric boundary conditions we find in antl; = / <6—Fa—w) dr = M/ (5—FD25—F) dr
) : : ot oY ot oy oY

two dimensions as a function of the surface selec- v v

tivity of one boundary a transition from a prefer- SF\ 2
—M/(D—) dr <0.
Vv ov

entially perpendicular to a parallel orientation to = (5)
the boundaries, which is rather independent of the
distance between the boundaries. The dynamical

evolution, including the coarsening and the devel- Employing a generalized random phase approx-
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imation, the bulk free energy functional for di- Eq. (6) remains undetermined in the strong seg-
block copolymers was derived by Leibfrin the  regation limit3# For the lamellar structure in the
weak segregation limit, which is applicable to the weak segregation limit can be identified with the
slightly quenched regime of microphase separa-vertex functionu = I'4(0,0), which depends on
tion. Here we use the extended free energy intro-the compositionf and the polymerization index

duced by Ohta and Kawasa¥, N.11:33 The parameteK > 0 describes the inter-
R () b " facial energy betweeA andB domains and it de-
MWy [Py Yys 2 pends on the compositiohas follows34
kT [ SWT ¢+ 5 (O dr
\% |2

D -

2 [ [0 - @lwe.o - g, @ “=ara-n ©)
vy The parameter

which also includes the strong segregation limit,
applicable to the deeply quenched regime. The D=0 23 5 (10)
functional comprises the temperature independent I°N“f=(1—f)

phenomenological constants K, D and ¢y =

() is the spatial average of the order parameter
Y(r,1). b |fs thhe tensztleratl:jr? (:)epegdeqhtroLpa- andD have been obtained in Re¥$:36 except the
rameterof the mo ehan 0 d> c microphase. difference in numerical factors due to the use of
separation sets in. The second term in E5. (6) wit different models for the polymer chain (and there-

the double integral covers the long-range interac-, o jitferent expressions for the radius of gyra-
tion due to the connectivity of the subchains and tion). Besides the derivation of the interaction pa-

the G_reenz’s funf:tlorG(r,r’) S,at'Sf'eS Laplace’s  rameters from microscopic models it is also possi-

equation’] Q(r,r )=—0(r—r >', . ble to determine them by fitting data from scat-
The coefficients of the mean field free energy in yoin o exneriments obtained immediately after a

Eqg. (8) can be related to microscopic models un-quench (see, e.§537:38and references therein).

der the following assumptions: All chains have the With the functional given by EqL16) and E@J (4)
same index of polymerizatiol, are composed of the nonlinear evolution equation of the order pa-

by the same numbeéia(Ng) of monomers of type }
A (B), with N = Na + N, and have therefore the rameteny(r. ) follows:
same compositiof = Na/N. Both blocks have Ay = MkgT [DZ(_b¢+uw3_ KO2)
the same Kuhn statistical segment lenigth “D(y— )] . (11)
The control parametdy in Eq. (8) is related to

the Féory-Huggins interaction parameteras fol-  \yjith the length scalé = v/K and the time scale
lows 3¢ T = £2/(MkgT) one may introduce with = &r’
s(f) andt = tt’ the dimensionless variablesandt’.
TONT(I- )2 (7 Using in addition the rescaled order parameter
Y = \/uy, one obtains the dimensionless form of
wheres(f) is of%())rder unity and depends on ap- the equation (primes are omitted)
proximations23 Microphase separation occurs
for x > xc (T < T;) and the temperature depen- O =D (—ep+¢°—PY) —a(y—p), (12)
dence of the Flory-Huggins interaction parameter
X is taken as

is positive and decays with the polymerization de-
greeN.2* Similar functional dependencies &f

b=2x

with the dimensionless parameters:

e=b, a=DK, B=uy. (13)

According to Eq.[(B) and EJ.(10) one has the scal-
ing o O N~2 and the limiting caser = 0 corre-
sponds to the Cahn-Hilliard equati&describing,

X=A+B/T, ®)

where the coefficient®\ and B are determined
from experiments$® The parameteru > 0 in



e.g., phase separation in polymer blends.
The bulk free energy in dimensionless form is
given by

oy} = /{—%w%%w“%(mw)z
\Y
+5h)(W—B)

] dr,  (14)

where we have introduced for practical reasons the

auxiliary function

h(r) = /G(r, ) [w(r')—Bldr’ . (15)
v
The functionh(r) fulfills Poisson’s equation
0%h(r) = —(@(r) - B). (16)

with the boundary condition along the direction
normal to the surface of the volunve

n-Oh(r)=0, (17)
that follows from the conservation of the order pa-
rameter:[ (¢ —B)dr =0.

2.1 Effects of boundaries

To study unconfinedsystems periodic boundary
conditions of the order parametgr can be ap-
plied in each spatial direction. Faonfinedsys-
tems one needs for the fourth order Eq.l(12) two
boundary conditions. The first boundary condition
follows from the conservation of the order param-
eter [ (¢ — B)dr = 0 corresponding to a zero flux
at the boundary:

n-O(—ep+y*—-0%¢)=0.  (18)

Ys is the preferred difference between the con-
centrations ofA and B at the surface. The case
g = const and (s = const corresponds to a ho-
mogeneous surface and non-constaatg(S) and
W(S) model patterned surfaces as e.g. described in
Ref4? The second boundary condition is derived
from the local equilibrium condition of the total
free energyF = R, + Fs at the surface

oF
oy
Since the bulk is in equilibrium with the surface
one has the second boundary condition:

=p+[n-0¢+g9(Y—s)ls. (20)

n-Oy+9(y—ys)=0. (21)

Note that the surface energy in Elq.](19) is equiv-
alent to the expression proposed in Réfs?!

Fo— / (~Hup+ %wz) ds,

S

(22)

where the “field"H; is related to the difference of
chemical potential betweel andB blocks at the
surface and the parameteay is related to the so-
called “extrapolation length”a; ~ 61, that de-
scribes the ability of the surface to modify the lo-
cal interaction parametey.#! In our notation one
hasH; = gys anda; = g. The usual situation for
diblock copolymersis the so-called “ordinary tran-
sition” with 6 > 0 and therefor@; > 0 (org > 0).
The surface modifies the local monomer interac-
tions only within a thin surface layer of thick-
nesso'(l) with | as the Kuhn statistical segment
length#! In this situation the local interaction pa-
rametery at the surface is smaller than in the bulk
and there is no ordering transition in the range
T > T. for Hy = 0. ForH; # O finite values of the
order parametap # 0 are already induced beyond

The free energy in a confined system includes aihe critical temperature] > T.. Walls with the

surface contributiorks, which can be written in
dimensionless form,

— 1 _ 2
Fo=5 S/ o(y -~ yo)dS, (19)

with two phenomenological parameteysind (s.
g > 0 is a measure of the strength of the interac-
tion of the block copolymer with the surface and

propertyH; # 0 are so-calledelective boundaries
and withH; = 0 so-calledheutral boundaries
Although we restrict our investigations to the
most relevant ordinary transition we shortly men-
tion for completeness also another type of transi-
tion. The so-called “surface transition” occurs for
a1 < 0, which corresponds td < 0. In this case
the local interaction parametgris greater than in
the bulk and even far; = 0 an ordering transition



may be observed at > T; near the surface. ke, are both obtained from the extremal condi-
tion dey (k) /dk= 0 at the minimum of the neutral

3 Unconfined system: Periodic e

solutions e=2Va,

: . The wave numbers along the left and right part of
Above the onset of microphase separation a pery, tral curve are aiven as a function of the con-
fect lamellar order of block copolymers is de- t elneu a by th g :

scribed by periodic solutions of Ed.(12) and their trol parametee by the expression

properties in unconfined systems are investigated ) 1

in this section for symmetric diblock copolymers, k(€)= 2 <5 +/ €2~ 33) (26)

i.e. B =0. An analytical approximation of the

amplitude of the spatially periodic solution imme- and the wave numbeéq, at the maximum of the
diately above onset is given in Séc.13.2. A method growth rateo (k) increases witte > & as follows:

for the determination of the stability boundaries of

periodic solutions, which works close to and even Koy — \/E . 27)

far beyond onset of microphase separation is pre- 2

sented in Se¢._3.4. Itis based on an analysis of the
free energy functional evaluated for periodic solu-
tions. A conventional linear stability analysis of
nonlinear periodic solutions, ¢# is presented for
the present system in Appendix A dnt B.

ke =al/*. (25)

For further discussions also the reduced control
parameter = €/&— 1 and the reduced wave num-
berk = k/k; are useful. Then the rescaled neutral
curve takes the following form

(k2—1)2
2k2

The homogeneous phase of a symmetric diblockand the critical values of the control parameter and

copolymer melt is described by a vanishing order the wave number are given by

parameteryy = 0. This basic state becomes unsta- .

ble with respect to small perturbatiogs(r,t) ~ rce=0, k=1. (29)

e?tdkT when the control parameter is raised

beyond its critical values,, corresponding to a

guench below the critical temperatufg of the ~o 5

diblock copolymer melt. In this case the growth Ky =1+rFvretar,

rate o of the perturbations becomes positive anq and the reduced wave number at the maximum of

_mlcrop_ha_se separation sets in. Since Eql (12) IS he growth rates (K) is kn = vIFT.
isotropic in spaceg depends only on the modulus . . . -
Microphase separation and spatially periodic so-

of the wave vectork = |k|, which is determined . ,
by the linear part of Eq12): lutions of Eq. II_IIZ) develop in the range> 0 and
€ > &, respectively.

rn(k) = (28)

3.1 Onset of microphase separation

The reduced wave numbers alongk) are

(30)

ok)=K(e—k)—a. (23)

. L _ 3.2 Amplitude equation
The neutral stability conditioor (k) = 0 yields the

neutral curve The basic Eq.[(12) takes in terms of the reduced
control parameter= ¢/¢&. — 1 the following form:

O = DP[-2Ke(r + 1)y + ¢° — D] — kg .(31)
and the basic stat¢j = 0, is unstable abovay (k)

with (k) > 0. The critical value of the con- Equation [(31) is rotationally invariant and there-
trol parameterg;, and the critical wave number, fore the wave vector of a periodic solution can be

en(k) = K2+ a /K2 (24)



chosen parallel to the-axis withk = (k,0).

In the range of small values af> O the neu-
tral curve is still narrow aroun#él; and nonlinear
periodic solutions exist only fok rather close to
ke. Small deviations of the wave vect&rfrom
the critical one,(k¢,0), and therefore long wave-
length (slow) modulations of the periodic solution

O exp(ikc - r) can be taken into account by a spa-

tially dependent amplitude (envelope),
W =Axy,t)e*+c.c., (32)

with A(x,y,t) slowly varying on the scaler®/kc.
Such a separation into a slowly varying ampli-

tude and a fast varying periodic part is successfully
used in a broad class of pattern forming systems,

as described for instance in Ref$22:4243 By

The amplitudedg vanishes along the neutral curve
Py =2Q%/KG = 2(k— 1)?,

which is equivalent to Eq.L(28) for = 0 and
Q| << 1.

The amplitude equation[(B3) has also non-
periodic, inhomogeneous solutions, as for instance
described in Refd829:45.46  A(x y t) varies in
these cases on length scales alongxtend the
y direction, which are larger than2k.. These
length scaleg; along thex direction anc, along

they direction are:
&= (-) , b= (5) . (38)

(37)

ke \r Ke

this separation into short and long length scalesAccordingly, the envelopé(x,y,t) varies perpen-

near thresholdr 2 0, a further reduction of the

dicular to the lamellae (along thedirection) on a

basic equatiorml) to a universa' equation for thedrﬁ:erent Iength Scale than parallel to the |ame”ae

envelopeA(x,y,t) is possiblé®:29:42:43and allows

(along they direction), when for instance the en-

in the weak segregation regime further analytical Velope decays from its bulk valuel /r beyond

progress, as described in the following.

The partial differential equation describing the
dynamics of A(x,y,t), the well-known Newell-
Whitehead-Segel amplitude equatfdifor the en-

velope of periodic solutions in isotropic systems,

can be derived by a multiple scale analy&g2:44

. 2
ToA=rA+ &5 <ax— '—02) A—go|AI%A,

2ke Y
(33)
. 1 2 3
with TOZZ—ké" EOZZE, gozz—kg- (34)

Eq. (33) has in the range> 0 periodic solutions
A= Age(@xPY) (35)

in terms of the deviation® = k— k; andP << k¢
from the critical wave vectofkc, 0).

threshold > 0) to a small value at the bound-
ary. The ratio between the two length scales is
&2/& = (r/8)Y* and therefore in the weak segre-
gation regime = 0 the lengthé, is always consid-
erably smaller than the leng#h. This difference
has a strong influence on the orientation of lamel-
lae near boundaries as discussed in Sec. 4 .

3.3 Nonlinear solutions

In extended systems with periodic boundary con-
ditions spatially periodic solutions of the nonlinear
equation[(IR) of wave numbkican be represented
by a Fourier series,

= A

M . .
W= 5 A A=A, (39)

=

where the coefficients of this series are determined
numerically, as described in AppendiX A. For a

The rotational invariance of the system allows fruncated ansatz with one mode,

to choose for stationary solutiofs= 0, i.e. the
stationary amplitudéy can be expressed in terms

of Qork=k/ke:

2_k§(r_2_<?2):

22
A%:?) kg kC

3 [r—2(k—1)?] .(36)

¥ = agcosg(kx) , (40)
one obtains for the amplitud®:
2k2 ~
ag = =+2 3 [r—rn(k)] (41)



which becomes in the rang@| << 1 identical to  odic solution is then as follows:

the expression in Ed.(86). Agadg only exists be- B 1

yond the neutral curve> ry(K) [resp. > en(K)]. F(k) = é[F(kJrAkX) +Fk—A0k)] .  (42)
Such deformations ensure that the mean value of
the wave numbek = k in the whole system and
also the number of periodic units remains un-

Spatially periodic solutions in extended pattern changed.
forming systems are stable only in a subrange of For small values ofik, the expression at the
the wave number band beyond a neutral curve adight hand side of Eq.[{42) can be expanded in
given for example by Eql (243 terms of a Taylor series and one obtains at lead-
Stationary, spatially periodic solutions may be ing order inAky:
destabilized, for instance, by small perturbations 1d2F (k
with a wave vector parallel to that of the nonlin- F_(k) =F(k)+ _#
ear periodic pattern, if the so-callétkhaus sta- 2 dk

bility boundaryis crossed. Or, a periodic solu- |t depends therefore on the sign of the second
tion may be destabilized by perturbations with the derivative d2E (k)/dk2, whether the slight defor-
wave vector perpendicular to that of the pattern mation of the periodic solution leads to a reduction
(zig-zag instability, or by a combination of both  or an enhancement of the free enefgk) with re-
types of destabilizing modesKewed varicoge?® spect toF (k). In the case ofl2F (k) /dk? < 0 a si-
Such stability boundaries are determined by themuyltaneous small dilation and compression of the
condition, that the growth rate of small perturba- periodic solution of wave numbésin neighbor-
tions with respect to nonlinear periodic solutions ing ranges leads to a reduction of the free energy
vanishes, as described in more detail in Appendixyyith F_(k) < F(k). l.e. for such parameter com-
[Aland(B. binations(&, k) periodic solutions are unstable. In
In systems where the dynamic equation of the the opposite case wiiti?F (k) /dk? > 0 a periodic
field ¢ can be derived from a functionB{ ¢/}, the  solution with wave numbekt is stable with respect
Eckhaus stability boundary and the zig-zag stabil-to |ongitudinal perturbations. Therefore, the curve
ity boundary can be determined by an analysis ofseparating in the — k plane the range of stable

the functionalF in terms of the periodic solutions from unstable solutions is determined via the con-
@(r). The idea of this method was indicated ear- dition

lier4® and it is described below. d?F (&,k)
dk?

3.4 Wave number bands of stable pe-
riodic solutions

(Ak)2+--- . (43)

—0. (44)

3.4.1 Eckhaus stability boundary ) -
3.4.2 Zig-zag stability boundary

By crossing the Eckhaus boundary, nonlinear pe-
riodic solutions become unstable with respect to
small longitudinal perturbations with a wave vec-

tor parallel tok of the unperturbed patted?:26:47

The zig-zag instability of a periodic solution of
wave vectork is induced by perturbations with a
wave vector perpendicular ta Utilizing that the
The wave vectok = (k, 0) is chosen along the- free energy of the perturbed solution with the wave

axis and in order to determine the Eckhaus bound-Vectork = (k,Aky) only depends on the value of
ary we calculate the free energyfor a slightly ~ the wave numbefk| = \/k?+ (Aky)?, one finds
perturbed solution, which has a slightly "com- for small values ofAky at leading order
pressed” periodicity of wave numbkr Ak, and 1 dF(K)
free energyF (k+Aky) /2 in one half of the system F(k]) = F(K) + o —— (Aky)? +
and a slightly "dilated” periodicity of wave num- 2k dk
berk — Ak and free energy- (k—Aky)/2 inthe  |n the range ofk with dF(k)/dk < O small
other half. The free energy of the perturbed peri- transversal perturbations of the periodic solution
reduce the free energy of the system and thus the

(45)



periodic solutions are unstable. A periodic solu-
tion of wave numbek with dF (k) /dk> O is stable

with respect to transversal perturbations. There-

fore the zig-zag stability boundary in the— k
plane is determined by the condition

dF(&,k)
dk
which corresponds for periodic solutions also to

the minimum condition of free energy functional
with respect tok. The conditions for the Eck-

~0, (46)

haus boundary given by Ed. (44) and the zig-zag

line by Eq. [46) are valid for any two-dimensional
isotropic system with a dynamics governed by a
functional.

Recipe for a determination of the stability

boundaries of stationary periodic patterns in sys-

tems with a potential: In a first step the nonlinear
periodic solution of wave numbdris determined
either analytically (e.g. by a one-mode approxi-
mation) or numerically. In a second step the free
energy functionalF (¢,k) is determined for the
periodic solution and in a third step the location
of the Eckhaus stability boundarsg (k), is deter-
mined via the condition given by Ed._(44) and the
zig-zag stability boundary by E4. (46).

3.5 Stability in the weak segregation
regime

With the one-mode approximation given by
Eq. (40) the functional in Eq[{(14) can be easily
evaluated and the resulting free energy per perio
A = 2m/kis given by:

(k) 3 4

A 3%
In this case the conditiofh (#4) leads to the follow-
ing Eckhaus stability boundary:

F(K) = (47)

3k + 502

ek = 2 3a) -

(48)

This formula reads in terms of the reduced con-
trol parameter and the reduced wave numbeas
follows:

K2k 6K+ 5
ET k(KA 3)

(49)

The zig-zag instability conditio (46) provides the
wave numbekzz (resp.kzz) at the zig-zag stabil-
ity boundary:

1/4 (OI’ RZZ = l) .

kzz=a (50)
This wave number does not depend on the control
parameterg, respectivelyr. The lamella period
Ae = 211/kzz at the minimum of the free energy
and the corresponding free energy per peiQd=

F (kzz) are given by

21
ql/4

(e—2Va)’

and %= — 5

- (51)

These results are obtained for a one-mode ap-
proximation of the nonlinear periodic solution and
an analysis of the related free energy agrees with
a conventional stability analysis in terms of am-
plitude equationg® as described for the present
system in more detail in AppendiX B.

The stability properties of periodic solutions
of Eqg. (I2) beyond threshold are summarized in
Fig.[1. The dot-dashed line represents the neu-

tral curvery(k) as described by Eq._(8). In the
range beyondN(R) periodic solutions are in one
spatial dimension only stable within the Eckhaus
stability boundary, which is marked in Figl 1 by
triangles (full numerical analysis). For compari-
son the Eckhaus-stability boundary in terms of a
one-mode approximation is given by the dashed
line, cf. Eq.[49). The zig-zag stability bound-
ary obtained by full numerical analysis is marked

Opy the open circles in Fi§ll 1 and for the one-mode

approximation in Eqg.[(B0) by the solid line. To
the left of the zig-zag boundary and to the right
of the right Eckhaus boundary, spatially periodic
solutions are unstable in two spatial dimensions.

In a full numerical analysis the nonlinear pe-
riodic solution is determined numerically, as de-
scribed in more detail in Append[x]A. Then the
stability boundaries are determined by the condi-
tions given in Eq.[(44) and in EJ._(¥6), similar as
for the one mode approximation above.

Alternatively, the stability of nonlinear periodic
solutions is determined by a linear stability analy-
sis, as described in AppendiX A and in Appendix
Bl analytically in the range > 0. The analysis of
the functional and the linear stability analysis give
identical stability boundaries.



o5 — ‘ ‘ — sponding tor = /56— 1~ 1.24. Therefore, after
a deep quench with > v/5— 1, the wave num-
ber of lamellar structures developing during the
/- early stages of microphase separation may lie in
o A,_s' ] the unstable range to the right of the Eckhaus sta-
A a9 o bility boundary. The processes required to relax
1h A g & ] the wave number of the periodic solution back to
\ AAAA g X the stable wave number band leads to the appear-
o5k« . é %@ Pig ance of many defects as discussed further in[Sec. 5.
1

151 K
\

12 14 16 3.6 Strong segregation regime

With increasing of the control paramete(resp.

€) the spatially periodic solutions of Eq. (12) be-
come rather anharmonic and for large values of
they can be approximated by a square wave of the
form

Figure 1: The stability diagram of the periodic
solutions of Eq.[(I2) shows the neutral curve (N,
dot-dashed line) according to Ef. [28), the Eck-
haus stability boundary obtained for the one-mode _ B B B
solution via Eq.[(49) (E, dashed line) and numer- X) = ap[1—20(x—A /4) +20(x— 31 /4)],(52)
ically (triangles), as well as the zig-zag stability with 0 < x < A and the Heaviside step function
boundary for the one-mode approximation given g(x). In this limit the Green’s function in Eq_(14)
by Eq. [50) (2Z, solid line) and as obtained numer- js given by G(x,X) = [x—X|/2. The gradient
ically (circles). The wave numbét, = v1+rat  square term in the free energy EG.1(14) can be
the maximum of the growth raie is given by the  calculated by using the hyperbolic tangent profile
dotted line. Y = TagtanH(x—x)/&] with a small width of
the interfaces ak; = A /4 andx; = 3A /4 as an

The reduced control parameter range; 0< 1, approx?mat?on of the step function. Within these
corresponds to a moderately deep quench of the di@PProximations one obtains the following expres-
block copolymer melt and belongs to the so-called Sion for the free energy per periad
weak segregation regime. In this range the Eck- > 2 5
haus and zig-zag boundary, as obtained by theone- % = _% (g &% 16 ﬂ) . (63)
mode approximation in Eq[_(#0), coincide well 2 2 3)¢& 48
with the numerical stability analysis, where Sev- p minimization of this expression with respect to
eral modes of the Fourier expansion in Hg.](39) ap gives
are taken into account. In the range 1 the spa-
tial shape of the nonlinear periodic solutions be- 2 16 aA?
comes increasingly anharmonic and deviates from % =&~ 3 E 48 (54)
the one-mode solution given by Ef. [40). Accord-
ingly, the results of the one-mode approximation, and with this amplitude the corresponding free en-
as given by Eq.[{49) and EJ_{50), start to devi- ergy can be further simplified to
ate from the full numerical results obtained for the 1
Eckhaus boundary (triangles) and the zig-zag line F=—-a}. (55)
(circles). 4

The dotted line in Figl]l1l shows the control pa- The equilibrium period of lamellag, correspond-

rameter dependence of the wave numkgrof  ing to the minimum of the free energy is found by
the fastest growing perturbation with respect to

the homogeneous state. The Cukygr) crosses
the Eckhaus boundary &t= 54 ~ 1.5, corre-



a minimization of Eq.[(55) with respect fo

1/3
a2 e

In the strong segregation regime, iee> & (large
r), or equivalently form — 0 at a fixede, the width
of the interface — /2/¢ becomes smalf® In
this casele at the minimum of# and the corre-
sponding free energy per perict. are given by

Ae = 4(26)Y6q71/3

Fe = _%, [s—(2£or)1/3}2 . (57) 0 " (b) g
e

The scalinghe ~ a~/3 has to be compared with ~0.05¢ it
the scaling in the weak segregation limig ~ F. <7
a~1/4 according to Eq.[{81). The results fag —0.1} ke
and.%, obtained in weak and strong segregation e
regime, which are given by Ed. (51) and Hq.|(57), o5t ,/-’/"
respectively, are in each regime in good agreement ' /./‘/
with the results according to the full numerical so- e
lutions, as can be seen in F[d. 2. The transition -0.2— - T
from the weak segregation regime in the range 10 10 Q 10

a > 0.02 to the strong segregation regime in the

rangea < 0.02 is clearly visible in Figl]l2. The Figure 2: The lamella periode at the minimum

scaling exponents agree with those obtained earof .7 (k) is shown in (a) as a function af for € =

lier from variational calculation¥ and numerical 1 and in (b) the corresponding free energy =

simulations#2:20 Z (Ae). The solid lines are obtained by Eg.51)
(weak segregation), the dashed lines by Eqgl (57)

. . (strong segregation). The bullets are the results of
4 Orientation of lamellae be- the full numerical calculations.

tween substrates

The free energy of block copolymer films between dimensionless numberand the wavelengthe:

two confining substrates depends on the orienta-

tion of lamellae with respect to the substrates, on Ly =dAe. (58)
the distance between the confining substrates and

on the surface properties of the bounding sub- Boundary conditions. At plane substrates the
strates. In order to model for instance a BCP Poundary conditions fog given by Eq. [(IB) and
film with the lamellae perpendicular to a substrate, Ed- (21) take the following form,

which is in addition laterally confined by parallel

side wallls as in Ref$9:31we consider in this sec- Y (—eg+yP - D%Y) =0, (59a)
tion Eq. [12) in two spatial dimensions in tke-y y y=0,Ly
plane with boundaries at= 0 andy = Ly. This ay B
analysis applies as well to BCP confined between oy y=0 =9(¥— to)ly-o, (59b)
two extended plane parallel substrates. ow
The film thicknesd.y is given in terms of the ay =9, —¢)ly-L,, (59c)
y=Ly
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with (o = Ys(y = 0) andy, = Ps(y = Ly). 4.1 Selective boundary conditions
Substrates preferentially wetted by one block of
anAB copolymer are described by finite values of
o and Y, corresponding to so-callesklective
boundary conditions. We consider either symmet-
ric selective boundary conditions at the two con-
fining substratesfip = Y, # 0, or antisymmetric
ones,yp = —yi, # 0. Substrates being equally
wetted by theA- and theB block of a copoly-
mer correspond tmeutral boundary conditions,
épgpol;prlr_lyer filorﬁsAv\vse ?mt,r;';ﬂgz)iggﬁnggggzg-ed Y(y) in the bulk, then alsq the boundary condition
ary conditions, when one substrate acts like a se-ayw‘y=0¢y ~ 0 can be fulfilled at an extremum of
lective boundary and the opposite one like a neu-2 Periodic functiony(y) without any deformation.

tral boundary.

In the case of homogeneous, selective bound-
ary conditions withyp, Y, # O at the substrates,
lamellae parallel to the boundaries have a lower
free energy than perpendicularly oriented ones, as
shown in this section. If the valuefy, Y, have
a magnitude similar to the maximum of the ampli-
tude of(y) in the bulk, then the envelope ¢f(y)
is only slightly deformed near the boundaries.

In the casealp andyi, agree with the extrema of

With the wave vectok ;| = (k,0) we describe the ¢(y% @) ! (b)

periodic order of lamellae perpendicular and with 0 0

k| = (0,k) the periodic order of lamellae parallel

to the substrates. 1 2 3 45 123 4 5
Numerical methodTo find stationary solutions Y/ Ae Y/ Ae

of Eqg. (12) with the boundary conditions Ef. {59) 1 © 15

a central difference approximation of the spatial ¥(y)

derivatives is used. In the case of an orientation of 9 0

lamellae parallel to the substrates one has to con-

sider only they dependence of Ed.(IL2) and New- o1 2 )\3 45 o1 o2 )\3 4 5
ton’s iteration method is used for its solution. For y/Ae Y/ Ae
lamellae perpendicularly oriented to the substrates

two-dimensional simulations of Ed._(12) are re- Figure 3: Four stationary solutiong/(y) of
quired. In this case we use a simple relaxation Eq. (I2) in a film of thicknesky = 5 are shown
method with the width of one peridd = Aealong  for symmetric selective boundary conditiogs =
thex direction. _ Yo, = 1. Part (a) and (c) show periodic solutions
For a given solutiony(r) the total free energy jth an integer number of lamellae and part (b)
F =R+ Fs is calculated by integrating Ed. (14) and (d) so-called (unstable) saddle-point solutions.
and Eq. [(IP) numerically. In order to determine pgrameters — g=1anda = 0.015.
the last term in Eq.[(14), Poisson’s equation for
the auxiliary function in Eq[(16) is solved numer- Examples ofy(y) for lamellae parallel to the
ically by a relaxation method. The spatial dis- poundary are shown in the case of selective bound-
cretization was chosen to h#& = oy = 0.5 for ary conditions,yo = Y, = 1, in Fig.[3(a) and
most of the calculations, which provide a relative Fig.[3(c) for a copolymer film of thickneds, =
error of the free energy less than 1%. For a transi-5) in the strong segregation regime. The periodic
tion range, where the free energies of lamellae par-ig|d W(y) in Fig.[3(a) and in Fig13(c) differs in
allel and perpendicular to the substrates becomehe number of periods on the interyal Ly, cor-
comparable, the discretization was decreased tqesponding to different values of the wave number
0x = oy = 0.25 for the purpose of a precision k. The wavelength of the solution with five periods
higher than ®%. Note, that the values for the Fig.[3(c) corresponds t = Ae at the minimum
total free energy presented in the following are  of the free energy. In Fif] 3(a) the solution has four
divided by the system sizZ8= Ly x Ly, i.e. we use  periods with a wavelength > Ae and this station-
the free energy per unit system size. ary solution in an unconfined system is unstable
according to the results in Figl 1. However, dy-
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namical simulations show, that this wavelength is Fig.[3(b) has to be crossed. Such energy barriers
stabilized in a confined thin film. The solution in are essentially responsible that states with a wave
Fig.[4(e) has six periods on the intentgl = 5A¢ numberk # k; are stable in BCP films even if the
and a wavelengtiA smaller thande. This solu-  wave number does not correspond to the minimum
tion is according to the results presented in Elg. 1of the free energy.

expected to be stable in unconfined systems. The

free energyF /Ly of the solutions in Fid.14(a) and lI——————-———————C
(e) is larger than in Figl4(c) at the minimum of the
free energy. 0.5
-0.095 Y(y)
O -
E
L, 01 ~0.5
-0.105 1 .
0 1 2 3 4 5
Y/ e
00 1 1.2 1.4
A/ Ae Figure 5: Stationary solutions of Ed._(12) for

lamellae oriented perpendicularly to the bound-
aries at a positior; (dashed), wherg/(x,y) takes

its maximum in the bulk and at (solid), where
Y(x,y) takes its minimum. The same parameters
as in Fig[3.

Figure 4: The normalized free enerdy/Ly of
a copolymer film of thicknesky = 5A¢ is shown
as a function of the normalized widfh/A¢ (solid
line) for lamellae parallel to selective boundaries
with ¢ = ¢, = 1 and parameters as in Fig. 3.

(a)-(d) mark the free energy of the corresponding They dependence of the order parameqeis
solutions in Fig[B. rather different in the case of the lamellae perpen-

dicular to selective boundaries. In this cagse, y)

The stationary solutions in Fig] 3(b) and is a periodic function along thg direction and
Fig. [3(d) are so-called saddle point solutions, selective boundary conditions fqrce a finite value
which are unstable. As the characteristic wave- %o, 7 0 (YoL, > 0) aty = O,Ly, independent of
length A of these two solutions we take the dis- the phase of the function. At positions, where
tance between two extrema in the "undistorted” ¥(X,Y) takes its maximum in the bulk, the order
range of each solution. With this definition the Parameteg(x.,y)is nearly undeformed as a func-
solution in Fig[3(d) has a wavelength between thellon of y, as can be seen by the dashed line in
wavelengths of the two solutions in Fig. 3(e) and Fig:[5. However, the imposed selective boundary
(c) and the saddle point solution in Fig. 3(b) has a condition requires strong deformationsipfxz, y)
wavelength between that of the periodic solutions@/0ng they direction at positions,, where(x,y)
in Fig.[3(a) and (c). The free energy of both saddletak_es its minimum in the bulk, as indicated by the
point solutions is higher than that of the periodic S0lid line in Fig.[3. As a consequence of such
solutions marked as (a), (c) and (e) in Fily. 4. The Strong deformations of)(x,y) near the bound-
locally strong deformation of the periodic solu- aries, perpendicularly oriented lamellae have for
tions in Fig.[B(b) and (d) may occur at different selective boundary conditions a higher free energy
locationsy in the region(0, L), depending on the f[har.l parallel oriented ones as shown in more detail
initial profile. In order to include or to remove one N Fig.[6. _
periodicity, as for instance by changing from the ~The free energy per unit arefg,/A, of a copoly-
solution given in Figi3(a) to Fi 3(c) or reversely, Mer film with its Iamellae para!lel to.the bound-
the local maximum of the saddle point solution @riés has as a function of the film thickndss=
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strate becomes smaller with increasing thickness
of the copolymer film. In Fig.J6(a) only for a very
thin film-thickness of about ~ 1.5 the free energy

of parallel oriented lamellae is higher than for per-
pendicularly oriented ones.

In Fig. [B(b) the normalized free energies of
parallel and perpendicularly oriented lamella are
shown in the case of a reduced selectivipy, =
Yr, = 0.5. Since the control parameter(resp.
LY T T r) is unchanged compared to the case in Hig. 6(a),
1 2 3 4 5 6 a reduced valuglp = Y1, = 0.5 requires now a
deformation of the functiony(y) at the bound-
aries also for parallel lamellae. This deforma-
tion increases the normalized free energy of par-
allel oriented lamellae, while the normalized free
energy of perpendicularly oriented ones remains
nearly unchanged, as can be seen by comparing
the dashed lines in Fifgl 6(a) and (b). This enhance-
ment of the free energy is stronger for small values
of d than for larger values al, because of the de-
creasing weight of boundary effects with increas-

. ing film thicknesses.

1 2 3 4 5 6 As a consequence of this energy enhancement in
the case of a reduced preferential adsorption, there
are now two maxima of the free energy of parallel

Figure 6: The free energy per unit aredA as  lamellae in FiglB(b), at about~ 1.5 andd ~ 2.5,
a function ofd for lamellae parallel or perpendic- Where the free energy is higher than that of lamel-

ular to symmetric selective boundaries in (a) with /ae perpendicular to the substrates. Such situa-
Yo = Y1, = 1 and in (b) withyp = Y, = 0.5. Pa- tions of confined diblock copolymers were also

rametersy = 0.015 ands = g = 1. studied experimentally in thin films in the range
d = 1.4— 3.2 by varying the selectivity of the sub-
o . o strates'? Here, a reduction of the preferential ad-
dAe local minima at integer values af as indi-  gorption leads at abodt~ 2.5 to a frustration and
cated by the solid lines in Figl 6(a) and Fig. 6(b). |amellae perpendicularly oriented to the bound-
For parameters used in Fig. 6(a) the corresponding,jies. However, in agreement with our simula-
minima of thg sollid Iine have even an equal height. tions, for block copolymer films being less frus-
The dashed line in Fig] 6(a) shows the normalizedateq and also for strong preferential adsorption
free energyF, /A, of lamellae perpendiculartothe (he parallel orientation of lamellae remains always
substrate, which is for nearly all valuesahigher preferred in this experiment.
thanF, /A. The periodically occurring strong vari-  The normalized free energy of lamellae parallel
ation of the order parametefr(xz,y) for perpen- 4 selective substrates becomes smaller with de-
dicularly oriented lamella in the case of selective creasing values af, as shown in Figll7. This trend
boundary conditions, as indicated at one positiong gimilar to thea-dependence of the bulk free en-

X2 by the solid line in Figl b, enhances the free en-ergy given by Eq.[(31) [see Fifl 2(b)]. Since de-
ergy compared to the nearly undeformed function creasing values af correspond to increasing val-

Y(y) in Fig.[3(a) for par_allel_ Iamella_le- _ ues of the thickness of the lamellae, the weight of
The decay of (d)/Ain Fig.[6(a) indicates that  g\rface effects decreases, that leads to a reduction

the weight of the strong deformation @f(x,y)  qf the peak height witlw, as can be seen in Fig. 7
of perpendicularly oriented lamellae near the sub-yq4

-0.09 ¢ (a) —— || lamellae| 1
— — — Olamellag]

-0.09} (b) —— || lamellae| 1
— — — Olamellag
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-0.14 ¢
o= 0.0015
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Figure 7: The free energy per unit arEdA of  Figure 8: The free energy per unit arBdA of

lamellae parallel to the substrate as a functiod of parallel and perpendicularly oriented lamellae as a

for selective boundariego = ¢, = 1 and differ- function ofd for asymmetric selective boundaries:

ent values otr ande =g=1. Wo=1,¢, = —1. Parametera = 0.015 ande =
g=1.

For asymmetric selective boundary conditions at
the substrates, when one of the two substrates i€.2 Neutral boundary conditions
preferentially wetted by one block and the other
one by the second block of the copolymer, the nor-
malized free energy of parallel lamellae has local
minima at a film thickness close to a half-integer
multiple of the equilibrium lamellar thickness,

i.e. ford=1.5,2535,..., as indicated by the
solid line in Fig.[8. A situation with compara-
ble free energies for lamella orientations paral-
lel and perpendicular to asymmetric boundaries is

only met in the range of very thin films of about . :
: vector in the(x,y) plane of lamellae perpendicu-
d ~ 2. Otherwise the trend, that lamellae paral-
lar andk; = (0,k) of lamellae parallel to the sub-

lel to the substrates have for asymmetric selective :
. . trates. The envelop&(x,y) decays in the case
boundaries a lower free energy, can be explaine ) R
. of neutral boundaries from its finite bulk value
by the same arguments as given above for the casg JF to the boundary valué ~ 0. Such a re

of symmetric selective boundary conditions. .
duction of the envelope causes an enhancement of

By a reduction of the surface interaction strength he f o h
(leading to non-interacting or quasi-periodic ¢ € Iree energy per unit size compared to the case
9 without boundary effects.

boundary conditions fog — 0) or by a reduction The transition layer, in which the envelope

of the preferred differenceis between the con- A(x,y) changes from its bulk value to that at the

centrations ofA- and B blocks at the boundary . : :
the free energies of both orientations can becomeboundary’ 's for perpendicularly oriented lamellae
g according to Eq.[{38) proportional & O r—1/4,

comparable in the range of very thin films like in which is for small values of smaller than the

Fig. [8(b). However, in the range of thick films a transition layer of parallel oriented lamellae pro-

!oarallel orientation or‘ lamellae is alwaye preferred portional to&; [ r—1/2. Since the transition range
in the case of selective boundary conditions. De-:

. ) ) is smaller in the case of lamellae perpendicular
tailed studies on that issue can be found elsewhere h :
(see, e.g5-59), o the boundaries, we expect a smaller energy of

perpendicularly oriented lamellae than for parallel
oriented ones.

Neutral boundaries witlyip = i, = 0 correspond
to substrates, which are neither preferentially wet-
ted by theA- nor by theB block of a copolymer.

A first estimate of the expected preferred lamel-
lae orientation may be gained by considering the
effect of neutral boundaries in the weak segrega-
tion limit with small values of > 0. In this range
a representation af = Aexp(i KL r) +ccasin
Eqg. (32) is useful, wherk, = (k,0) is the wave
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0.2 - - - - larly oriented ones. A narrower transition range

(2) causes a smaller enhancement of the free energy
0.15} ] and therefore, in the range of small values gf O
w( ) (weak segregation limit) lamellae perpendicularly
yo A oriented with respect to the substrates are ener-
' getically preferred. This behavior extends also to
the strong segregation regime with larger values of
0.05¢ 1 r, as we have tested by further numerical calcula-
tions.
O L
0 2 4 6 8 10 T
y/Ae — || lamellae
-0.09 - 1
0.2 Olamellae
(b)
0.1
¥(y)
0
-0.1 ,
1 2 3 4 5 6
-0.2 : - : : d
0 2 4 6 8 10

Y/ e

Figure 9: Stationary solutions of EQ. (12) for ne
tral boundary conditionglp = Y, = 0: In (a) at
a positionx; where ((x,y) takes its maximum
for lamellae perpendicular and in (b) parallel to

the boundaries. In (b) the dots mark the analyti- FOr numerical stationary solutions of Ef.Y12) in
cal approximation as described in Appendix C for the strong segregation regime the free energy of

the same boundary condition. The parameters aré@mellae, that are perpendicularly oriented to neu-
Ly = 10Ae, g = 1,r = 0.021,k = 0.7 (correspond-  tral boundaries, does not differ very much from

ingtoe =1 anda = 0.24). the free energy obtained in the case of selec-
tive boundaries, as can be seen by comparing the

_ _ _ dashed curves in Fig] 6 and Fig]10. On the other
Full numerical solutions of Eq[(12) by taking hand, the decay of the envelope @fx,y) close

into account the boundary conditiorls X59) with 14 the boundaries, as shown in Figy. 9(b), enhances
Yo = Y1, = O are shown in Fig.I9 in the weak seg- (he free energy of parallel lamellae compared to
regation limit atr = 0.021 for perpendicularly ori- - the case of selective boundaries, cf. Fig. 6. As a
ented lamellae in part (a) and for parallel oriented ¢onsequence of both trends, in the case of neutral
lamellae in part (b). In Fig.]9(b) we show also the o ndaries perpendicularly oriented lamellae have
analytical approximation of the solution (symbols) always a lower free energy than parallel oriented
for the same boundary conditions, as described inyes as shown in Fig1L0.
the AppendixC. _ _ _ Note, that the free energy of parallel oriented
As indicated by the estimate in the previous |meliae has in the case of neutral boundaries local
paragraph, the length of the envelope @fy)  minima as a function of the film thickness close
needed for the transition from its value in the bulk ;4 integer and half-integer multiples @& The
to that at the boundary is indeed larger for par- (engency of lamellae to align perpendicularly to
allel oriented lamellae than for the perpendicu- ihe supstrates in the case of neutral boundaries has

Figure 10: The free energy per unit afeaA of

u- parallel and perpendicularly oriented lamellae as a
function ofd for neutral boundariegp = (i, =0
and the parameters = 0.015,e =g=1.
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been also found in Ref2!:56

In the weak segregation limit, i.e. small values of
r, approximate analytical solutions of EG112) are  _°°%| — — — Olamellag| |
derived for lamellae parallel to the substrates, as Ll
described in more detail in Appendix C. Depend-
ing on Y and Yy, such an analytical approxima-
tion can be very good as can be seen for example
in Fig.[Q(b).

— || lamellae

—

-0.105¢

4.3 Selective versus neutral bound-

aries d
It depends on the ratio between the extremal val- b
ues of the amplitude oy in the bulk and the in-  _g gg5 [\ - g';ﬁ:'gz ]
duced values at the boundaries whether the bound-

ary conditions act more like selective or neutral
boundary conditions. This can be recognized for  _g 1|
instance by comparing the difference between the
free energy of parallel and perpendicularly ori-
ented lamellae in Fid.]6 and Fig.]10 for the three _g 105!}
different values:yp = Y, =1 Yo=1ur, = 0.5
andyp = Y, = 0. While in the casgp = Y, =1
the maximum ofy(y) in the bulk is similar to the d
imposed value at the boundary, in the other two
cases the maximum in the bulk is larger than at the
boundaries. Figure 11: The free energy per unit afedA of
The ratio between the maximum value and the parallel and perpendicularly oriented lamellae as a
value at the boundary can also be changed byfunction ofd for mixed boundary conditions: In
changing the quench depth, i.e. by changirfe- (@) Yo =0, Yo, =1 and in (b)Y = 0, Y1, = 0.5.
spectivelye), but keeping now the values = Y, Parametersr = 0.015 ands =g=1.
fixed. In this case the maximum bulk value can be
either smaller or larger than the values at bound-
aries, depending on We found that for different
values ofilip = Y1, variations of the control param-
eterr do not induce a reorientation of the lamellae
with respect to the boundaries.

In Fig.[11 the free energy per unit size is shown
as a function ofd for perpendicularly (dashed
lines) and parallel (solid lines) oriented lamellae in
the case of mixed boundaries wigly = 0 and ei-
theryp, =1 orgi, = 0.5. One may compare these
results with those given in FigJ 6 for symmetric
4.4 Mixed boundary conditions selective boundary conditionfy = i, = 1, 0.5.

: . : . There are two major differences between the re-
The results presented in the previous sections in-

. o . sults in both figures. The energy differences be-
dicate that a combination of a selective and a neu

tral bound dit lead to al N I'tween the two lamellae orientations are smaller for
ral bouncary condition may iead 1o aimost equal ,;, o 4 boundary conditions in Fig. 111 and the free
energies for parallel and perpendicularly oriented

.~ energy of parallel oriented lamellae now has local
lamellae over a large range of values of the film

thicknessLy. Therefore, we compare in this sec minima at integer and half integer valuestf
) Y ’ o ~ The trend indicated in Fig. 11 suggests that b
tion for mixed boundary conditions the free ener- g.1 99 y

) : changing the boundary condition at one surface
gies of homogeneously oriented lamellae parallel

d dicular to th fini bstrat from selective to neutral and keeping the other sur-
and perpendictiar to the contining substrates. face neutral, the preferred lamellae orientation can
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be changed from parallel to perpendicular. This istween local minima and maxima [see Higl 11(a)].
This leads to a weak thickness dependence of
0.02 - - - - the critical selectivity when considering the thick-
nesses that correspond to a maximum and a mini-
mum ofF (see Figl IB). In the case of a maximum
of F the reorientation takes place at higher values
of Y, than for a minimum. With increasing film
thicknesses this difference is rapidly decreasing.

.01}
| FL—F
0 02 04 06 08 1
Y, IFil o
Figure 12: The relative free energy difference %[
(FL—Fy)/|F.|is shown for three thicknesskg= —
3Ae, 6Ae, 10A¢ of the BCP film as a function of -0.02} —8—d =275 |

the selectivityyy,, at one boundary anglp = 0 at

the opposite one. Beyond a critical valyrg,(crit )

the preferred lamella orientation is parallel to the

boundaries and perpendicular below. Parameters

a =0.015ands =g=1. Figure 13: The relative free energy difference
(FL —F))/IFL| is shown as a function of the se-

shown in Fig[1R, where the relative difference of lectivity Y, at one boundary withjp = O at the

the free energyF, —F)/|F.| is plotted as a func-  opposite one for two BCP films withy = 2.75A¢

tion of i, for three different values of the film (lower curve) and.y = 3A¢ (upper curve). In both

thicknesd.y = dAe. Fig.[12 shows in addition that cases the preferred lamella orientation is parallel

the critical valueyy(crit), where both lamellae to the boundaries beyond a critical valysg, (crit )

orientations have the same free energy, is ratheand perpendicular below. Parameters= 0.015

independent of the film thickness This may be  ande =g=1.

explained as follows. For the parameters used in

Fig.[12 the two length scales introduced in Eql (38)

are nearly equal and both are sm@hyAe ~ 0.13 ) )

and&,/Ae~0.1. l.e. the influence of the boundary 5 Dynamics of microphase sep-

is similar for the three values of the film thickness aration

in Fig.[12, only the weight of the influence is re-

duced by increasing the film thickness. The pri‘or The spatio-temporal dynamics of microphase sep-
effect leads to a smaller slope of the curves with 501 in copolymers in two spatial dimensions

larger values ofl in Fig.[12. between two parallel boundaries and the related

The critical selectivity(crit) depends weakly  |gmeliar (orientational) order is investigated here.
on the parametesr. For smaller values off and v 5150 describe typical differences between the
therefore a larger lamella periott, the critical g 01ution of structures in thetrongand theweak
value of yr, (crit) is smaller. Thus lamellae with  goqreqgation regime in BCP films confined between
a larger period require a smaller selectivity of the yitterent houndaries on the one hand and in uncon-
surface to realign. _ o fined systems on the other hand.

Note that in case of relatively thin films the free £ Jumerical simulations of EqCT12) we use

energy of parallel oriented lamellae as a function 5 antral difference approximation of the spatial
of thickness shows pronounced oscillations be-

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Vi,

17



derivatives withdx = dy = 0.5 and an Euler inte- 5.1 Unconfined systems
gration of the resulting ordinary differential equa- During microphase separation in diblock copoly-

tions with a time stept = 10~%—10-3. In the un- h t unstabl wurbafi th .
confined case periodic boundary conditions are ap_mers € Most unstable perturbation with respec

plied and a system siig = Ly = 256 (~ 14Ac for to thi hé)(:o_geneozus ?aé'c stete- O hﬁs the \(vag/_e
o = 0.015) is chosen. For block copolymer films numbel _35V78T/h’ ct. =a. @’)’ simi ar.asd!gl I-k
of thicknesd.y = 6A¢ between two substrates, dif- nary mixtures=® The coarsening regime in dibloc
ferent combinations of the boundary conditions copolymers below is at early stages similar as in

. . lymer blends, as indicated by two snapshots of
along they direction are used, cf. Egs. (59), and po_y o ) y X
periogdic goundary conditions alongqtrxedir)ec- a simulation in FigLT4. In diblock copolymers the

tion With Lv — 4= 8\ or 32\.. To mimic a coarsening process of phase separation is limited
X — (S1] (S]] e-

guench we start simulations of E. [12) with ran- by j[he ghgmlcal bond petvyeen anands block, .
dom initial conditions fory of a small amplitude which limits the domain size of phase separation

of about 104, Typical scenarios of the dynamics to the order of the chain length of diblock copoly-

of microphase separation are studied ingtreng ers.
segregation regime at a control parameter 1
(r = 3.08) and in theweaksegregation regime at
€=0.37( =0.5).

sk,t) = @K%,
with  @(k,t) = /eik'rw(r,t)dr . (60)
Since we expect anisotropy effects in BCP films
confined between two substrates we introduce dif-

ferent characteristic lengths along tkand they
direction:

Ix(t) = 11/ {ka) (1), Ty(t) = 11/ (ky) (L) . (61)

The averaged wave numbeks) are

knax DK (c) (d)
/0 de/Akdky S(ky, Ky )k
<kX> (t> = km — AK , (62a) . . . . .
axdkx d ke kot Figure 14: Microphase separation in the strong
/0 /_Ak ky S(ke: Ky, 1) segregation regime for the parametess= 1
y (r = 3.08) anda = 0.015 is shown in a two-
/kmaxdky A dk, S(ke Ky, )k dimensional system witlhy = Ly = 256~ 14A¢
_Jo Ak Y (Ae = 19.3) and periodic boundary conditions: In
(ky) () = K , (62b) ; ;
/kmaxd / ke S(ke, ki 1) (a) at the timet = 10? with the average wave-
0 K _Ak A length of aboutA ~ 11.0 and in (b) att = 10*

with A =~ 17.5. Dark and bright regions in the top
part correspond té- andB block rich phases, re-
spectively. The bottom part (c) and (d) show the
corresponding structure factors, where the bright
regions correspond to large valuesgk,t).

where Ak is the half-width of the corresponding
peak of the structure factor alorlg andky, re-
spectively.

The pattern shown in Fig. 14(b) has an average
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wavelength still below the optimal wavelengih

at the minimum of the free energy. With a further
progress of time the mean wavelength approacheszg 04l
only very slowly towardsle, because the system =
has to get rid of lamellar imperfections by diffu- -2
sion processes. ,s 0.3}
~
= Tk
_ly
Ty 107 10° 10*

Figure 16: The temporal evolution of the charac-
teristic length scalelg(t) andly(t) (averaged over

10 independent runs) after a quench is shown in
theweaksegregation regime at= 0.37 (r = 0.5)

for a system with periodic boundary conditions
and otherwise the same parameters as in[Fip. 14

and in Fig[Ib.
Figure 15: The temporal evolution of the charac-

teristic length scalekx(t) andly(t) (averaged over
10 independent runs) after a quench is shown inF'g'm(b)'
thestrongsegregation regime for the same param-

eters as in Fig._14 and periodic boundary condi-5.2 Confined systems
tions.

For a block copolymer film confined between two

In an unconfined system the two length scalesSelective boundaries witip = ¢, = 1, three
I,(t) andl,(t) evolve in a similar way and this snapshots dunpg mlcrophase separation in the
isotropic behavior of the block copolymer melt is Strong segregation regime at= 1 (r = 3.08) are
also reflected by the rotational symmetry of the Shown in Fig LIV, which will be compared later
structure factor shown by the parts (c) and (d) of With results in the weak segregation limit.

Fig.[T2. During the intermediate regime between After a deep quench at= 0 far below threshold
the early stage of phase separation with a domi-€c = 2V/@ (for a = 0.0015 one hag; = 0.077)
nating growth of the perturbation of wave humber the selective bgundary conditions trigger close to
kn and the late stage of coarsening with an aver-the substrates |mmeQ|ate!y a large value of the or-
age domain sizdy ~ I, ~ A¢/2, one observes the der parametery and in this case lamellae orient
scalingly ~ Iy ~ t¥/3 as shown in Fig_15, which parallel to the substrates. One should note, that
is common for polymer blends. Such a scenario isfor the parameters in Fig. 17 the wavelength of the

typical for a deep quench into the strong segrega—faSteSt growing modam = 211/km = 211\/2/€ =

tion regime at about ~ 1 and beyond. 21my/2 ~ 8.9 is much smaller than the wavelength

In the weak segregation regime € 0.37 or  Ae= 4(2¢)"°a~Y/3 ~ 39 at the minimum of the
smaller) the wave number of the fastest growing '€ energy of a lamellar structure. _
mode during the early stage of phase separation In the strong segregation regime the correlation

Ky = \/57/2 is already closer to72/Ae and there- lengths in thecandy direction are rather small and
fore, one observes during pattern evolution only therefore a surface induced orientational order of

a slight variation of the scaldg(t) andly(t), as the lamellae occurs only within short ranges near

shown in Fig[IB. Typical snapshots of phase sep-h€ boundaries as indicated by parts (a) and (b)
aration during the early stage in the weak seg-" Fig.[17. Further away from the substrates the

regation regime are similar to patterns shown in orientation of lamellae is only weakly influenced
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Figure 17: Microphase separation in a BCP film (@“f;&.%igfﬁﬁm

between two selective boundaries with= (., =

1 is shown in the strong segregation regime at
1 (r=3.08)in (a) at time = 20 after the quench,
in (b) att = 40, and in (c) at = 10* close to the
final state. Parametets, = 4Ae, Ly = 6Ae, a =
0.0015 andy = 1.

Figure 18: Microphase separation is shown in
the strong segregation regime in a confined sys-
tem att = 10* after a quench: In (a) for neu-
tral, Yo = Y1, = 0, in (b) for symmetric selective,
Wo = Y1, =1, and in (c) for mixed boundary con-
ditions, Yp = 0, yr, = 1. Parameterby = 32,

by boundary conditions and the lamellae are disor-Ly = 6Ae, @ = 0.015,6 = 1 (r = 3.08) andg = 1.
dered, whereby this disorder resembles very much

to that in the unconfined case, as shown in Eig. 14regime the coherence lengths are small for both

and has also been observed in experiments on Conéases but in the case of selective boundary con-
fined thin films2%:3! The average wavelength of ’ Y

the structure tends in the long time limitAg. ditions larger values ofy close to the boundary

: are induced and this causes a more regular lamel-
Typical lamellar structures at the late stage of . .
lae orientation in the bulk.

:zlcirrﬁzhzrs: :ﬁgﬁ;a}flimmth; fztrr(iﬂgejetgrefsatcl)?n The pattern Fid._18(b) consists of seven periods
g yp parallel to the horizontat-axis around the center

boundary conditions. Neutral boundary conditions of the image and six periods with = A, close 10

Iqé OctR/;pryoTJr? dzrr?elgoeiIZFIE?ﬁaI):'i:%Tbe)tgﬁge- the right end, whereby both regions are connected
in Fig. [I8(c) mixed bounglary conditi.onqyo "0 by a patterq including defects..The wave numbers
. :'1 The simulations of EqLT12) were sta’rted correspondmg tq seven gnd six lamellae between
Wityh ran.dom initial conditions the boundaries lie both in the ranggk: > 1 of

' the stability diagram in Fid.l1, where a straight and

In the case of symmetric selective boundaries in T :
: defect free lamellar order is linearly stable with re-
Fig.[18(b) lamellae parallel to the substrates have :
spect to small perturbations.

the lower free energy as shown for the defect free In simulations started with random initial condi-

Iqmellar order in Figll6. For neutral .bounc.iarles in tions, patterns witky > k. grow with the largest
Fig.[18(a) an orthogonal lamellae orientation close .
rate and therefore a lamellar order with small

to a boundary is favored, which is in agreement . :

: - wavelengths is preferred during the early stage of
with the results shown in Fig._10. In the case of __ : . g
mixed boundary conditions in Fif. 118(c) lamellae m‘lcrophase separation. Since one has in [E.I'g' la

wide wave number range> k. of stable straight

are oriented parallel clc_)se to the selective (Upper)lamellae, a relaxation of a pattern like in Fiig] 18(b)
boundary and perpendicular to the neutral (lower) o .
to the homogeneous state with six lamellae, which

boundary. has the lowest free energy, is a long lasting pro-
The pattern away from the boundaries in the cess 9 J ap

bulk shows for neutral boundaries [Fig.]18(a)] a We showed in the previous section in Fig] 11(a)

stronger_disorgier compared to the case of seleqtiv?hat in the case of mixed boundary conditions and
boundaries [Fig. 18(b)]. In the strong segregation parameters as in Fig. 118(c) a defect-free order of
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lamellae parallel to the substrates has a lower freeshown in Fig[.IP(a), is rather similar to the uncon-
energy than perpendicularly oriented ones. In sim-fined case shown in Fig. 1L5. During the early stage
ulations of extended systems with mixed bound- of phase separation the dominating length scale
aries, where patterns with defects may occur, nei-is again that of the fastest growing mode, which
ther a parallel nor a perpendicular orientation of is followed by the intermediate coarsening regime
lamellae is preferred in the bulk. Moreover, the with Iy ~ |, [ t1/3, beforely(t) andly(t) terminate
pattern in Fig[_IB(c) shows, that for mixed bound- again at the typical length scalg/2 of a diblock

ary conditions an orientational transition across copolymer.

the block-copolymer film can be expected, from Inthe case of symmetric selective boundary con-
parallel oriented lamellae at the selective (upper)ditions, yp = Y1, = 1, the length scalek and
boundary to a perpendicular lamellae orientationly exhibit a different behavior during the initial
at the neutral (lower) boundary. The free en- stage of phase separation and especially the be-
ergy of the pattern in Fidg.18(c) is higher than the havior of I«(t) is changed significantly, as shown
free energy of parallel oriented lamellae as shownin Fig. [19(b). A comparison of Fid._17(a) and
Fig.[11(a) and lower than that of perpendicularly Fig.[17(b) reveals, that during the early stage of
oriented ones. microphase separation compositional waves are
induced by the selective boundaries and they prop-
agate into the copolymer film. These induced
composition waves near the boundaries have a
guasi-infinite wavelength, along thex direction,
while the wavelengthy along they direction be-
haves similar as in Fig. 19(a) for neutral bound-
aries. Far away from the selective boundaries one
finds a random lamellae orientation and therefore
Ix behaves in the bulk at an intermediate and late
stage of microphase separation similar as in the
case of neutral boundaries.

"’L"W '_J'u - :f’

./f

(> \“"lf "

Figure 19: The time dependence of the char-Figure 20: Microphase separation is shown in a
acteristic length scalek(t) and ly(t) (averaged confined system in theveak segregation regime
over three runs) is shown in the strong segregationyith £ = 0.37 (r = 0.5) at the timet = 500 after
regime for the same parameters as in Eig. 18: (a)a quench and for three boundary conditions: (a)
neutral boundarieg)o = Y, =0, and (b) selective  neutral, (b) symmetric selective and mixed in (c).
boundariesilp = Y, = 1. Other parameters as in Fig.|18.

The temporal evolution of the lengthgt) and For comparison, we show in Fig.]20 late stage
ly(t) in the case of neutral boundary conditions, as patterns in theveaksegregation regime at= 0.37
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(r = 0.5) for the same confined systems as in allel to the substrates have the same free energy.
Fig.[18. These patterns show at a tilne 500  Such a coexistence is shown in Hig] 21 where the
already a similar order as in the strong segregationnterface between both solutions does not move.
limit at t = 10* (Fig.[I8) in spite of the fact that the This coexistence has a strong similarity for in-
dynamics is slower for smaller values of the con- stance with observations presented in Fig. 3(a) in
trol parameter. However, by a reduction of the Ref20 This example indicates that in the case of
control parameter from= 3.08 in the strong seg- a film thickness, which is not an integer multiple
regation limit tor = 0.5 one has an enhancement of Ae, one may observe a spatial variation of the
of the length scales from§; ~ 0.13 to &1 ~ 0.32 number of lamellae in a block copolymer film.

and fromé, ~ 0.10 to &, ~ 0.16. These higher

coherence lengths increase simultaneously the o —

tion range of the boundaries and both effects cause
a higher lamellar order in a thin copolymer film “
within a shorter time (Fid._20).
Similar as in the strong segregation regime
one finds in the case of selective boundariesFigure 21: The spatial coexistence of structures
[Fig. 20(b)] again a higher lamellar order than in with four and five lamellae parallel to the bound-
the case of neutral boundaries [Fig] 20(a)]. This aries at a distancky = 4.4373)¢ is shown in the
is in agreement with the observation, tgatis for ~ case of selective boundary conditiofis= Y1, =
r = 0.5 roughly by a factor of 2 larger thaf. This 1. Parameters = g = 1 anda = 0.015.
reasoning also confirms the results for the case of
mixed boundaries [Fid._20(c)], where the action Also the free energy of parallel and perpendic-
range of the neutral (lower) boundary is smaller ularly oriented lamellae can be equal for certain
than that of the selective (upper) boundary. boundary conditions and film thicknesses, as dis-
The characteristic lengthgt) andly(t) develop  cussed in Se€l4. In Fig. 22 we show an example
for r = 0.5 and neutral boundaries again very sim- for parameters, where parallel and perpendicularly
ilar as in the unconfined case in Fig.]16. In the oriented lamellae have the same free energy. Ac-
case of selective boundaries [Fig] 20(b)] the two cording to the interface between both orientations
scaledy(t) andly(t) show a similar behavior as in the free energy of the structure in Higl 22 is slightly
the strong segregation limit, only the saturation of higher than that of the pure parallel or perpendic-
ly(t) takes place already titv 107, ular orientation. Nevertheless, as the interface be-
In summary selective boundary conditions are tween coexisting lamellae orientations in Figl 22 is
more efficient for controlling the orientation of not moving the coexisting pattern is long lasting.
lamellae in copolymer films than neutral ones. A

comparison of the results in Fig.]18 and in Figl 20
suggests in addition that a quench to a small value
of € > &, followed by a further enhancement of

¢ into the strong segregation regime, favors a co-
herent order of the lamellae. In the case of mixed
boundary conditions one obtains "mixed” lamel- Figure 22: The spatial coexistence of structures
lar structures as shown in F[g.]18(c), which can bewith lamellae parallel and perpendicular to the
also interpreted as a coexistence of two differentboundaries at a distandg = 4.3854\¢ is shown
boundary induced lamellae orientations. in the case of selective boundary conditiaps—

As described in Setl 4, different numbers of par- ¢i, = 0.4. Parameters = g = 1 anda = 0.015.
allel oriented lamella between selective substrates
can have at certain values of the distahgebe-
tween the boundaries equal free energies. For ex-
ample atly = 4.4373 and for parameters as given
in Fig.[21 solutions with five and four lamellae par-

5
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5.3 Dynamics of orientational order-  With the scalar order paramet®and the averaged
ing orientation anglé with respect to the-axis,

In diblock copolymers confined between bound- s—./02 2 9:} S 65
aries the rotational symmetry is broken. The struc- Qo+ Qe ZarCCO$QXX/ ). (69)

ture factor S(k,t) as well as the characteristic
length scaledy andly, as introduced above, do
not provide a sufficient quantitative characteriza-
tion of the orientational order of£mellae. Besides
the so-called Euler characteristt€r a complex T P 3
demodulation metha¥ the lamellar morphology Qi = S(2nin; = 8j) (66)
may be described in the framework of a network where S has for perfectly ordered segments the
analysis?%:®1as applied in this section. valueS= 1 and for an isotropic orientational dis-

A basic element of the following analysis is tribution of the segments one h&s-= 0.
image processing and the open source library For the same parameters as used in [Figj. 18 and
OpenC\22 is used for the detection of the inter- Fig.[I9 now the quantitie§, 6 and (Is) are cal-
faces between tha- andB-rich regions in the 2-  culated as a function of time and the results are
dimensional binarized images of the fieldx,y). shown in Fig[ZB. The snapshots in Fig] 18 in-
The curves along these interfaces are approxidicate a significantly higher orientational order of
mated by polygonal chains resulting into a set of the lamellae in the case of selective boundary con-
segments of lengthswith the corresponding seg- ditions compared to neutral ones. This difference

With the unit vector (the directom) = (n,ny) =
(cosf,sin@) the tensor order parameter can also
be written in the following form:

ment orientation angld} relative to thex-axis.  in the orientational order can now be quantified by
These data allow the calculation of an average in-comparings(t) for the two boundary conditions,
terface segment length as can be seen in Fig.123(a).
N The temporal evolution of the average boundary
(lg) = 1 i, (63) sggment lengtlls) after a dgep qqench is shown in
N & Fig.[23(c) and the mean orientati@of segments

_ _ _ in Fig.[23(b) for the three different boundary con-
over which neighboring lamellae are parallel t0 gjtions: symmetric selective, neutral and mixed.
each other, as well as the calculation of the aver- ag can be already seen in FIg118, the average
age orientation of segments and the number of Segsegment length of straight lamellae without de-
ments. These criteria pfferan improved distinction tacts takes in the thin film geometry its smallest
between patterns of different morphology.  yaue in the case of neutral boundary conditions.

/An order parameter of the segment distribution, simyltaneously, one observes for neutral bound-
similar 0 the order parameter in nematic liquid 41y conditions the smallest values of the scalar
crystals;® is an appropriate quantity for a char- orger paramete(t) on the time scale shown in
acterization of the lamellar patterns during mi- rig [73(a) as well the strongest fluctuations of
6 and 6 + mrare equivalent, the order parameter the case of neutral boundary conditions is small
is given by a symmetric second rank and traceless;ng the removal of defects is a slow process,

tensor increases only slowly as function of timdd) —

6= (QXX Qu ) Ly in the long time limit).

Qxy —Qxx/’
Q _ ZiN:]_hCOiza)

XX SRl ’
N lisin(26
S
=
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Figure 24: Snapshots afi(x,y,t) att = 100 (a),

t = 200 (b) andt = 300 (c) are shown for sym-
metric selective boundary conditions and the same
parameters as in Fig.118.

ented lamellae are formed much earlier. Conse-
quently, one observes higher values (b and
of the order paramete® much earlier. The fact,
that S(t) has still not reached the valig= 1 at
aboutt = 10% in Fig.[23(a) is related to the few de-
fects left, as can be seen for instance in Eig. 18(b).
As the regular structure is represented by lamel-
lae parallel to the substrateds) — Ly for long
time dynamics. The reduction dfs) for selec-
tive boundaries at about= 200 in Fig.[23(c) is
related to intermediate structures that occur during
coarsening as indicated by the transition from the
pattern in Figl 2K (a) to the pattern in Higl 24(b).
The rather early achieved orientational order for
selective boundaries is also indicated by the be-
havior of 8(t), which approaches zero quite early
in Fig.[23(b). The large fluctuations @&(t) in
Fig.[23(b) for the neutral boundary conditions re-
flect the coarsening and the related removal of de-

In part (a) the scalar order parame- fects on the route to a higher orientational order. In

this case the boundary segments are preferentially

Eqg. (6%)], and in (c) the averaged segment lengthoriented perpendicular to the substrates resulting
(Is) [cf. Eq. (63)] is shown in the strong segre- into th.e orientation angl@ ~ 11/2 for Ipng-time
gation regime as a function of time for the same evolution. In case of mixed boundaries, one ob-
parameters as in Fig. 118 and Fig] 19 for the bound-tains a mixing of both trends with respect to the

ary conditions symmetric selectivei{ = Y, =
1), symmetric neutralffo = ¢, = 0) and mixed

(LI"O =0, LIJLy = 1)

orientation of lamellae. The selective (upper) sur-
face triggers lamellae oriented parallel to the sub-
strate whereas the neutral (lower) surface initiates
lamellae oriented perpendicular to the substrate

In the case of selective boundaries the actionWith less defects as for the two neutral boundaries
length of the substrates is larger and therefore ori-[s€e FigLIB(b)], and accordingly the results $r



and(ls), represented by dotted lines in Figl 23(a)
and Fig.[2B(c), lie between the two symmetric
cases. 0.8l
For comparison we show the temporal evolution
of S 6 and (Is) in Fig.[28 in the weak segrega-
tion regime withe = 0.37. Both, the behavior of S o
S(t) and of(ls) confirm, that in the weak segrega- 0.4
tion regime an orientational order is reached on a
smaller time scale as in the case of the strong seg- ~ 0-2]
regation regime.
The composition waves with almost equilibrium
wavelength result intdls) ~ Ly for the selective
and mixed boundary conditions. The selective
boundaries provide the fastest formation of regu-
lar parallel lamellae and therefore the fastest sat-
uration of (ls). In case of neutral boundariék)
is increased faster in time compared to the deep
quench [FigL2B(c)] with the tendeneglg) — Ly. | UM 0 | mix
In case of a not too deep quench the scalar or- 30 neut | |
der paramete8 shown in Fig[2b(a) grows much
faster in time compared to the deep quench. The (b)
boundary segments are again preferentially ori- O f = e e s e
ented perpendicular to the boundaries for the neu- 10" 102 10° 10*
tral boundary conditions and parallel to the bound- t
aries for the selective and mixed boundary condi-
tions [Fig[2%®)]. . mix || i
Thus even this quite simple analysis of lamel- 10t | | ||
lar patterns provides quantitative characteristics of | \'
the dynamics and influence of the boundary con- @ '
ditions on the resulting patterns, that are compli- e J
mentary to the standard analysis of the structure 0 !

factor. oy
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Figure 25: In part (a) the scalar order parameter
Sand in (b) the lamellae orientation andgde|cf.

Eq. (65)], and in (c) the averaged segment length
(ls) [cf. Eq. (63)] is shown in the weak segregation
regime as a function of time for the same parame-
ters as in Fig. 20 for the boundary conditions, sym-
metric selectivep = Y, = 1), symmetric neutral
(Yo = Y, = 0) and mixed ¢ = O, Yy, = 1).
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6 Summary and conclusions BCP film. Although our mean-field model does
not contain explicitly the effects of a solvent on
The formation and stability of lamellae in block the lamellae formation and its interaction with sur-
copolymers has been investigated in terms of afaces, we suggest to use our results for an interpre-
mean-field model. A method for the determina- tation of the mentioned experiment. It has been
tion of the stable wave number band has been infound that in the presence of a solvent the degree
troduced in Sec.13 and the shape of this band proof swelling ¢ = Ae/As (Where Ag stands for the
vides the basis for a deeper understanding of stablgamellae period in the swollen state) depends on
lamellae conformations which are locked in ex- the film thicknes$# For very thin films @ ~ 3) the
periments on BCP films to different wavelengths degree of swelling is aroungi~ 0.68 whereas for
when using spatially periodic chemical nano pat- thicker films @ ~ 30) it is aboutp ~ 0.715, which
terning of substrate#’ means, thicker films swell about 4% less than thin-
We have found, similar as in previous calcula- ner films and the concentration of the solvegt
tions in terms of self-consistent mean field theo- js decreasing with increasing the film thickness.

ries or phenomenological free energy mod8?  Accordingly, for thinner films in the swollen state
that selective boundaries induce lamellae orienta+wve calculate an “effective value” of the model pa-

tions parallel to the substrates and in the case ofametera ~ A~*: as = (0.68)*ag (ap indicates
neutral boundaries lamellae orignt perpendicularthe interaction parameter in the absence of a sol-
to surfaces. We present also estimates in terms ofent). It is about 18% smaller than for thick films
the different length scales parallel and perpendicu-whereas = (0.715)%aq. Thus to model the influ-

lar to the lamellae, whether lamellae orient parallel ence of the solvent we can assume that the param-
or perpendicular to confining boundaries. Some ofeter a is effectively increased by increasing the
the lamellae conformations calculated within this fiim thickness. In addition our simulations reveal
work resemble very much the lamellae orienta- that the critical absorption at the surfagey(crit),

tions observed experimentally in thin BCP films at increases witha. Assuming a linear behavior of
neutral substrates in Ref8:3'We derive also ana-  g(crit) as a function ofx

lytical expressions in the case of lamellae parallel

to substrates for the concentration modulation per- Ys(crit)=a-a+b, (67)
pendicular to the boundaries, which can be useful
for qualitative considerations in further works. ~ in @ small range arounds(d = 30)/as(d = 3) ~

In the case of mixed boundary conditions, i.e. 1.2, we calculate the slope~ 14.8. Therefore, in
selective at one boundary and neutral at the oppothe ranged = 3---30,
site boundary, we find a critical valugs(crit) of _ _
the selectivity below which the energetically pre- Ws(erit)[d = 30 — gs(erit)[d = 3] ~ 0.7a0 ,
ferred, homogeneous lamellae orientation changes . . . ) (6_8)
from parallel to perpendicular with respect to the andys(crit) increases slightly with the film thick-

confining boundaries for any film thickness. €ss. h her hand th | d h
The results obtained are interesting also with re- On the other hand the solvent may reduce the

gard to a recently used strategy to control the Iongsilecuv'ty Oc]; the cqnflnlqghsurfgce (se_e, eﬁ@i
range lamellae order in diblock copolymer films, Thus, Yis Is decreasing with an increasing solvent

where a thickness-dependent orientation of |ame|_poncentrat|on. Acgordlng to .the syve!llng behav-
lae has been foun®t While the lamellae oriented 1©7 it means thats is increasing with increasing

parallel to the substrate in the ranges of film thick- the film thlc_:kn_essd as in thicker films the solvent
nessesd < 19 andd > 23, a perpendicular orienta- concentration is lower. The exact form of the curve

tion in the range 1% d < 22 was observe8! At a Ys(d) can be determined experimentally by mea-
first sight, this experimental observation seems toSUring the BCP-substrate interfacial tension in the

be in contradiction to our results. However, these SWOHeT),St,ate for varzlous f”"]lfth'Cknﬁsseja, on of
experiments were done in the presence of a sol- COmMPining now the two effects, the addition o

vent that changed the degree of swelling of the? solvent has, we end up with two curves that, de-
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pending on their relative position, offer the possi- order as well as the number of defects in BCP
bility for a reorientation effect of the lamellae as a films parallel and perpendicular to the boundaries,
function of the film thickness (see Fig.]26). The re- which has been quantified by using an order pa-
gion whereys(d) < ys(crit) indicates a possible rameter for the characterization of the lamellae ori-
transition region. entation. The consideration of different quench
depths in combination with various boundary con-
: ditions provides a strategy for the experimental
35~ Yslerit) 1 preparation of defect-free oriented lamellae.
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selectivity andys rescaled byag as a function of
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Here we describe the numerical determination of
stationary periodic solutions of Ed. (12) fBr=0
as well as their linear stability. Since Eq.[12) is

o . isotropic one can choose tRalirection parallel to
Of course the curve fogis(d) in Fig.[28 is 10 yha \wave vector of the periodic solution. A Fourier

some extend hypothetical and the shape has to b%xpansion of the periodic solutiaf(x), as given

determined experimentally via measuring the in- by Eq. [39), leads together with EG.{12) after pro-
terfacial tension. Nevertheless, our results indicate:

_ _ jection onto thej-th Fourier mode¥*) to a set of

a route for further experl_mentg on the thlgkness-nonnnear equations for the coefficiers
dependent lamellae reorientation. Especially for
diblock copolymers with a pronounced change of [¢(jk)2 — (jk)* - alA — (jk)ZZAIAmAj_l—m —0,
the degree of swelling as a function of the film i
thickness (like, e.g., if® where the increase of ji=—-M...M. (69)
the solvent uptake with decreasing film thickness
is more than 10%) a considerably wide reorienta- For M > 1 this system of nonlinear equations is
tion range may be realized by a suitable tuning of solved numerically by Newton'’s iteration method
the wetting properties of the confining surfaces. andM is adjusted to keep the relative error smaller

In addition to the energetic considerations of than 10°6. Fore = 1 this accuracy can be main-
the influence of boundaries on the homogeneougained in the case af = 0.001 with a very steep
lamellae orientations, we also investigated the dy-density profile by choosinyl = 120 modes and in
namical evolution of lamellae structures betweenthe case of smoother density variationd\hy= 15
boundaries. In the case of mixed boundaries, oneanodes. For larger values of a smaller number
also finds complex lamellae conformations, evenof modes is required as the solution becomes more
if they have a higher free energy than a homoge-harmonic.
nous lamellar order either parallel or perpendic- The linear stability of periodic solutiong(x)
ular to the confining parallel boundaries. Simu- of Eq. (12) with respect to small perturbations
lations of the time-dependent mean field model gi1(x,y,t) is investigated as follows. One starts
show, that the type of boundary condition deter- with the ansatzp(x) = yx(x) + a1 (x,y,t) and a
mines strongly the evolution of the orientational linearization of the basic equatioh {12) with re-
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spect togn (X, y,t) gives types (skewed varicosé¥. Two of the instability
branches are given in Figl 1 and they may be de-

ar(xy,t) = 0% (—e+3¢¢ — 0?) Y1 — ayn (70)  termined analytically near threshold by analyzing
the stability of the solution given by Ed. (35) for

wherein the spatially periodic functiogy enters b _ 5 \uith respect to small perturbatioda:

parametrically. For a solution of this linear equa-
tion (ZQ) with periodic coefficients one uses a Flo- A=A+ 5A. (74)
guet ansatz,

. . The analytical form of the perturbation is as fol-
r(xy,t) = més(xcosﬂysme)fﬁ(@ +c.c., (71)  Jows:

with the Floquet parametes, a 2rr/k-periodic 6A:e‘“eiQX{a1exp[is(xcose +ysinb)]
function ¢ (X) and the anglé enclosed between +apexp—is(xcosd + ysing)]} . (75)
the wave vector of the perturbatiapn and the
wave vector of the basic periodic solution. This A |inearization of Eq.[(33) with respect to small
periodic functiong-(x) can be represented by a perturbationsdA leads for the growth rate to

Fourier expansion a 2x 2 eigenvalue problem (see €%29. In the
M special cas® = 0 and under the condition of neu-
@ (X) = Z Dy, €k (72)  tral growth o = 0 the following expression for
n=—m the control parametearz at the Eckhaus stability

o . boundary @ = 0, longitudinal instability) follows:
Taking into account EqL_(39) fapy the linear par-

tial differential equation Eq[{70) is transformed 6Q? 9
after projection into an eigenvalue problem 'e = @ =6(k—1)". (76)

oDn = {eCh—Ci—a} Dn—3Cn,zAIAmDn—I—m, A comparison with the neutral curve in EG.137)
M shows that the width of curve=(Q) is narrower

Ch = (kn+scosB)? +s?sirf 6 , thanry(Q) by the famous factor
n=—-M...M 73

: (73) re(Q _ 1 7
where the coefficientsA; are determined by Q) V3

Eq. (€9). We are interested in the growth rate
o(&,k,s,0), i.e., in the eigenvalues with the
largest real part. The conditidRgo(¢,k,s,0)] =
0 yields the stability boundaries = &y(k;s, 0).
For Rg o) = 0 and 8 = 0 one findse = (k)
that determines the Eckhaus boundary. In the case

of Rgo) = 0 and 6 = 71/2 the corresponding  Hence, the stationary weakly nonlinear solution
¢ = £zz(k) gives the zig-zag line. given by Eq. [(3b) is linearly stable in the region
Q> 0 (k > 1) between the zig-zag line in E§_{78)
T : and the Eckhaus bounda®¢ = /rk2/6 .
B Stabl_“ty of Weakly nonlinear The results for the stability boundaries found so
solutions far in this appendix in the framework of the ampli-
tude equation EqL(33) are typically valid only in
As described in Se¢. 3.4 a periodic solution in a the vicinity of the critical pointi( > 0, |k —k¢| <
two-dimensional isotropic system may be destabi-1). An essential improvement of the analytical re-
lized by modulations along the wave vector (Eck- sults for the stability diagram can be obtained by
haus instability), undulations perpendicular to it the Galerkin approach in a one-mode approxima-
(zig-zag instability), and a combination of both tion, as described in the following.

for Eckhaus stability boundarg:22:46:47
The zig-zag stability boundary (transversal in-
stability) results for the case = r1/2 ando = 0:

Q:O,i.e.,Rzzzl. (78)
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Inserting the ansatz given by Ed. [32) into in agreement with EqL($0). For the perturbations
Eq. (31) and projecting on the critical mode'k Eq. (74) withs — 0, 6 = 11/2 the growth rate is

one gets in the leading order negative fork on the right hand side of the zig-zag

line Eq. [82) up to the Eckhaus boundary Eq] (81).
AA = Of [-2K3(r + DA+ 3JAPA— TF Al — KeA, A skew varicose instability with & 8 < 11/2
with 02 = (+ike)?+02. (79)  does notoccur.

Above threshold one may derive for the amplitude . .
Ao with the ansatz Eq[_(35) via Eq. (79) the follow- C Weakly nonlinear solution

ing expression: under confinement

A = 2_k§ r— [(Q+ ke)? — kﬂz Close to the onset of microphase separatiog (
3 2k2(Q+ke)? 0) the dynamics of the amplitude of the periodic

22 (Rz—l)z order parameter fieldy(r) is governed by the
=3 [r — T} (80) Newell-Whitehead-Segel amplitude equation (33),

as described in SeC.B3.2. This equation has spa-

One can easily see that this amplitudg van- tially periodic solutions in extended systems as de-
ishes at the neutral curve EG128) for arbitrary val- Scribed in Sec¢. 312, but it may also be solved in the
ues ofr. Inserting perturbation Eq_{V4) with the Presence of boundaries.

amplitude given by[{80) into Eq(V9) the growth  Here we take into account boundary conditions
rate ¢ is again calculated from a 22 eigen- for the case of lamellae oriented parallel to the sub-
value problem. The various stability boundaries Strates. With the ansatz

are determined via the neutral stability condition xer

o(r,Q,0) = 0 in terms of the control parameter W(y) =4/ = B(y)ekYo) ycc.. (83)
r(Q, 8) by keeping simultaneously only the lead- 3

ing terms ins. Minimization of r(Q,0) with re-  one gets, starting from EqC{31), the following

spect tod gives in the rang® > 0 the angled =0 equation of the enve|o®(y):
and therefore an Eckhaus stability boundary
2

2 2
rkgéyB+(l—|B| )B=0. (84)

K82k 6K+ 5
T der3)

(81)
This equation has constant solutions of the form
that coincides with the result obtained in the
framework of the free energy considerations [see Bo(y) = Bo = +1, (85)
Eq. (49)]. Fork between the neutral curve given by , , o
Eq. (28) and the Eckhaus boundary in Eq] (81) thecorrespondlng. to a spatially periodic fiejdy) of
periodic solution in EqL{35) with, from Eq. [80)  constant amplitude. _
is unstable with respect to long-wavelength per- Eq. (84) also has the solution
turbations along the wave vector, i.e.— 0 and Key/T
o—0 ~ By = Botann Y y-9)|  (@0)
In the vicinity of the band centér= 1 one has in
the leading orderg = 6(k—1)?+--- inagreement  and this may be used to construct approximate so-
with the result derived via the standard amplitude |utions for lamellae parallel to the two boundaries.
equation [see EqL(Y6)]. The decompositiod (83) is based on the assump-
A minimization ofr(Q, 8) in the rangeQ < 0 tjon, thatB(y) varies slowly on the scaler®’k. and

gives the angl® = 71/2 for the zig-zag instability  close to threshold one may simplify the boundary
line

QZZ:O, i.e.,RZZ:l, (82)
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conditions[(59) to the following conditions,

WYly-or, =0, (87a)
Wly=0= Yo =C- Y, (87h)
Wly=L, = Yo, =C- Yy, (87¢c)

by neglecting higher order derivatives g¢f The
constantis used to switch between different types
of boundary conditionsc = 0 corresponds to neu-
tral boundaries, and+ O to selective (symmetric)
boundaries.

In order to fulfill the boundary conditions (B7) at
y =0 andy = Ly, we use a linear superposition of
the solution[(86) of the form

B(y) =vi+V2Yi(y) +VaYa(y),  (88)

where the constantg, v, v3 indicate the possible
signs+1 and with

) —tanh Y y-y| . (8om
() —tanh X (y-yo)| . (89b)

The constanty; andy, are determined by the
boundary conditions.
With the bulk value

8K2r

. (90)

Yp =
the order parametep(y) takes the form

W(y) = Wo[vi+V2Ya(y) +VaYa(y)] coslke(y — Yo)] -
(91)
Inserting Eq.[(9) into the boundary conditions
(87) one has the following equations

_v2(1—Y12(0))§] cogKeyo)+

[\_/1 +V2Y1(0) — vg] sin(keyo) = 0, (92a)
(1= (L) 5| costkyo) +
[V1+V2+V3Ya(Ly)|sin(keyo) =0,  (92b)
[V1 +V2Y1(0) — vs] cogkeyo) = C, (92c)
[V1+ V2 +V3Ys(Ly)] cogkeyo) = C (92d)

Here we assumed a system size= n- (2m)/kc
and exploited the approximation that the bound-
aries do not influence each other so tfidt ) = 1
andY2(0) = —1. From this one may directly de-
ducevy = vz = —Vo.

In the following some special cases are con-
sidered to illustrate the high quality of this ap-
proximation. The cases of selective £ 1) or
neutral € = 0) boundaries may be solved explic-
itly. For the case of neutral boundaries we obtain
keyo = £11/2,y1 = 0 andy, = Ly as a solution [see
Fig.[9 (b)]. v1 remains arbitrary in this case. If
¢ = 1 the value at the boundary corresponds to the
bulk value and this case is conform with the pe-
riodic one whereB(y) = +1 = const. andyy = 0
[see Fig[ 2V (a)]. Focr < 1 the selectivity is re-
duced [see Fid. 27 (b)]. In this case an explicit so-
lution is not possible but one may use the approx-
imation sir(keyo) =~ O if ¢ is not too small what
corresponds tgp ~ 0. With this approximation
we findY1(0) ~ c andY(Ly) ~ —c andv; = —1
as a solution. The example shown in Higl 27 (b)
is for ¢ = 0.5 what results iny; ~ —10.83 and
Y2 =~ Ly + 10.83. Although this is only an approx-
imation it still fits very well the full numerical so-
lution. Of course this case may be studied more
accurately by taking into account the wave num-
ber change. In this case one has more free param-
eters to adjust reasonably. Furthermore in the case
of mixed boundaries this approximation becomes
more complex and higher order derivatives have to
be taken into account. The solution of the result-
ing equations becomes involved and the advantage
of the approximations gets lost in comparison with
the full numerical solution of the problem.

for the determination of the constants of the ansatz.
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