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Abstract

The dynamics of microphase separation and the orientation of lamellae in diblock copolymers is
investigated in terms of a mean-field model. The formation oflamellar structures and their stable
states are explored and it is shown that lamellae are stable not only for the period of the structure
corresponding to the minimum of the free energy. The range ofwavelengths of stable lamellae is
determined by a functional approach, introduced with this work, which is in agreement with the results
of a linear stability analysis. The effects of the interaction of block copolymers with confining plane
boundaries on the lamellae orientation are studied by an extensive analysis of the free energy. By
changing the surface property at one boundary, a transitionfrom a preferentially perpendicular to a
parallel lamellar orientationwith respect to the boundariesis found, which is rather independent of
the distance between the boundaries. Computer simulationsreveal, that the time scale of the lamellar
orientational order dynamics, which is quantitatively characterized in terms of an orientational order
parameter and the structure factor, depends significantly on the properties of the confining boundaries
as well as on the quench depth.

1 Introduction

During microphase separation diblock copolymers
can form various nanoscopic structures like lamel-
lae, cylinders, spheres or bicontinuous gyroids,
depending on their composition.1–5 These self-
organized periodic nanoscale patterns in bulk ma-
terials as well as in block copolymer (BCP) films
attract great attention because of interesting phe-
nomena in these systems and promising applica-
tions in nanofabrication, see, e.g., the reviews.6–9

For lamellar structures the typical width of
lamellae is of the order of the length of two cova-
lently bonded polymers and range from 10· · ·100
nm. They are readily tunable by varying the
molecular weights of both blocks of the copoly-
mer. In bulk materials lamellae are locally ordered
but on larger length scales one finds a random ori-

entational order.10 Near a substrate lamellae are
oriented parallel or perpendicularly onto it. The
orientation is a direct result of a surface and inter-
facial energy minimization.11 When coating a sub-
strate with the same material as one block of a di-
block copolymer, this block is selected and lamel-
lae orient parallel to the substrate. Covering the
substrate with a thin film of a equimolar random
copolymer, its interaction with the two dissimi-
lar BCP blocks can be balanced, so that the sub-
strate behaves neutrally.5,12 In this case the lamel-
lae orient perpendicularly near the substrate but
the lamellae orientation in the plane of the sub-
strate is disordered at large length scales.

Various strategies are investigated to achieve
a long-range orientational order of the lamel-
lae in BCP films by the application of electric
fields,13–16 shear flow,17–19 directional solidifica-
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tion,20–23 use of topographically24–26 or chemi-
cally6,27 patterned substrates.

By chemical patterning of substrates with a pe-
riodicity close to the lamellae width, a long range
orientational order of lamellae can be induced.27

Such long range order can be achieved even in the
case of small mismatches between both periodic-
ities. This raises the question, whether straight
lamellae are also stable at a wavelength apart from
the optimal one at the minimum of the free energy,
λe. Does for lamellae in BCPs also exist a con-
tinuous wave number band around 2π/λe, similar
as in other common pattern forming systems,28,29

even further below the critical temperature of mi-
crophase separation? This question is investigated
in Sec. 3, where we introduce a general method
for the determination of stable wave number bands
in pattern forming systems with a potential, like
BCPs. We determine by this method the stable
wave number range of lamellae and we find also
perfect agreement with the results of a standard
linear stability analysis of straight lamellae (see
also Appendix A and B). In Sec. 3 we calculate in
addition analytical solutions for the lamellar struc-
ture in the weak as well as in the strong segregation
limit and present also analytical results for the sta-
bility range in the weak segregation limit in part
3.5.

To induce a long range orientational lamellar or-
der in the plane of BCP films with the lamellae per-
pendicular to the substrate, the film may be con-
fined between two lateral boundaries at small and
medium distances as in Refs.30,31It depends again
on the surface preparation of the lateral bound-
aries, whether lamellae become oriented by en-
ergetic reasons either parallel or perpendicularly
with respect to them. The homogeneous lamellar
structures in such quasi two-dimensional systems
confined between two boundaries are analysed in
Sec. 4 and Appendix C. We determine for vari-
ous selectivities at the boundaries the lamellar ori-
entation corresponding to the lowest free energy.
For nonsymmetric boundary conditions we find in
two dimensions as a function of the surface selec-
tivity of one boundary a transition from a prefer-
entially perpendicular to a parallel orientation to
the boundaries, which is rather independent of the
distance between the boundaries. The dynamical
evolution, including the coarsening and the devel-

opment of the orientational order of lamellae be-
tween two boundaries is investigated in Sec. 5.
The final Sec. 6 includes besides a discussion also
experimental suggestions.

2 Model equation

Microphase separation in an incompressibleAB-
diblock copolymer melt is described in terms of
a time-dependent Ginzburg-Landau model for the
conserved mean-field order parameterψ(r , t) ∼
φA(r , t)− φB(r , t), with the local concentrations
φA,B of the componentsA andB.

Spatial variations of the order parameter involve
a spatial dependence of the chemical potential
µ(r , t) and the mass currentj(r , t), which deter-
mine the dynamics ofψ(r , t) via the continuity
equation

∂ψ(r , t)
∂ t

=−∇j(r , t) . (1)

Gradients of the chemical potential drive the mass
current

j(r , t) =−M∇µ(r , t) , (2)

with the Onsager coefficientM(> 0)32 that de-
scribes the mobility of the monomersA with re-
spect toB. The functional derivative of a free en-
ergy functionalF{ψ} with respect to the order pa-
rameter determines the chemical potential

µ(r , t) =
δF{ψ}

δψ
, (3)

and via Eq. (3) and Eq. (2) also the dynamics of
ψ(r , t):

∂ψ(r , t)
∂ t

= M∇2δF{ψ}
δψ

. (4)

The free energyF{ψ} acts as a global Lyapunov
functional and is always decreasing with time to-
wards its minimum:

∂F{ψ}
∂ t

=

∫

V

(

δF
δψ

∂ψ
∂ t

)

dr = M
∫

V

(

δF
δψ

∇2 δF
δψ

)

dr

= −M
∫

V

(

∇
δF
δψ

)2

dr ≤ 0 . (5)

Employing a generalized random phase approx-
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imation, the bulk free energy functional for di-
block copolymers was derived by Leibler33 in the
weak segregation limit, which is applicable to the
slightly quenched regime of microphase separa-
tion. Here we use the extended free energy intro-
duced by Ohta and Kawasaki,34

Fb{ψ}
kBT

=
∫

V

[

−b
2

ψ2+
u
4

ψ4+
K
2
(∇ψ)2

]

dr

+
D
2

∫

V

∫

V

G(r , r ′)[ψ(r , t)− ψ̄][ψ(r ′, t)− ψ̄]drdr ′, (6)

which also includes the strong segregation limit,
applicable to the deeply quenched regime. The
functional comprises the temperature independent
phenomenological constantsu, K, D and ψ̄ =
〈ψ〉 is the spatial average of the order parameter
ψ(r , t). b is the temperature dependentcontrol pa-
rameterof the model and forb > bc microphase
separation sets in. The second term in Eq. (6) with
the double integral covers the long-range interac-
tion due to the connectivity of the subchains and
the Green’s functionG(r , r ′) satisfies Laplace’s
equation∇2G(r , r ′) =−δ (r − r ′).

The coefficients of the mean field free energy in
Eq. (6) can be related to microscopic models un-
der the following assumptions: All chains have the
same index of polymerizationN, are composed of
by the same numberNA(NB) of monomers of type
A (B), with N = NA+NB, and have therefore the
same compositionf = NA/N. Both blocks have
the same Kuhn statistical segment lengthl .

The control parameterb in Eq. (6) is related to
the Flory-Huggins interaction parameterχ as fol-
lows,34

b= 2χ − s( f )
2N f2(1− f )2 , (7)

wheres( f ) is of order unity and depends on ap-
proximations.11,33 Microphase separation occurs
for χ > χc (T < Tc) and the temperature depen-
dence of the Flory-Huggins interaction parameter
χ is taken as

χ = A+B/T , (8)

where the coefficientsA and B are determined
from experiments.35 The parameteru > 0 in

Eq. (6) remains undetermined in the strong seg-
regation limit.34 For the lamellar structure in the
weak segregation limitu can be identified with the
vertex functionu = Γ4(0,0), which depends on
the compositionf and the polymerization index
N.11,33 The parameterK > 0 describes the inter-
facial energy betweenA andB domains and it de-
pends on the compositionf as follows:34

K =
l2

4 f (1− f )
. (9)

The parameter

D =
3

l2N2 f 2(1− f )2 (10)

is positive and decays with the polymerization de-
greeN.34 Similar functional dependencies ofK
andD have been obtained in Refs.11,36 except the
difference in numerical factors due to the use of
different models for the polymer chain (and there-
fore different expressions for the radius of gyra-
tion). Besides the derivation of the interaction pa-
rameters from microscopic models it is also possi-
ble to determine them by fitting data from scat-
tering experiments obtained immediately after a
quench (see, e.g.,35,37,38and references therein).

With the functional given by Eq. (6) and Eq. (4)
the nonlinear evolution equation of the order pa-
rameterψ(r , t) follows:

∂tψ = MkBT
[

∇2(−bψ +uψ3−K∇2ψ)

−D(ψ − ψ̄)] . (11)

With the length scaleξ =
√

K and the time scale
τ = ξ 2/(MkBT) one may introduce withr = ξ r ′

and t = τt ′ the dimensionless variablesr ′ and t ′.
Using in addition the rescaled order parameter
ψ ′ =

√
uψ, one obtains the dimensionless form of

the equation (primes are omitted)

∂tψ = ∇2(−εψ +ψ3−∇2ψ)−α(ψ −β ) , (12)

with the dimensionless parameters:

ε = b, α = DK , β =
√

uψ̄ . (13)

According to Eq. (9) and Eq. (10) one has the scal-
ing α ∝ N−2 and the limiting caseα = 0 corre-
sponds to the Cahn-Hilliard equation39 describing,

3



e.g., phase separation in polymer blends.
The bulk free energy in dimensionless form is

given by

Fb{ψ} =
∫

V

[

−ε
2

ψ2+
1
4

ψ4+
1
2
(∇ψ)2

+
α
2

h(r)(ψ −β )
]

dr , (14)

where we have introduced for practical reasons the
auxiliary function

h(r) =
∫

V

G(r , r ′)
[

ψ(r ′)−β
]

dr ′ . (15)

The functionh(r) fulfills Poisson’s equation

∇2h(r) =−(ψ(r)−β ) , (16)

with the boundary condition along the directionn
normal to the surface of the volumeV,

n ·∇h(r) = 0 , (17)

that follows from the conservation of the order pa-
rameter:

∫

(ψ −β )dr = 0.

2.1 Effects of boundaries

To study unconfinedsystems periodic boundary
conditions of the order parameterψ can be ap-
plied in each spatial direction. Forconfinedsys-
tems one needs for the fourth order Eq. (12) two
boundary conditions. The first boundary condition
follows from the conservation of the order param-
eter

∫

(ψ −β )dr = 0 corresponding to a zero flux
at the boundary:

n ·∇
(

−εψ +ψ3−∇2ψ
)

= 0 . (18)

The free energy in a confined system includes a
surface contributionFs, which can be written in
dimensionless form,

Fs=
1
2

∫

S

g(ψ −ψS)
2dS, (19)

with two phenomenological parametersg andψS.
g > 0 is a measure of the strength of the interac-
tion of the block copolymer with the surface and

ψS is the preferred difference between the con-
centrations ofA and B at the surface. The case
g = const. andψS = const. corresponds to a ho-
mogeneous surface and non-constantg= g(S) and
ψ(S) model patterned surfaces as e.g. described in
Ref.40 The second boundary condition is derived
from the local equilibrium condition of the total
free energyF = Fb+Fs at the surface

δF
δψ

= µ +[n ·∇ψ +g(ψ −ψs)]S . (20)

Since the bulk is in equilibrium with the surface
one has the second boundary condition:

n ·∇ψ +g(ψ −ψS) = 0 . (21)

Note that the surface energy in Eq. (19) is equiv-
alent to the expression proposed in Refs.,11,41

Fs=
∫

S

(

−H1ψ +
a1

2
ψ2

)

dS, (22)

where the “field”H1 is related to the difference of
chemical potential betweenA- andB blocks at the
surface and the parametera1 is related to the so-
called “extrapolation length”,a1 ∼ δ−1, that de-
scribes the ability of the surface to modify the lo-
cal interaction parameterχ .41 In our notation one
hasH1 = gψS anda1 = g. The usual situation for
diblock copolymers is the so-called “ordinary tran-
sition” with δ > 0 and thereforea1 > 0 (org> 0).
The surface modifies the local monomer interac-
tions only within a thin surface layer of thick-
nessO(l) with l as the Kuhn statistical segment
length.41 In this situation the local interaction pa-
rameterχ at the surface is smaller than in the bulk
and there is no ordering transition in the range
T > Tc for H1 = 0. ForH1 6= 0 finite values of the
order parameterψ 6= 0 are already induced beyond
the critical temperature,T > Tc. Walls with the
propertyH1 6= 0 are so-calledselective boundaries
and withH1 = 0 so-calledneutral boundaries.

Although we restrict our investigations to the
most relevant ordinary transition we shortly men-
tion for completeness also another type of transi-
tion. The so-called “surface transition” occurs for
a1 < 0, which corresponds toδ < 0. In this case
the local interaction parameterχ is greater than in
the bulk and even forH1 = 0 an ordering transition

4



may be observed atT > Tc near the surface.

3 Unconfined system: Periodic
solutions

Above the onset of microphase separation a per-
fect lamellar order of block copolymers is de-
scribed by periodic solutions of Eq. (12) and their
properties in unconfined systems are investigated
in this section for symmetric diblock copolymers,
i.e. β = 0. An analytical approximation of the
amplitude of the spatially periodic solution imme-
diately above onset is given in Sec. 3.2. A method
for the determination of the stability boundaries of
periodic solutions, which works close to and even
far beyond onset of microphase separation is pre-
sented in Sec. 3.4. It is based on an analysis of the
free energy functional evaluated for periodic solu-
tions. A conventional linear stability analysis of
nonlinear periodic solutions, cf.,29 is presented for
the present system in Appendix A and B.

3.1 Onset of microphase separation

The homogeneous phase of a symmetric diblock
copolymer melt is described by a vanishing order
parameter:ψ = 0. This basic state becomes unsta-
ble with respect to small perturbationsψ(r , t) ∼
eσteik·r when the control parameterε is raised
beyond its critical valueεc, corresponding to a
quench below the critical temperatureTc of the
diblock copolymer melt. In this case the growth
rateσ of the perturbations becomes positive and
microphase separation sets in. Since Eq. (12) is
isotropic in space,σ depends only on the modulus
of the wave vector,k = |k|, which is determined
by the linear part of Eq. (12):

σ(k) = k2(ε −k2)−α . (23)

The neutral stability conditionσ(k) = 0 yields the
neutral curve

εN(k) = k2+α/k2 (24)

and the basic state,ψ = 0, is unstable aboveεN(k)
with σ(k) > 0. The critical value of the con-
trol parameter,εc, and the critical wave number,

kc, are both obtained from the extremal condi-
tion dεN(k)/dk= 0 at the minimum of the neutral
curve:

εc = 2
√

α , kc = α1/4 . (25)

The wave numbers along the left and right part of
the neutral curve are given as a function of the con-
trol parameterε by the expression

k2
N(ε) =

1
2

(

ε ∓
√

ε2− ε2
c

)

(26)

and the wave numberkm at the maximum of the
growth rateσ(k) increases withε > εc as follows:

km =

√

ε
2
. (27)

For further discussions also the reduced control
parameterr = ε/εc−1 and the reduced wave num-
ber k̃ = k/kc are useful. Then the rescaled neutral
curve takes the following form

rN(k̃) =
(k̃2−1)2

2k̃2
, (28)

and the critical values of the control parameter and
the wave number are given by

rc = 0 , k̃c = 1 . (29)

The reduced wave numbers alongrN(k̃) are

k̃2
N = 1+ r ∓

√

r2+2r , (30)

and the reduced wave number at the maximum of
the growth rateσ(k̃) is k̃m =

√
1+ r.

Microphase separation and spatially periodic so-
lutions of Eq. (12) develop in the ranger > 0 and
ε > εc, respectively.

3.2 Amplitude equation

The basic Eq. (12) takes in terms of the reduced
control parameterr = ε/εc−1 the following form:

∂tψ = ∇2[−2k2
c(r +1)ψ +ψ3−∇2ψ]−k4

cψ .(31)

Equation (31) is rotationally invariant and there-
fore the wave vector of a periodic solution can be
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chosen parallel to thex-axis withk = (k,0).
In the range of small values ofr & 0 the neu-

tral curve is still narrow aroundkc and nonlinear
periodic solutions exist only fork rather close to
kc. Small deviations of the wave vectork from
the critical one,(kc,0), and therefore long wave-
length (slow) modulations of the periodic solution
∝ exp(ikc · r) can be taken into account by a spa-
tially dependent amplitude (envelope),

ψ = A(x,y, t)eikcx+c.c., (32)

with A(x,y, t) slowly varying on the scale 2π/kc.
Such a separation into a slowly varying ampli-
tude and a fast varying periodic part is successfully
used in a broad class of pattern forming systems,
as described for instance in Refs.28,29,42,43. By
this separation into short and long length scales
near threshold,r & 0, a further reduction of the
basic equation (31) to a universal equation for the
envelopeA(x,y, t) is possible28,29,42,43and allows
in the weak segregation regime further analytical
progress, as described in the following.

The partial differential equation describing the
dynamics ofA(x,y, t), the well-known Newell-
Whitehead-Segel amplitude equation42 for the en-
velope of periodic solutions in isotropic systems,
can be derived by a multiple scale analysis,28,29,44

τ0∂tA= rA+ξ 2
0

(

∂x−
i

2kc
∂ 2

y

)2

A−g0|A|2A ,

(33)

with τ0 =
1

2k4
c
, ξ 2

0 =
2
k2

c
, g0 =

3
2k2

c
. (34)

Eq. (33) has in the ranger > 0 periodic solutions

A= A0ei(Qx+Py) (35)

in terms of the deviationsQ= k−kc andP<< kc

from the critical wave vector(kc,0).
The rotational invariance of the system allows

to choose for stationary solutionsP = 0, i.e. the
stationary amplitudeA0 can be expressed in terms
of Q or k̃= k/kc:

A2
0 =

2k2
c

3

(

r − 2Q2

k2
c

)

=
2k2

c

3

[

r −2(k̃−1)2] .(36)

The amplitudeA0 vanishes along the neutral curve

r̂N = 2Q2/k2
c = 2(k̃−1)2 , (37)

which is equivalent to Eq. (28) forr & 0 and
|Q|<< 1.

The amplitude equation (33) has also non-
periodic, inhomogeneous solutions, as for instance
described in Refs.28,29,45,46. A(x,y, t) varies in
these cases on length scales along thex and the
y direction, which are larger than 2π/kc. These
length scalesξ1 along thex direction andξ2 along
they direction are:

ξ1 =
1
kc

(

2
r

)1/2

, ξ2 =
1
kc

(

1
2r

)1/4

. (38)

Accordingly, the envelopeA(x,y, t) varies perpen-
dicular to the lamellae (along thex direction) on a
different length scale than parallel to the lamellae
(along they direction), when for instance the en-
velope decays from its bulk valueA ∝

√
r beyond

threshold (r > 0) to a small value at the bound-
ary. The ratio between the two length scales is
ξ2/ξ1 = (r/8)1/4 and therefore in the weak segre-
gation regimer & 0 the lengthξ2 is always consid-
erably smaller than the lengthξ1. This difference
has a strong influence on the orientation of lamel-
lae near boundaries as discussed in Sec. 4 .

3.3 Nonlinear solutions

In extended systems with periodic boundary con-
ditions spatially periodic solutions of the nonlinear
equation (12) of wave numberk can be represented
by a Fourier series,

ψk(x) =
M

∑
j=−M

A j eikx j , A j = A∗
− j , (39)

where the coefficients of this series are determined
numerically, as described in Appendix A. For a
truncated ansatz with one mode,

ψ = a0cos(kx) , (40)

one obtains for the amplitudea0:

a0 = ±2

√

2k2
c

3

[

r − rN(k̃)
]

, (41)

6



which becomes in the range|Q|<< 1 identical to
the expression in Eq. (36). Againa0 only exists be-
yond the neutral curver > rN(k̃) [resp.ε > εN(k)].

3.4 Wave number bands of stable pe-
riodic solutions

Spatially periodic solutions in extended pattern
forming systems are stable only in a subrange of
the wave number band beyond a neutral curve as
given for example by Eq. (24).28

Stationary, spatially periodic solutions may be
destabilized, for instance, by small perturbations
with a wave vector parallel to that of the nonlin-
ear periodic pattern, if the so-calledEckhaus sta-
bility boundary is crossed. Or, a periodic solu-
tion may be destabilized by perturbations with the
wave vector perpendicular to that of the pattern
(zig-zag instability), or by a combination of both
types of destabilizing modes (skewed varicose).28

Such stability boundaries are determined by the
condition, that the growth rate of small perturba-
tions with respect to nonlinear periodic solutions
vanishes, as described in more detail in Appendix
A and B.

In systems where the dynamic equation of the
field ψ can be derived from a functionalF{ψ}, the
Eckhaus stability boundary and the zig-zag stabil-
ity boundary can be determined by an analysis of
the functionalF in terms of the periodic solutions
ψ(r). The idea of this method was indicated ear-
lier46 and it is described below.

3.4.1 Eckhaus stability boundary

By crossing the Eckhaus boundary, nonlinear pe-
riodic solutions become unstable with respect to
small longitudinal perturbations with a wave vec-
tor parallel tok of the unperturbed pattern.29,46,47

The wave vectork = (k,0) is chosen along thex-
axis and in order to determine the Eckhaus bound-
ary we calculate the free energyF for a slightly
perturbed solution, which has a slightly ”com-
pressed” periodicity of wave numberk+∆kx and
free energyF(k+∆kx)/2 in one half of the system
and a slightly ”dilated” periodicity of wave num-
ber k− ∆kx and free energyF(k− ∆kx)/2 in the
other half. The free energy of the perturbed peri-

odic solution is then as follows:

F̄(k) =
1
2
[F(k+∆kx)+F(k−∆kx)] . (42)

Such deformations ensure that the mean value of
the wave number̄k = k in the whole system and
also the number of periodic units remains un-
changed.

For small values of∆kx the expression at the
right hand side of Eq. (42) can be expanded in
terms of a Taylor series and one obtains at lead-
ing order in∆kx:

F̄(k) = F(k)+
1
2

d2F(k)
dk2 (∆kx)

2+ · · · . (43)

It depends therefore on the sign of the second
derivatived2F(k)/dk2, whether the slight defor-
mation of the periodic solution leads to a reduction
or an enhancement of the free energyF̄(k) with re-
spect toF(k). In the case ofd2F(k)/dk2 < 0 a si-
multaneous small dilation and compression of the
periodic solution of wave numberk in neighbor-
ing ranges leads to a reduction of the free energy
with F̄(k) < F(k). I.e. for such parameter com-
binations(ε,k) periodic solutions are unstable. In
the opposite case withd2F(k)/dk2 > 0 a periodic
solution with wave numberk is stable with respect
to longitudinal perturbations. Therefore, the curve
separating in theε − k plane the range of stable
from unstable solutions is determined via the con-
dition

d2F(ε,k)
dk2 = 0 . (44)

3.4.2 Zig-zag stability boundary

The zig-zag instability of a periodic solution of
wave vectork is induced by perturbations with a
wave vector perpendicular tok. Utilizing that the
free energy of the perturbed solution with the wave
vectork = (k,∆ky) only depends on the value of
the wave number|k| =

√

k2+(∆ky)2, one finds
for small values of∆ky at leading order

F(|k|) = F(k)+
1
2k

dF(k)
dk

(∆ky)
2+ · · · . (45)

In the range ofk with dF(k)/dk < 0 small
transversal perturbations of the periodic solution
reduce the free energy of the system and thus the
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periodic solutions are unstable. A periodic solu-
tion of wave numberk with dF(k)/dk> 0 is stable
with respect to transversal perturbations. There-
fore the zig-zag stability boundary in theε − k
plane is determined by the condition

dF(ε,k)
dk

= 0 , (46)

which corresponds for periodic solutions also to
the minimum condition of free energy functional
with respect tok. The conditions for the Eck-
haus boundary given by Eq. (44) and the zig-zag
line by Eq. (46) are valid for any two-dimensional
isotropic system with a dynamics governed by a
functional.

Recipe for a determination of the stability
boundaries of stationary periodic patterns in sys-
tems with a potential: In a first step the nonlinear
periodic solution of wave numberk is determined
either analytically (e.g. by a one-mode approxi-
mation) or numerically. In a second step the free
energy functionalF(ε,k) is determined for the
periodic solution and in a third step the location
of the Eckhaus stability boundary,εE(k), is deter-
mined via the condition given by Eq. (44) and the
zig-zag stability boundary by Eq. (46).

3.5 Stability in the weak segregation
regime

With the one-mode approximation given by
Eq. (40) the functional in Eq. (14) can be easily
evaluated and the resulting free energy per period
λ = 2π/k is given by:

F (k)≡ Fb(k)
λ

=− 3
32

a4
0 . (47)

In this case the condition (44) leads to the follow-
ing Eckhaus stability boundary:

εE(k) =
3k8+5α2

k2(k4+3α)
. (48)

This formula reads in terms of the reduced con-
trol parameterr and the reduced wave numberk̃ as
follows:

rE =
3k̃8−2k̃6−6k̃2+5

2k̃2(k̃4+3)
. (49)

The zig-zag instability condition (46) provides the
wave numberkZZ (resp.k̃ZZ) at the zig-zag stabil-
ity boundary:

kZZ = α1/4 (or k̃ZZ = 1) . (50)

This wave number does not depend on the control
parameterε, respectivelyr. The lamella period
λe = 2π/kZZ at the minimum of the free energy
and the corresponding free energy per periodFe=
F (kZZ) are given by

λe=
2π

α1/4
and Fe=−(ε −2

√
α)2

6
. (51)

These results are obtained for a one-mode ap-
proximation of the nonlinear periodic solution and
an analysis of the related free energy agrees with
a conventional stability analysis in terms of am-
plitude equations,28 as described for the present
system in more detail in Appendix B.

The stability properties of periodic solutions
of Eq. (12) beyond threshold are summarized in
Fig. 1. The dot-dashed line represents the neu-
tral curverN(k̃) as described by Eq. (28). In the
range beyondrN(k̃) periodic solutions are in one
spatial dimension only stable within the Eckhaus
stability boundary, which is marked in Fig. 1 by
triangles (full numerical analysis). For compari-
son the Eckhaus-stability boundary in terms of a
one-mode approximation is given by the dashed
line, cf. Eq. (49). The zig-zag stability bound-
ary obtained by full numerical analysis is marked
by the open circles in Fig. 1 and for the one-mode
approximation in Eq. (50) by the solid line. To
the left of the zig-zag boundary and to the right
of the right Eckhaus boundary, spatially periodic
solutions are unstable in two spatial dimensions.

In a full numerical analysis the nonlinear pe-
riodic solution is determined numerically, as de-
scribed in more detail in Appendix A. Then the
stability boundaries are determined by the condi-
tions given in Eq. (44) and in Eq. (46), similar as
for the one mode approximation above.

Alternatively, the stability of nonlinear periodic
solutions is determined by a linear stability analy-
sis, as described in Appendix A and in Appendix
B analytically in the ranger & 0. The analysis of
the functional and the linear stability analysis give
identical stability boundaries.
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Figure 1: The stability diagram of the periodic
solutions of Eq. (12) shows the neutral curve (N,
dot-dashed line) according to Eq. (28), the Eck-
haus stability boundary obtained for the one-mode
solution via Eq. (49) (E, dashed line) and numer-
ically (triangles), as well as the zig-zag stability
boundary for the one-mode approximation given
by Eq. (50) (ZZ, solid line) and as obtained numer-
ically (circles). The wave numberk̃m =

√
1+ r at

the maximum of the growth rateσ is given by the
dotted line.

The reduced control parameter range, 0< r < 1,
corresponds to a moderately deep quench of the di-
block copolymer melt and belongs to the so-called
weak segregation regime. In this range the Eck-
haus and zig-zag boundary, as obtained by the one-
mode approximation in Eq. (40), coincide well
with the numerical stability analysis, where sev-
eral modes of the Fourier expansion in Eq. (39)
are taken into account. In the ranger > 1 the spa-
tial shape of the nonlinear periodic solutions be-
comes increasingly anharmonic and deviates from
the one-mode solution given by Eq. (40). Accord-
ingly, the results of the one-mode approximation,
as given by Eq. (49) and Eq. (50), start to devi-
ate from the full numerical results obtained for the
Eckhaus boundary (triangles) and the zig-zag line
(circles).

The dotted line in Fig. 1 shows the control pa-
rameter dependence of the wave numberk̃m of
the fastest growing perturbation with respect to
the homogeneous state. The curvek̃m(r) crosses
the Eckhaus boundary atk̃ = 51/4 ≈ 1.5, corre-

sponding tor =
√

5− 1 ≈ 1.24. Therefore, after
a deep quench withr >

√
5− 1, the wave num-

ber of lamellar structures developing during the
early stages of microphase separation may lie in
the unstable range to the right of the Eckhaus sta-
bility boundary. The processes required to relax
the wave number of the periodic solution back to
the stable wave number band leads to the appear-
ance of many defects as discussed further in Sec. 5.

3.6 Strong segregation regime

With increasing of the control parameterr (resp.
ε) the spatially periodic solutions of Eq. (12) be-
come rather anharmonic and for large values ofr
they can be approximated by a square wave of the
form

ψ(x) = a0[1−2Θ(x−λ/4)+2Θ(x−3λ/4)],(52)

with 0 < x < λ and the Heaviside step function
Θ(x). In this limit the Green’s function in Eq. (14)
is given by G(x,x′) = |x− x′|/2. The gradient
square term in the free energy Eq. (14) can be
calculated by using the hyperbolic tangent profile
ψ = ∓a0 tanh[(x−xi)/ξ ] with a small widthξ of
the interfaces atx1 = λ/4 andx2 = 3λ/4 as an
approximation of the step function. Within these
approximations one obtains the following expres-
sion for the free energy per periodλ :

F =−a2
0

2

(

ε − a2
0

2
− 16

3λξ
− αλ 2

48

)

. (53)

A minimization of this expression with respect to
a0 gives

a2
0 = ε − 16

3λξ
− αλ 2

48
, (54)

and with this amplitude the corresponding free en-
ergy can be further simplified to

F =−1
4

a4
0 . (55)

The equilibrium period of lamellaeλe correspond-
ing to the minimum of the free energy is found by

9



a minimization of Eq. (55) with respect toλ :

λe= 4

(

2
αξ

)1/3

. (56)

In the strong segregation regime, i.e.ε ≫ εc (large
r), or equivalently forα → 0 at a fixedε, the width
of the interfaceξ →

√

2/ε becomes small.48 In
this caseλe at the minimum ofF and the corre-
sponding free energy per periodFe are given by

λe = 4(2ε)1/6α−1/3 ,

Fe = −1
4

[

ε − (2εα)1/3
]2

. (57)

The scalingλe ∼ α−1/3 has to be compared with
the scaling in the weak segregation limitλe ∼
α−1/4 according to Eq. (51). The results forλe

andFe obtained in weak and strong segregation
regime, which are given by Eq. (51) and Eq. (57),
respectively, are in each regime in good agreement
with the results according to the full numerical so-
lutions, as can be seen in Fig. 2. The transition
from the weak segregation regime in the range
α > 0.02 to the strong segregation regime in the
rangeα < 0.02 is clearly visible in Fig. 2. The
scaling exponents agree with those obtained ear-
lier from variational calculations34 and numerical
simulations.49,50

4 Orientation of lamellae be-
tween substrates

The free energy of block copolymer films between
two confining substrates depends on the orienta-
tion of lamellae with respect to the substrates, on
the distance between the confining substrates and
on the surface properties of the bounding sub-
strates. In order to model for instance a BCP
film with the lamellae perpendicular to a substrate,
which is in addition laterally confined by parallel
side walls as in Refs.,30,31we consider in this sec-
tion Eq. (12) in two spatial dimensions in thex−y
plane with boundaries aty = 0 andy = Ly. This
analysis applies as well to BCP confined between
two extended plane parallel substrates.

The film thicknessLy is given in terms of the

10
−3

10
−2

10
−1

5

15

25

35

45

α

λe

(a)

10
−3

10
−2

10
−1

−0.2

−0.15

−0.1

−0.05

0

α

Fe

(b)

Figure 2: The lamella periodλe at the minimum
of F (k) is shown in (a) as a function ofα for ε =
1 and in (b) the corresponding free energyFe =
F (λe). The solid lines are obtained by Eq. (51)
(weak segregation), the dashed lines by Eq. (57)
(strong segregation). The bullets are the results of
the full numerical calculations.

dimensionless numberd and the wavelengthλe:

Ly = d λe . (58)

Boundary conditions.At plane substrates the
boundary conditions forψ given by Eq. (18) and
Eq. (21) take the following form,

∂
∂y

(

−εψ +ψ3−∇2ψ
)

∣

∣

∣

∣

y=0,Ly

= 0, (59a)

∂ψ
∂y

∣

∣

∣

∣

y=0
= g(ψ −ψ0)|y=0 , (59b)

∂ψ
∂y

∣

∣

∣

∣

y=Ly

= g(ψLy −ψ)|y=Ly , (59c)
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with ψ0 = ψS(y= 0) andψLy = ψS(y= Ly).
Substrates preferentially wetted by one block of

anAB copolymer are described by finite values of
ψ0 and ψLy, corresponding to so-calledselective
boundary conditions. We consider either symmet-
ric selective boundary conditions at the two con-
fining substrates,ψ0 = ψLy 6= 0, or antisymmetric
ones,ψ0 = −ψLy 6= 0. Substrates being equally
wetted by theA- and theB block of a copoly-
mer correspond toneutral boundary conditions,
ψ0 = ψLy = 0. As a third example of confined
copolymer films we investigate alsomixedbound-
ary conditions, when one substrate acts like a se-
lective boundary and the opposite one like a neu-
tral boundary.

With the wave vectork⊥ = (k,0)we describe the
periodic order of lamellae perpendicular and with
k‖ = (0,k) the periodic order of lamellae parallel
to the substrates.

Numerical method:To find stationary solutions
of Eq. (12) with the boundary conditions Eq. (59)
a central difference approximation of the spatial
derivatives is used. In the case of an orientation of
lamellae parallel to the substrates one has to con-
sider only they dependence of Eq. (12) and New-
ton’s iteration method is used for its solution. For
lamellae perpendicularly oriented to the substrates
two-dimensional simulations of Eq. (12) are re-
quired. In this case we use a simple relaxation
method with the width of one periodLx = λe along
thex direction.

For a given solutionψ(r) the total free energy
F = Fb+Fs is calculated by integrating Eq. (14)
and Eq. (19) numerically. In order to determine
the last term in Eq. (14), Poisson’s equation for
the auxiliary function in Eq. (16) is solved numer-
ically by a relaxation method. The spatial dis-
cretization was chosen to beδx = δy = 0.5 for
most of the calculations, which provide a relative
error of the free energy less than 1%. For a transi-
tion range, where the free energies of lamellae par-
allel and perpendicular to the substrates become
comparable, the discretization was decreased to
δx = δy = 0.25 for the purpose of a precision
higher than 0.2%. Note, that the values for the
total free energyF presented in the following are
divided by the system sizeA= Lx×Ly, i.e. we use
the free energy per unit system size.

4.1 Selective boundary conditions

In the case of homogeneous, selective bound-
ary conditions withψ0,ψLy 6= 0 at the substrates,
lamellae parallel to the boundaries have a lower
free energy than perpendicularly oriented ones, as
shown in this section. If the valuesψ0,ψLy have
a magnitude similar to the maximum of the ampli-
tude ofψ(y) in the bulk, then the envelope ofψ(y)
is only slightly deformed near the boundaries.

In the caseψ0 andψLy agree with the extrema of
ψ(y) in the bulk, then also the boundary condition
∂yψ

∣

∣

y=0,Ly
≈ 0 can be fulfilled at an extremum of

a periodic functionψ(y) without any deformation.

0 1 2 3 4 5
−1

0

1

y/λe

ψ(y) (a)

0 1 2 3 4 5
−1

0

1

y/λe

(b)

0 1 2 3 4 5
−1

0

1

y/λe

ψ(y) (c)

0 1 2 3 4 5
−1

0

1

y/λe

(d)

Figure 3: Four stationary solutionsψ(y) of
Eq. (12) in a film of thicknessLy = 5λe are shown
for symmetric selective boundary conditionsψ0 =
ψLy = 1. Part (a) and (c) show periodic solutions
with an integer number of lamellae and part (b)
and (d) so-called (unstable) saddle-point solutions.
Parametersε = g= 1 andα = 0.015.

Examples ofψ(y) for lamellae parallel to the
boundary are shown in the case of selective bound-
ary conditions,ψ0 = ψLy = 1, in Fig. 3(a) and
Fig. 3(c) for a copolymer film of thicknessLy =
5λe in the strong segregation regime. The periodic
field ψ(y) in Fig. 3(a) and in Fig. 3(c) differs in
the number of periods on the interval[0,Ly], cor-
responding to different values of the wave number
k. The wavelength of the solution with five periods
in Fig. 3(c) corresponds toλ = λe at the minimum
of the free energy. In Fig. 3(a) the solution has four
periods with a wavelengthλ > λe and this station-
ary solution in an unconfined system is unstable
according to the results in Fig. 1. However, dy-
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namical simulations show, that this wavelength is
stabilized in a confined thin film. The solution in
Fig. 4(e) has six periods on the intervalLy = 5λe

and a wavelengthλ smaller thanλe. This solu-
tion is according to the results presented in Fig. 1
expected to be stable in unconfined systems. The
free energyF/Ly of the solutions in Fig. 4(a) and
(e) is larger than in Fig. 4(c) at the minimum of the
free energy.

0.8 1 1.2 1.4
−0.11

−0.105

−0.1

−0.095

 

 

λ/λe

F
Ly (d)

(e)

(a)

(b)

(c)

Figure 4: The normalized free energyF/Ly of
a copolymer film of thicknessLy = 5λe is shown
as a function of the normalized widthλ/λe (solid
line) for lamellae parallel to selective boundaries
with ψ0 = ψLy = 1 and parameters as in Fig. 3.
(a)-(d) mark the free energy of the corresponding
solutions in Fig. 3.

The stationary solutions in Fig. 3(b) and
Fig. 3(d) are so-called saddle point solutions,
which are unstable. As the characteristic wave-
length λ of these two solutions we take the dis-
tance between two extrema in the ”undistorted”
range of each solution. With this definition the
solution in Fig. 3(d) has a wavelength between the
wavelengths of the two solutions in Fig. 3(e) and
(c) and the saddle point solution in Fig. 3(b) has a
wavelength between that of the periodic solutions
in Fig. 3(a) and (c). The free energy of both saddle
point solutions is higher than that of the periodic
solutions marked as (a), (c) and (e) in Fig. 4. The
locally strong deformation of the periodic solu-
tions in Fig. 3(b) and (d) may occur at different
locationsy in the region(0,Ly), depending on the
initial profile. In order to include or to remove one
periodicity, as for instance by changing from the
solution given in Fig. 3(a) to Fig. 3(c) or reversely,
the local maximum of the saddle point solution

Fig. 3(b) has to be crossed. Such energy barriers
are essentially responsible that states with a wave
numberk 6= kc are stable in BCP films even if the
wave number does not correspond to the minimum
of the free energy.

0 1 2 3 4 5
−1

−0.5

0

0.5

1

y/λe

ψ(y)

Figure 5: Stationary solutions of Eq. (12) for
lamellae oriented perpendicularly to the bound-
aries at a positionx1 (dashed), whereψ(x,y) takes
its maximum in the bulk and atx2 (solid), where
ψ(x,y) takes its minimum. The same parameters
as in Fig. 3.

The y dependence of the order parameterψ is
rather different in the case of the lamellae perpen-
dicular to selective boundaries. In this caseψ(x,y)
is a periodic function along thex direction and
selective boundary conditions force a finite value
ψ0,Ly 6= 0 (ψ0,Ly > 0) aty= 0,Ly, independent of
the phase of the function. At positionsx1, where
ψ(x,y) takes its maximum in the bulk, the order
parameterψ(x1,y) is nearly undeformed as a func-
tion of y, as can be seen by the dashed line in
Fig. 5. However, the imposed selective boundary
condition requires strong deformations ofψ(x2,y)
along they direction at positionsx2, whereψ(x,y)
takes its minimum in the bulk, as indicated by the
solid line in Fig. 5. As a consequence of such
strong deformations ofψ(x2,y) near the bound-
aries, perpendicularly oriented lamellae have for
selective boundary conditions a higher free energy
than parallel oriented ones as shown in more detail
in Fig. 6.

The free energy per unit area,F‖/A, of a copoly-
mer film with its lamellae parallel to the bound-
aries has as a function of the film thicknessLy =

12



1 2 3 4 5 6

−0.105

−0.1

−0.095

−0.09

d

F
A

 

 

|| lamellae
⊥ lamellae

(a)

1 2 3 4 5 6

−0.105

−0.1

−0.095

−0.09

d

F
A

 

 

|| lamellae
⊥ lamellae

(b)

Figure 6: The free energy per unit areaF/A as
a function ofd for lamellae parallel or perpendic-
ular to symmetric selective boundaries in (a) with
ψ0 = ψLy = 1 and in (b) withψ0 = ψLy = 0.5. Pa-
rametersα = 0.015 andε = g= 1.

dλe local minima at integer values ofd as indi-
cated by the solid lines in Fig. 6(a) and Fig. 6(b).
For parameters used in Fig. 6(a) the corresponding
minima of the solid line have even an equal height.
The dashed line in Fig. 6(a) shows the normalized
free energy,F⊥/A, of lamellae perpendicular to the
substrate, which is for nearly all values ofd higher
thanF‖/A. The periodically occurring strong vari-
ation of the order parameterψ(x2,y) for perpen-
dicularly oriented lamella in the case of selective
boundary conditions, as indicated at one position
x2 by the solid line in Fig. 5, enhances the free en-
ergy compared to the nearly undeformed function
ψ(y) in Fig. 3(a) for parallel lamellae.

The decay ofF⊥(d)/A in Fig. 6(a) indicates that
the weight of the strong deformation ofψ(x,y)
of perpendicularly oriented lamellae near the sub-

strate becomes smaller with increasing thickness
of the copolymer film. In Fig. 6(a) only for a very
thin film-thickness of aboutd∼1.5 the free energy
of parallel oriented lamellae is higher than for per-
pendicularly oriented ones.

In Fig. 6(b) the normalized free energies of
parallel and perpendicularly oriented lamella are
shown in the case of a reduced selectivity,ψ0 =
ψLy = 0.5. Since the control parameterε (resp.
r) is unchanged compared to the case in Fig. 6(a),
a reduced valueψ0 = ψLy = 0.5 requires now a
deformation of the functionψ(y) at the bound-
aries also for parallel lamellae. This deforma-
tion increases the normalized free energy of par-
allel oriented lamellae, while the normalized free
energy of perpendicularly oriented ones remains
nearly unchanged, as can be seen by comparing
the dashed lines in Fig. 6(a) and (b). This enhance-
ment of the free energy is stronger for small values
of d than for larger values ofd, because of the de-
creasing weight of boundary effects with increas-
ing film thicknesses.

As a consequence of this energy enhancement in
the case of a reduced preferential adsorption, there
are now two maxima of the free energy of parallel
lamellae in Fig. 6(b), at aboutd≈ 1.5 andd≈ 2.5,
where the free energy is higher than that of lamel-
lae perpendicular to the substrates. Such situa-
tions of confined diblock copolymers were also
studied experimentally in thin films in the range
d = 1.4−3.2 by varying the selectivity of the sub-
strates.12 Here, a reduction of the preferential ad-
sorption leads at aboutd ≈ 2.5 to a frustration and
lamellae perpendicularly oriented to the bound-
aries. However, in agreement with our simula-
tions, for block copolymer films being less frus-
trated and also for strong preferential adsorption
the parallel orientation of lamellae remains always
preferred in this experiment.

The normalized free energy of lamellae parallel
to selective substrates becomes smaller with de-
creasing values ofα, as shown in Fig. 7. This trend
is similar to theα-dependence of the bulk free en-
ergy given by Eq. (51) [see Fig. 2(b)]. Since de-
creasing values ofα correspond to increasing val-
ues of the thickness of the lamellae, the weight of
surface effects decreases, that leads to a reduction
of the peak height withα, as can be seen in Fig. 7
too.
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Figure 7: The free energy per unit areaF/A of
lamellae parallel to the substrate as a function ofd
for selective boundariesψ0 = ψLy = 1 and differ-
ent values ofα andε = g= 1.

For asymmetric selective boundary conditions at
the substrates, when one of the two substrates is
preferentially wetted by one block and the other
one by the second block of the copolymer, the nor-
malized free energy of parallel lamellae has local
minima at a film thickness close to a half-integer
multiple of the equilibrium lamellar thicknessλe,
i.e. for d = 1.5,2.5,3.5, . . ., as indicated by the
solid line in Fig. 8. A situation with compara-
ble free energies for lamella orientations paral-
lel and perpendicular to asymmetric boundaries is
only met in the range of very thin films of about
d ≈ 2. Otherwise the trend, that lamellae paral-
lel to the substrates have for asymmetric selective
boundaries a lower free energy, can be explained
by the same arguments as given above for the case
of symmetric selective boundary conditions.

By a reduction of the surface interaction strength
g (leading to non-interacting or quasi-periodic
boundary conditions forg→ 0) or by a reduction
of the preferred differenceψS between the con-
centrations ofA- and B blocks at the boundary
the free energies of both orientations can become
comparable in the range of very thin films like in
Fig. 6(b). However, in the range of thick films a
parallel orientation of lamellae is always preferred
in the case of selective boundary conditions. De-
tailed studies on that issue can be found elsewhere
(see, e.g.,51–55).
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Figure 8: The free energy per unit areaF/A of
parallel and perpendicularly oriented lamellae as a
function ofd for asymmetric selective boundaries:
ψ0 = 1,ψLy =−1. Parametersα = 0.015 andε =
g= 1.

4.2 Neutral boundary conditions

Neutral boundaries withψ0 = ψLy = 0 correspond
to substrates, which are neither preferentially wet-
ted by theA- nor by theB block of a copolymer.

A first estimate of the expected preferred lamel-
lae orientation may be gained by considering the
effect of neutral boundaries in the weak segrega-
tion limit with small values ofr & 0. In this range
a representation ofψ = Aexp

(

i k‖,⊥ · r
)

+ccas in
Eq. (32) is useful, wherek⊥ = (k,0) is the wave
vector in the(x,y) plane of lamellae perpendicu-
lar andk‖ = (0,k) of lamellae parallel to the sub-
strates. The envelopeA(x,y) decays in the case
of neutral boundaries from its finite bulk value
A ∝

√
r to the boundary valueA ≈ 0. Such a re-

duction of the envelope causes an enhancement of
the free energy per unit size compared to the case
without boundary effects.

The transition layer, in which the envelope
A(x,y) changes from its bulk value to that at the
boundary, is for perpendicularly oriented lamellae
according to Eq. (38) proportional toξ2 ∝ r−1/4,
which is for small values ofr smaller than the
transition layer of parallel oriented lamellae pro-
portional toξ1 ∝ r−1/2. Since the transition range
is smaller in the case of lamellae perpendicular
to the boundaries, we expect a smaller energy of
perpendicularly oriented lamellae than for parallel
oriented ones.
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Figure 9: Stationary solutions of Eq. (12) for neu-
tral boundary conditionsψ0 = ψLy = 0: In (a) at
a positionx1 where ψ(x,y) takes its maximum
for lamellae perpendicular and in (b) parallel to
the boundaries. In (b) the dots mark the analyti-
cal approximation as described in Appendix C for
the same boundary condition. The parameters are
Ly = 10λe, g= 1, r = 0.021,k= 0.7 (correspond-
ing to ε = 1 andα = 0.24).

Full numerical solutions of Eq. (12) by taking
into account the boundary conditions (59) with
ψ0 = ψLy = 0 are shown in Fig. 9 in the weak seg-
regation limit atr = 0.021 for perpendicularly ori-
ented lamellae in part (a) and for parallel oriented
lamellae in part (b). In Fig. 9(b) we show also the
analytical approximation of the solution (symbols)
for the same boundary conditions, as described in
the Appendix C.

As indicated by the estimate in the previous
paragraph, the length of the envelope ofψ(y)
needed for the transition from its value in the bulk
to that at the boundary is indeed larger for par-
allel oriented lamellae than for the perpendicu-

larly oriented ones. A narrower transition range
causes a smaller enhancement of the free energy
and therefore, in the range of small values ofr & 0
(weak segregation limit) lamellae perpendicularly
oriented with respect to the substrates are ener-
getically preferred. This behavior extends also to
the strong segregation regime with larger values of
r, as we have tested by further numerical calcula-
tions.

1 2 3 4 5 6

−0.105

−0.1

−0.095

−0.09

d

F
A

 

 

|| lamellae
⊥ lamellae

Figure 10: The free energy per unit areaF/A of
parallel and perpendicularly oriented lamellae as a
function ofd for neutral boundariesψ0 = ψLy = 0
and the parametersα = 0.015,ε = g= 1.

For numerical stationary solutions of Eq. (12) in
the strong segregation regime the free energy of
lamellae, that are perpendicularly oriented to neu-
tral boundaries, does not differ very much from
the free energy obtained in the case of selec-
tive boundaries, as can be seen by comparing the
dashed curves in Fig. 6 and Fig. 10. On the other
hand, the decay of the envelope ofψ(x,y) close
to the boundaries, as shown in Fig. 9(b), enhances
the free energy of parallel lamellae compared to
the case of selective boundaries, cf. Fig. 6. As a
consequence of both trends, in the case of neutral
boundaries perpendicularly oriented lamellae have
always a lower free energy than parallel oriented
ones, as shown in Fig. 10.

Note, that the free energy of parallel oriented
lamellae has in the case of neutral boundaries local
minima as a function of the film thickness close
to integer and half-integer multiples ofλe. The
tendency of lamellae to align perpendicularly to
the substrates in the case of neutral boundaries has
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been also found in Refs.51,56

In the weak segregation limit, i.e. small values of
r, approximate analytical solutions of Eq. (12) are
derived for lamellae parallel to the substrates, as
described in more detail in Appendix C. Depend-
ing on ψ0 andψLy such an analytical approxima-
tion can be very good as can be seen for example
in Fig. 9(b).

4.3 Selective versus neutral bound-
aries

It depends on the ratio between the extremal val-
ues of the amplitude ofψ in the bulk and the in-
duced values at the boundaries whether the bound-
ary conditions act more like selective or neutral
boundary conditions. This can be recognized for
instance by comparing the difference between the
free energy of parallel and perpendicularly ori-
ented lamellae in Fig. 6 and Fig. 10 for the three
different values:ψ0 = ψLy = 1, ψ0 = ψLy = 0.5
andψ0 = ψLy = 0. While in the caseψ0 = ψLy = 1
the maximum ofψ(y) in the bulk is similar to the
imposed value at the boundary, in the other two
cases the maximum in the bulk is larger than at the
boundaries.

The ratio between the maximum value and the
value at the boundary can also be changed by
changing the quench depth, i.e. by changingr (re-
spectivelyε), but keeping now the valuesψ0 =ψLy

fixed. In this case the maximum bulk value can be
either smaller or larger than the values at bound-
aries, depending onr. We found that for different
values ofψ0 =ψLy variations of the control param-
eterr do not induce a reorientation of the lamellae
with respect to the boundaries.

4.4 Mixed boundary conditions

The results presented in the previous sections in-
dicate that a combination of a selective and a neu-
tral boundary condition may lead to almost equal
energies for parallel and perpendicularly oriented
lamellae over a large range of values of the film
thicknessLy. Therefore, we compare in this sec-
tion for mixed boundary conditions the free ener-
gies of homogeneously oriented lamellae parallel
and perpendicular to the confining substrates.

1 2 3 4 5 6

−0.105

−0.1

−0.095

d

F
A

 

 

|| lamellae
⊥ lamellae

(a)

1 2 3 4 5 6

−0.105

−0.1

−0.095

d

F
A

 

 

|| lamellae
⊥ lamellae

(b)

Figure 11: The free energy per unit areaF/A of
parallel and perpendicularly oriented lamellae as a
function of d for mixed boundary conditions: In
(a) ψ0 = 0, ψLy = 1 and in (b)ψ0 = 0, ψLy = 0.5.
Parametersα = 0.015 andε = g= 1.

In Fig. 11 the free energy per unit size is shown
as a function ofd for perpendicularly (dashed
lines) and parallel (solid lines) oriented lamellae in
the case of mixed boundaries withψ0 = 0 and ei-
therψLy = 1 orψLy = 0.5. One may compare these
results with those given in Fig. 6 for symmetric
selective boundary conditionsψ0 = ψLy = 1, 0.5.
There are two major differences between the re-
sults in both figures. The energy differences be-
tween the two lamellae orientations are smaller for
mixed boundary conditions in Fig. 11 and the free
energy of parallel oriented lamellae now has local
minima at integer and half integer values ofd.

The trend indicated in Fig. 11 suggests that by
changing the boundary condition at one surface
from selective to neutral and keeping the other sur-
face neutral, the preferred lamellae orientation can
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be changed from parallel to perpendicular. This is
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Figure 12: The relative free energy difference
(F⊥−F‖)/|F⊥| is shown for three thicknessesLy=
3λe, 6λe, 10λe of the BCP film as a function of
the selectivityψLy at one boundary andψ0 = 0 at
the opposite one. Beyond a critical valueψLy(crit )
the preferred lamella orientation is parallel to the
boundaries and perpendicular below. Parameters
α = 0.015 andε = g= 1.

shown in Fig. 12, where the relative difference of
the free energy(F⊥−F‖)/|F⊥| is plotted as a func-
tion of ψLy for three different values of the film
thicknessLy = dλe. Fig. 12 shows in addition that
the critical valueψLy(crit ), where both lamellae
orientations have the same free energy, is rather
independent of the film thicknessd. This may be
explained as follows. For the parameters used in
Fig. 12 the two length scales introduced in Eq. (38)
are nearly equal and both are small:ξ1/λe ≈ 0.13
andξ2/λe≈ 0.1. I.e. the influence of the boundary
is similar for the three values of the film thickness
in Fig. 12, only the weight of the influence is re-
duced by increasing the film thickness. The prior
effect leads to a smaller slope of the curves with
larger values ofd in Fig. 12.

The critical selectivityψLy(crit ) depends weakly
on the parameterα. For smaller values ofα and
therefore a larger lamella periodλe, the critical
value ofψLy(crit ) is smaller. Thus lamellae with
a larger period require a smaller selectivity of the
surface to realign.

Note that in case of relatively thin films the free
energy of parallel oriented lamellae as a function
of thickness shows pronounced oscillations be-

tween local minima and maxima [see Fig. 11(a)].
This leads to a weak thickness dependence of
the critical selectivity when considering the thick-
nesses that correspond to a maximum and a mini-
mum ofF‖ (see Fig. 13). In the case of a maximum
of F‖ the reorientation takes place at higher values
of ψLy than for a minimum. With increasing film
thicknesses this difference is rapidly decreasing.
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Figure 13: The relative free energy difference
(F⊥−F‖)/|F⊥| is shown as a function of the se-
lectivity ψLy at one boundary withψ0 = 0 at the
opposite one for two BCP films withLy = 2.75λe

(lower curve) andLy = 3λe (upper curve). In both
cases the preferred lamella orientation is parallel
to the boundaries beyond a critical valueψLy(crit )
and perpendicular below. Parametersα = 0.015
andε = g= 1.

5 Dynamics of microphase sep-
aration

The spatio-temporal dynamics of microphase sep-
aration in copolymers in two spatial dimensions
between two parallel boundaries and the related
lamellar (orientational) order is investigated here.
We also describe typical differences between the
evolution of structures in thestrongand theweak
segregation regime in BCP films confined between
different boundaries on the one hand and in uncon-
fined systems on the other hand.

For numerical simulations of Eq. (12) we use
a central difference approximation of the spatial

17



derivatives withδx= δy= 0.5 and an Euler inte-
gration of the resulting ordinary differential equa-
tions with a time step∆t = 10−4−10−3. In the un-
confined case periodic boundary conditions are ap-
plied and a system sizeLx = Ly = 256 (≈ 14λe for
α = 0.015) is chosen. For block copolymer films
of thicknessLy = 6λe between two substrates, dif-
ferent combinations of the boundary conditions
along they direction are used, cf. Eqs. (59), and
periodic boundary conditions along thex direc-
tion with Lx = 4λe, 8λe, or 32λe. To mimic a
quench we start simulations of Eq. (12) with ran-
dom initial conditions forψ of a small amplitude
of about 10−4. Typical scenarios of the dynamics
of microphase separation are studied in thestrong
segregation regime at a control parameterε = 1
(r = 3.08) and in theweaksegregation regime at
ε = 0.37 (r = 0.5).

Microphase separation can be characterized by
the structure factor of the evolving patterns,

S(k, t) = |ψ̂(k, t)|2 ,
with ψ̂(k, t) =

∫

eik·r ψ(r , t)dr . (60)

Since we expect anisotropy effects in BCP films
confined between two substrates we introduce dif-
ferent characteristic lengths along thex and they
direction:

lx(t) = π/〈kx〉(t) , ly(t) = π/〈ky〉(t) . (61)

The averaged wave numbers〈ki〉 are

〈kx〉(t) =

∫ kmax

0
dkx

∫ ∆k

−∆k
dky S(kx,ky, t)kx

∫ kmax

0
dkx

∫ ∆k

−∆k
dky S(kx,ky, t)

, (62a)

〈ky〉(t) =

∫ kmax

0
dky

∫ ∆k

−∆k
dkx S(kx,ky, t)ky

∫ kmax

0
dky

∫ ∆k

−∆k
dkx S(kx,ky, t)

, (62b)

where∆k is the half-width of the corresponding
peak of the structure factor alongkx and ky, re-
spectively.

5.1 Unconfined systems

During microphase separation in diblock copoly-
mers the most unstable perturbation with respect
to the homogeneous basic stateψ = 0 has the wave
numberkm =

√

ε/2, cf. Eq. (27), similar as in bi-
nary mixtures.57 The coarsening regime in diblock
copolymers belowTc is at early stages similar as in
polymer blends, as indicated by two snapshots of
a simulation in Fig. 14. In diblock copolymers the
coarsening process of phase separation is limited
by the chemical bond between anA- andB block,
which limits the domain size of phase separation
to the order of the chain length of diblock copoly-
mers.

(a) (b)

(c) (d)

Figure 14: Microphase separation in the strong
segregation regime for the parametersε = 1
(r = 3.08) and α = 0.015 is shown in a two-
dimensional system withLx = Ly = 256≈ 14λe

(λe = 19.3) and periodic boundary conditions: In
(a) at the timet = 102 with the average wave-
length of aboutλ ≈ 11.0 and in (b) att = 104

with λ ≈ 17.5. Dark and bright regions in the top
part correspond toA- andB block rich phases, re-
spectively. The bottom part (c) and (d) show the
corresponding structure factors, where the bright
regions correspond to large values ofS(k, t).

The pattern shown in Fig. 14(b) has an average
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wavelength still below the optimal wavelengthλe

at the minimum of the free energy. With a further
progress of time the mean wavelength approaches
only very slowly towardsλe, because the system
has to get rid of lamellar imperfections by diffu-
sion processes.
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Figure 15: The temporal evolution of the charac-
teristic length scaleslx(t) andly(t) (averaged over
10 independent runs) after a quench is shown in
thestrongsegregation regime for the same param-
eters as in Fig. 14 and periodic boundary condi-
tions.

In an unconfined system the two length scales
lx(t) and ly(t) evolve in a similar way and this
isotropic behavior of the block copolymer melt is
also reflected by the rotational symmetry of the
structure factor shown by the parts (c) and (d) of
Fig. 14. During the intermediate regime between
the early stage of phase separation with a domi-
nating growth of the perturbation of wave number
km and the late stage of coarsening with an aver-
age domain size,lx ≈ ly ≈ λe/2, one observes the
scalinglx ∼ ly ∼ t1/3 as shown in Fig. 15, which
is common for polymer blends. Such a scenario is
typical for a deep quench into the strong segrega-
tion regime at aboutε ∼ 1 and beyond.

In the weak segregation regime (ε = 0.37 or
smaller) the wave number of the fastest growing
mode during the early stage of phase separation,
km =

√

ε/2, is already closer to 2π/λe and there-
fore, one observes during pattern evolution only
a slight variation of the scaleslx(t) and ly(t), as
shown in Fig. 16. Typical snapshots of phase sep-
aration during the early stage in the weak seg-
regation regime are similar to patterns shown in
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Figure 16: The temporal evolution of the charac-
teristic length scaleslx(t) andly(t) (averaged over
10 independent runs) after a quench is shown in
theweaksegregation regime atε = 0.37 (r = 0.5)
for a system with periodic boundary conditions
and otherwise the same parameters as in Fig. 14
and in Fig. 15.

Fig. 14(b).

5.2 Confined systems

For a block copolymer film confined between two
selective boundaries withψ0 = ψLy = 1, three
snapshots during microphase separation in the
strong segregation regime atε = 1 (r = 3.08) are
shown in Fig. 17, which will be compared later
with results in the weak segregation limit.

After a deep quench att = 0 far below threshold
εc = 2

√
α (for α = 0.0015 one hasεc = 0.077)

the selective boundary conditions trigger close to
the substrates immediately a large value of the or-
der parameterψ and in this case lamellae orient
parallel to the substrates. One should note, that
for the parameters in Fig. 17 the wavelength of the
fastest growing modeλm = 2π/km = 2π

√

2/ε =

2π
√

2≈ 8.9 is much smaller than the wavelength
λe = 4(2ε)1/6α−1/3 ≈ 39 at the minimum of the
free energy of a lamellar structure.

In the strong segregation regime the correlation
lengths in thex andy direction are rather small and
therefore a surface induced orientational order of
the lamellae occurs only within short ranges near
the boundaries as indicated by parts (a) and (b)
in Fig. 17. Further away from the substrates the
orientation of lamellae is only weakly influenced
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(a) (b) (c)

Figure 17: Microphase separation in a BCP film
between two selective boundaries withψ0=ψLy =
1 is shown in the strong segregation regime atε =
1 (r = 3.08) in (a) at timet = 20 after the quench,
in (b) at t = 40, and in (c) att = 104 close to the
final state. ParametersLx = 4λe, Ly = 6λe, α =
0.0015 andg= 1.

by boundary conditions and the lamellae are disor-
dered, whereby this disorder resembles very much
to that in the unconfined case, as shown in Fig. 14
and has also been observed in experiments on con-
fined thin films.30,31 The average wavelength of
the structure tends in the long time limit toλe.

Typical lamellar structures at the late stage of
microphase separation in the strong segregation
regime are shown in Fig. 18 for three types of
boundary conditions. Neutral boundary conditions
ψ0 =ψLy = 0 are used in Fig. 18(a), symmetric se-
lective boundariesψ0 = ψLy = 1 in Fig. 18(b) and
in Fig. 18(c) mixed boundary conditions,ψ0 = 0,
ψLy = 1. The simulations of Eq. (12) were started
with random initial conditions.

In the case of symmetric selective boundaries in
Fig. 18(b) lamellae parallel to the substrates have
the lower free energy as shown for the defect free
lamellar order in Fig. 6. For neutral boundaries in
Fig. 18(a) an orthogonal lamellae orientation close
to a boundary is favored, which is in agreement
with the results shown in Fig. 10. In the case of
mixed boundary conditions in Fig. 18(c) lamellae
are oriented parallel close to the selective (upper)
boundary and perpendicular to the neutral (lower)
boundary.

The pattern away from the boundaries in the
bulk shows for neutral boundaries [Fig. 18(a)] a
stronger disorder compared to the case of selective
boundaries [Fig. 18(b)]. In the strong segregation

(a)

(b)

(c)

Figure 18: Microphase separation is shown in
the strong segregation regime in a confined sys-
tem at t = 104 after a quench: In (a) for neu-
tral, ψ0 = ψLy = 0, in (b) for symmetric selective,
ψ0 = ψLy = 1, and in (c) for mixed boundary con-
ditions, ψ0 = 0, ψLy = 1. ParametersLx = 32λe,
Ly = 6λe, α = 0.015,ε = 1 (r = 3.08) andg= 1.

regime the coherence lengths are small for both
cases, but in the case of selective boundary con-
ditions larger values ofψ close to the boundary
are induced and this causes a more regular lamel-
lae orientation in the bulk.

The pattern Fig. 18(b) consists of seven periods
parallel to the horizontalx-axis around the center
of the image and six periods withλ = λe close to
the right end, whereby both regions are connected
by a pattern including defects. The wave numbers
corresponding to seven and six lamellae between
the boundaries lie both in the rangek/kc ≥ 1 of
the stability diagram in Fig. 1, where a straight and
defect free lamellar order is linearly stable with re-
spect to small perturbations.

In simulations started with random initial condi-
tions, patterns withkm > kc grow with the largest
rate and therefore a lamellar order with small
wavelengths is preferred during the early stage of
microphase separation. Since one has in Fig. 1 a
wide wave number rangek > kc of stable straight
lamellae, a relaxation of a pattern like in Fig. 18(b)
to the homogeneous state with six lamellae, which
has the lowest free energy, is a long lasting pro-
cess.

We showed in the previous section in Fig. 11(a)
that in the case of mixed boundary conditions and
parameters as in Fig. 18(c) a defect-free order of
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lamellae parallel to the substrates has a lower free
energy than perpendicularly oriented ones. In sim-
ulations of extended systems with mixed bound-
aries, where patterns with defects may occur, nei-
ther a parallel nor a perpendicular orientation of
lamellae is preferred in the bulk. Moreover, the
pattern in Fig. 18(c) shows, that for mixed bound-
ary conditions an orientational transition across
the block-copolymer film can be expected, from
parallel oriented lamellae at the selective (upper)
boundary to a perpendicular lamellae orientation
at the neutral (lower) boundary. The free en-
ergy of the pattern in Fig. 18(c) is higher than the
free energy of parallel oriented lamellae as shown
Fig. 11(a) and lower than that of perpendicularly
oriented ones.
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Figure 19: The time dependence of the char-
acteristic length scaleslx(t) and ly(t) (averaged
over three runs) is shown in the strong segregation
regime for the same parameters as in Fig. 18: (a)
neutral boundaries,ψ0 =ψLy = 0, and (b) selective
boundaries,ψ0 = ψLy = 1.

The temporal evolution of the lengthslx(t) and
ly(t) in the case of neutral boundary conditions, as

shown in Fig. 19(a), is rather similar to the uncon-
fined case shown in Fig. 15. During the early stage
of phase separation the dominating length scale
is again that of the fastest growing mode, which
is followed by the intermediate coarsening regime
with lx ∼ ly ∝ t1/3, beforelx(t) andly(t) terminate
again at the typical length scaleλe/2 of a diblock
copolymer.

In the case of symmetric selective boundary con-
ditions, ψ0 = ψLy = 1, the length scaleslx and
ly exhibit a different behavior during the initial
stage of phase separation and especially the be-
havior of lx(t) is changed significantly, as shown
in Fig. 19(b). A comparison of Fig. 17(a) and
Fig. 17(b) reveals, that during the early stage of
microphase separation compositional waves are
induced by the selective boundaries and they prop-
agate into the copolymer film. These induced
composition waves near the boundaries have a
quasi-infinite wavelengthlx along thex direction,
while the wavelengthly along they direction be-
haves similar as in Fig. 19(a) for neutral bound-
aries. Far away from the selective boundaries one
finds a random lamellae orientation and therefore
lx behaves in the bulk at an intermediate and late
stage of microphase separation similar as in the
case of neutral boundaries.

(a)

(b)

(c)

Figure 20: Microphase separation is shown in a
confined system in theweak segregation regime
with ε = 0.37 (r = 0.5) at the timet = 500 after
a quench and for three boundary conditions: (a)
neutral, (b) symmetric selective and mixed in (c).
Other parameters as in Fig. 18.

For comparison, we show in Fig. 20 late stage
patterns in theweaksegregation regime atε =0.37
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(r = 0.5) for the same confined systems as in
Fig. 18. These patterns show at a timet = 500
already a similar order as in the strong segregation
limit at t = 104 (Fig. 18) in spite of the fact that the
dynamics is slower for smaller values of the con-
trol parameterr. However, by a reduction of the
control parameter fromr = 3.08 in the strong seg-
regation limit tor = 0.5 one has an enhancement
of the length scales fromξ1 ≈ 0.13 to ξ1 ≈ 0.32
and fromξ2 ≈ 0.10 to ξ2 ≈ 0.16. These higher
coherence lengths increase simultaneously the ac-
tion range of the boundaries and both effects cause
a higher lamellar order in a thin copolymer film
within a shorter time (Fig. 20).

Similar as in the strong segregation regime
one finds in the case of selective boundaries
[Fig. 20(b)] again a higher lamellar order than in
the case of neutral boundaries [Fig. 20(a)]. This
is in agreement with the observation, thatξ1 is for
r = 0.5 roughly by a factor of 2 larger thanξ2. This
reasoning also confirms the results for the case of
mixed boundaries [Fig. 20(c)], where the action
range of the neutral (lower) boundary is smaller
than that of the selective (upper) boundary.

The characteristic lengthslx(t) andly(t) develop
for r = 0.5 and neutral boundaries again very sim-
ilar as in the unconfined case in Fig. 16. In the
case of selective boundaries [Fig. 20(b)] the two
scaleslx(t) andly(t) show a similar behavior as in
the strong segregation limit, only the saturation of
ly(t) takes place already att ∼ 102.

In summary selective boundary conditions are
more efficient for controlling the orientation of
lamellae in copolymer films than neutral ones. A
comparison of the results in Fig. 18 and in Fig. 20
suggests in addition that a quench to a small value
of ε & εc, followed by a further enhancement of
ε into the strong segregation regime, favors a co-
herent order of the lamellae. In the case of mixed
boundary conditions one obtains ”mixed” lamel-
lar structures as shown in Fig. 18(c), which can be
also interpreted as a coexistence of two different
boundary induced lamellae orientations.

As described in Sec. 4, different numbers of par-
allel oriented lamella between selective substrates
can have at certain values of the distanceLy be-
tween the boundaries equal free energies. For ex-
ample atLy = 4.4373 and for parameters as given
in Fig. 21 solutions with five and four lamellae par-

allel to the substrates have the same free energy.
Such a coexistence is shown in Fig. 21 where the
interface between both solutions does not move.
This coexistence has a strong similarity for in-
stance with observations presented in Fig. 3(a) in
Ref.30 This example indicates that in the case of
a film thickness, which is not an integer multiple
of λe, one may observe a spatial variation of the
number of lamellae in a block copolymer film.

Figure 21: The spatial coexistence of structures
with four and five lamellae parallel to the bound-
aries at a distanceLy = 4.4373λe is shown in the
case of selective boundary conditionsψ0 = ψLy =
1. Parametersε = g= 1 andα = 0.015.

Also the free energy of parallel and perpendic-
ularly oriented lamellae can be equal for certain
boundary conditions and film thicknesses, as dis-
cussed in Sec. 4. In Fig. 22 we show an example
for parameters, where parallel and perpendicularly
oriented lamellae have the same free energy. Ac-
cording to the interface between both orientations
the free energy of the structure in Fig. 22 is slightly
higher than that of the pure parallel or perpendic-
ular orientation. Nevertheless, as the interface be-
tween coexisting lamellae orientations in Fig. 22 is
not moving the coexisting pattern is long lasting.

Figure 22: The spatial coexistence of structures
with lamellae parallel and perpendicular to the
boundaries at a distanceLy = 4.3854λe is shown
in the case of selective boundary conditionsψ0 =
ψLy = 0.4. Parametersε = g= 1 andα = 0.015.
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5.3 Dynamics of orientational order-
ing

In diblock copolymers confined between bound-
aries the rotational symmetry is broken. The struc-
ture factor S(k, t) as well as the characteristic
length scaleslx and ly, as introduced above, do
not provide a sufficient quantitative characteriza-
tion of the orientational order of lamellae. Besides
the so-called Euler characteristics58 or a complex
demodulation method59 the lamellar morphology
may be described in the framework of a network
analysis,60,61as applied in this section.

A basic element of the following analysis is
image processing and the open source library
OpenCV62 is used for the detection of the inter-
faces between theA- andB-rich regions in the 2-
dimensional binarized images of the fieldψ(x,y).
The curves along these interfaces are approxi-
mated by polygonal chains resulting into a set of
segments of lengthsl i with the corresponding seg-
ment orientation angleθi relative to thex-axis.
These data allow the calculation of an average in-
terface segment length

〈ls〉=
1
N

N

∑
i=1

l i , (63)

over which neighboring lamellae are parallel to
each other, as well as the calculation of the aver-
age orientation of segments and the number of seg-
ments. These criteria offer an improved distinction
between patterns of different morphology.

An order parameter of the segment distribution,
similar to the order parameter in nematic liquid
crystals,63 is an appropriate quantity for a char-
acterization of the lamellar patterns during mi-
crophase separation. Since the orientation angles
θi andθi + π are equivalent, the order parameter
is given by a symmetric second rank and traceless
tensor

Q̂=

(

Qxx Qxy

Qxy −Qxx

)

,

Qxx =
∑N

i=1 l i cos(2θi)

∑N
i=1 l i

,

Qxy =
∑N

i=1 l i sin(2θi)

∑N
i=1 l i

. (64)

With the scalar order parameterSand the averaged
orientation angleθ with respect to thex-axis,

S=
√

Q2
xx+Q2

xy , θ =
1
2

arccos(Qxx/S) . (65)

With the unit vector (the director)n = (nx,ny) =
(cosθ ,sinθ) the tensor order parameter can also
be written in the following form:

Qi j = S(2nin j −δi j ) , (66)

where S has for perfectly ordered segments the
valueS= 1 and for an isotropic orientational dis-
tribution of the segments one hasS= 0.

For the same parameters as used in Fig. 18 and
Fig. 19 now the quantitiesS, θ and 〈ls〉 are cal-
culated as a function of time and the results are
shown in Fig. 23. The snapshots in Fig. 18 in-
dicate a significantly higher orientational order of
the lamellae in the case of selective boundary con-
ditions compared to neutral ones. This difference
in the orientational order can now be quantified by
comparingS(t) for the two boundary conditions,
as can be seen in Fig. 23(a).

The temporal evolution of the average boundary
segment length〈ls〉 after a deep quench is shown in
Fig. 23(c) and the mean orientationθ of segments
in Fig. 23(b) for the three different boundary con-
ditions: symmetric selective, neutral and mixed.

As can be already seen in Fig. 18, the average
segment length of straight lamellae without de-
fects takes in the thin film geometry its smallest
value in the case of neutral boundary conditions.
Simultaneously, one observes for neutral bound-
ary conditions the smallest values of the scalar
order parameterS(t) on the time scale shown in
Fig. 23(a) as well the strongest fluctuations of
θ(t). Since the action length of the boundaries in
the case of neutral boundary conditions is small
and the removal of defects is a slow process,〈ls〉
increases only slowly as function of time (〈ls〉 →
Ly in the long time limit).
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Figure 23: In part (a) the scalar order parame-
ter S, in (b) the lamellae orientation angleθ [cf.
Eq. (65)], and in (c) the averaged segment length
〈ls〉 [cf. Eq. (63)] is shown in the strong segre-
gation regime as a function of time for the same
parameters as in Fig. 18 and Fig. 19 for the bound-
ary conditions symmetric selective (ψ0 = ψLy =
1), symmetric neutral (ψ0 = ψLy = 0) and mixed
(ψ0 = 0, ψLy = 1).

In the case of selective boundaries the action
length of the substrates is larger and therefore ori-

(a)

(b)

(c)

Figure 24: Snapshots ofψ(x,y, t) at t = 100 (a),
t = 200 (b) andt = 300 (c) are shown for sym-
metric selective boundary conditions and the same
parameters as in Fig. 18.

ented lamellae are formed much earlier. Conse-
quently, one observes higher values of〈ls〉 and
of the order parameterS much earlier. The fact,
that S(t) has still not reached the valueS= 1 at
aboutt = 104 in Fig. 23(a) is related to the few de-
fects left, as can be seen for instance in Fig. 18(b).
As the regular structure is represented by lamel-
lae parallel to the substrates,〈ls〉 → Lx for long
time dynamics. The reduction of〈ls〉 for selec-
tive boundaries at aboutt = 200 in Fig. 23(c) is
related to intermediate structures that occur during
coarsening as indicated by the transition from the
pattern in Fig. 24(a) to the pattern in Fig. 24(b).

The rather early achieved orientational order for
selective boundaries is also indicated by the be-
havior ofθ(t), which approaches zero quite early
in Fig. 23(b). The large fluctuations ofθ(t) in
Fig. 23(b) for the neutral boundary conditions re-
flect the coarsening and the related removal of de-
fects on the route to a higher orientational order. In
this case the boundary segments are preferentially
oriented perpendicular to the substrates resulting
into the orientation angleθ ≈ π/2 for long-time
evolution. In case of mixed boundaries, one ob-
tains a mixing of both trends with respect to the
orientation of lamellae. The selective (upper) sur-
face triggers lamellae oriented parallel to the sub-
strate whereas the neutral (lower) surface initiates
lamellae oriented perpendicular to the substrate
with less defects as for the two neutral boundaries
[see Fig. 18(b)], and accordingly the results forS
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and〈ls〉, represented by dotted lines in Fig. 23(a)
and Fig. 23(c), lie between the two symmetric
cases.

For comparison we show the temporal evolution
of S, θ and 〈ls〉 in Fig. 25 in the weak segrega-
tion regime withε = 0.37. Both, the behavior of
S(t) and of〈ls〉 confirm, that in the weak segrega-
tion regime an orientational order is reached on a
smaller time scale as in the case of the strong seg-
regation regime.

The composition waves with almost equilibrium
wavelength result into〈ls〉 ≈ Lx for the selective
and mixed boundary conditions. The selective
boundaries provide the fastest formation of regu-
lar parallel lamellae and therefore the fastest sat-
uration of〈ls〉. In case of neutral boundaries〈ls〉
is increased faster in time compared to the deep
quench [Fig. 23(c)] with the tendency〈ls〉 → Ly.

In case of a not too deep quench the scalar or-
der parameterS shown in Fig. 25(a) grows much
faster in time compared to the deep quench. The
boundary segments are again preferentially ori-
ented perpendicular to the boundaries for the neu-
tral boundary conditions and parallel to the bound-
aries for the selective and mixed boundary condi-
tions [Fig. 25(b)].

Thus even this quite simple analysis of lamel-
lar patterns provides quantitative characteristics of
the dynamics and influence of the boundary con-
ditions on the resulting patterns, that are compli-
mentary to the standard analysis of the structure
factor.

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

t

S

 

 

selec

mix

neut

(a)

10
1

10
2

10
3

10
4

0

30

60

90

t

θ

 

 

selec

mix

neut

(b)

10
1

10
2

10
3

10
4

10
0

10
1

t

〈ls〉
λe

 

 
selec

mix

neut

(c)

Figure 25: In part (a) the scalar order parameter
S and in (b) the lamellae orientation angleθ [cf.
Eq. (65)], and in (c) the averaged segment length
〈ls〉 [cf. Eq. (63)] is shown in the weak segregation
regime as a function of time for the same parame-
ters as in Fig. 20 for the boundary conditions, sym-
metric selective (ψ0 =ψLy = 1), symmetric neutral
(ψ0 = ψLy = 0) and mixed (ψ0 = 0, ψLy = 1).
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6 Summary and conclusions

The formation and stability of lamellae in block
copolymers has been investigated in terms of a
mean-field model. A method for the determina-
tion of the stable wave number band has been in-
troduced in Sec. 3 and the shape of this band pro-
vides the basis for a deeper understanding of stable
lamellae conformations which are locked in ex-
periments on BCP films to different wavelengths
when using spatially periodic chemical nano pat-
terning of substrates.27

We have found, similar as in previous calcula-
tions in terms of self-consistent mean field theo-
ries or phenomenological free energy models,53,55

that selective boundaries induce lamellae orienta-
tions parallel to the substrates and in the case of
neutral boundaries lamellae orient perpendicular
to surfaces. We present also estimates in terms of
the different length scales parallel and perpendicu-
lar to the lamellae, whether lamellae orient parallel
or perpendicular to confining boundaries. Some of
the lamellae conformations calculated within this
work resemble very much the lamellae orienta-
tions observed experimentally in thin BCP films at
neutral substrates in Refs.30,31We derive also ana-
lytical expressions in the case of lamellae parallel
to substrates for the concentration modulation per-
pendicular to the boundaries, which can be useful
for qualitative considerations in further works.

In the case of mixed boundary conditions, i.e.
selective at one boundary and neutral at the oppo-
site boundary, we find a critical valueψS(crit ) of
the selectivity below which the energetically pre-
ferred, homogeneous lamellae orientation changes
from parallel to perpendicular with respect to the
confining boundaries for any film thickness.

The results obtained are interesting also with re-
gard to a recently used strategy to control the long
range lamellae order in diblock copolymer films,
where a thickness-dependent orientation of lamel-
lae has been found.64 While the lamellae oriented
parallel to the substrate in the ranges of film thick-
nesses,d< 19 andd>23, a perpendicular orienta-
tion in the range 19≤ d≤ 22 was observed.64 At a
first sight, this experimental observation seems to
be in contradiction to our results. However, these
experiments were done in the presence of a sol-
vent that changed the degree of swelling of the

BCP film. Although our mean-field model does
not contain explicitly the effects of a solvent on
the lamellae formation and its interaction with sur-
faces, we suggest to use our results for an interpre-
tation of the mentioned experiment. It has been
found that in the presence of a solvent the degree
of swelling φ = λe/λs (where λs stands for the
lamellae period in the swollen state) depends on
the film thickness.64 For very thin films (d≈ 3) the
degree of swelling is aroundφ ≈ 0.68 whereas for
thicker films (d ≈ 30) it is aboutφ ≈ 0.715, which
means, thicker films swell about 4% less than thin-
ner films and the concentration of the solventcs

is decreasing with increasing the film thickness.
Accordingly, for thinner films in the swollen state
we calculate an “effective value” of the model pa-
rameterα ∼ λ−4 : αs = (0.68)4α0 (α0 indicates
the interaction parameter in the absence of a sol-
vent). It is about 18% smaller than for thick films
whereαs = (0.715)4α0. Thus to model the influ-
ence of the solvent we can assume that the param-
eter α is effectively increased by increasing the
film thickness. In addition our simulations reveal
that the critical absorption at the surface,ψS(crit ),
increases withα. Assuming a linear behavior of
ψS(crit ) as a function ofα

ψS(crit ) = a ·α +b, (67)

in a small range aroundαs(d = 30)/αs(d = 3) ≈
1.2, we calculate the slopea≈ 14.8. Therefore, in
the ranged = 3· · ·30,

ψS(crit )[d = 30]−ψS(crit )[d = 3]≈ 0.7α0 ,
(68)

andψS(crit ) increases slightly with the film thick-
ness.

On the other hand the solvent may reduce the
selectivity of the confining surface (see, e.g.,65).
Thus,ψS is decreasing with an increasing solvent
concentration. According to the swelling behav-
ior it means thatψS is increasing with increasing
the film thicknessd as in thicker films the solvent
concentration is lower. The exact form of the curve
ψS(d) can be determined experimentally by mea-
suring the BCP-substrate interfacial tension in the
swollen state for various film thicknesses.

Combining now the two effects, the addition of
a solvent has, we end up with two curves that, de-
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pending on their relative position, offer the possi-
bility for a reorientation effect of the lamellae as a
function of the film thickness (see Fig. 26). The re-
gion whereψS(d) < ψS(crit ) indicates a possible
transition region.
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Figure 26: Critical valueψS(crit ) of the surface
selectivity andψS rescaled byα0 as a function of
d. The additional axis at the bottom indicates the
solvent concentrationcs.

Of course the curve forψS(d) in Fig. 26 is to
some extend hypothetical and the shape has to be
determined experimentally via measuring the in-
terfacial tension. Nevertheless, our results indicate
a route for further experiments on the thickness-
dependent lamellae reorientation. Especially for
diblock copolymers with a pronounced change of
the degree of swelling as a function of the film
thickness (like, e.g., in,66 where the increase of
the solvent uptake with decreasing film thickness
is more than 10%) a considerably wide reorienta-
tion range may be realized by a suitable tuning of
the wetting properties of the confining surfaces.

In addition to the energetic considerations of
the influence of boundaries on the homogeneous
lamellae orientations, we also investigated the dy-
namical evolution of lamellae structures between
boundaries. In the case of mixed boundaries, one
also finds complex lamellae conformations, even
if they have a higher free energy than a homoge-
nous lamellar order either parallel or perpendic-
ular to the confining parallel boundaries. Simu-
lations of the time-dependent mean field model
show, that the type of boundary condition deter-
mines strongly the evolution of the orientational

order as well as the number of defects in BCP
films parallel and perpendicular to the boundaries,
which has been quantified by using an order pa-
rameter for the characterization of the lamellae ori-
entation. The consideration of different quench
depths in combination with various boundary con-
ditions provides a strategy for the experimental
preparation of defect-free oriented lamellae.
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A Numerics of nonlinear solu-
tions

Here we describe the numerical determination of
stationary periodic solutions of Eq. (12) forβ = 0
as well as their linear stability. Since Eq. (12) is
isotropic one can choose thex direction parallel to
the wave vector of the periodic solution. A Fourier
expansion of the periodic solutionψk(x), as given
by Eq. (39), leads together with Eq. (12) after pro-
jection onto thej-th Fourier modeeikx j to a set of
nonlinear equations for the coefficientsA j :

[ε( jk)2− ( jk)4−α]A j − ( jk)2∑
l ,m

AlAmA j−l−m = 0 ,

j =−M . . .M . (69)

For M > 1 this system of nonlinear equations is
solved numerically by Newton’s iteration method
andM is adjusted to keep the relative error smaller
than 10−6. For ε = 1 this accuracy can be main-
tained in the case ofα = 0.001 with a very steep
density profile by choosingM = 120 modes and in
the case of smoother density variations byM = 15
modes. For larger values ofα a smaller number
of modes is required as the solution becomes more
harmonic.

The linear stability of periodic solutionsψk(x)
of Eq. (12) with respect to small perturbations
ψ1(x,y, t) is investigated as follows. One starts
with the ansatzψ(x) = ψk(x) + ψ1(x,y, t) and a
linearization of the basic equation (12) with re-
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spect toψ1(x,y, t) gives

∂tψ1(x,y, t) = ∇2(−ε +3ψ2
k −∇2)ψ1−αψ1 ,(70)

wherein the spatially periodic functionψk enters
parametrically. For a solution of this linear equa-
tion (70) with periodic coefficients one uses a Flo-
quet ansatz,

ψ1(x,y, t) = eσteis(xcosθ+ysinθ )φF(x)+c.c., (71)

with the Floquet parameters, a 2π/k-periodic
functionφF(x) and the angleθ enclosed between
the wave vector of the perturbationψ1 and the
wave vector of the basic periodic solution. This
periodic functionφF(x) can be represented by a
Fourier expansion

φF(x) =
M

∑
n=−M

Dn eikxn . (72)

Taking into account Eq. (39) forψk the linear par-
tial differential equation Eq. (70) is transformed
after projection into an eigenvalue problem

σDn =
{

εCn−C2
n −α

}

Dn−3Cn∑
l ,m

Al AmDn−l−m ,

Cn = (kn+scosθ)2+s2sin2 θ ,

n=−M . . .M , (73)

where the coefficientsAl are determined by
Eq. (69). We are interested in the growth rate
σ(ε,k,s,θ), i.e., in the eigenvalueσ with the
largest real part. The conditionRe[σ(ε,k,s,θ)] =
0 yields the stability boundariesε = ε0(k,s,θ).
For Re(σ) = 0 and θ = 0 one findsε = εE(k)
that determines the Eckhaus boundary. In the case
of Re(σ) = 0 and θ = π/2 the corresponding
ε = εZZ(k) gives the zig-zag line.

B Stability of weakly nonlinear
solutions

As described in Sec. 3.4 a periodic solution in a
two-dimensional isotropic system may be destabi-
lized by modulations along the wave vector (Eck-
haus instability), undulations perpendicular to it
(zig-zag instability), and a combination of both

types (skewed varicose).28 Two of the instability
branches are given in Fig. 1 and they may be de-
termined analytically near threshold by analyzing
the stability of the solution given by Eq. (35) for
P= 0 with respect to small perturbationsδA:

A= A0eiQx+δA . (74)

The analytical form of the perturbation is as fol-
lows:

δA= eσteiQx{a1exp[is(xcosθ +ysinθ)]
+a2exp[−is(xcosθ +ysinθ)]} . (75)

A linearization of Eq. (33) with respect to small
perturbationsδA leads for the growth rateσ to
a 2×2 eigenvalue problem (see e.g.28,29). In the
special caseθ = 0 and under the condition of neu-
tral growth σ = 0 the following expression for
the control parameterrE at the Eckhaus stability
boundary (θ = 0, longitudinal instability) follows:

rE =
6Q2

k2
c

= 6(k̃−1)2 . (76)

A comparison with the neutral curve in Eq. (37)
shows that the width of curverE(Q) is narrower
thanrN(Q) by the famous factor

rE(Q)

rN(Q)
=

1√
3

(77)

for Eckhaus stability boundary.28,29,46,47

The zig-zag stability boundary (transversal in-
stability) results for the caseθ = π/2 andσ = 0:

Q= 0 , i.e., k̃ZZ = 1 . (78)

Hence, the stationary weakly nonlinear solution
given by Eq. (35) is linearly stable in the region
Q≥ 0 (k̃≥ 1) between the zig-zag line in Eq. (78)
and the Eckhaus boundaryQE =

√

rk2
c/6 .

The results for the stability boundaries found so
far in this appendix in the framework of the ampli-
tude equation Eq. (33) are typically valid only in
the vicinity of the critical point (r & 0, |k−kc| ≪
1). An essential improvement of the analytical re-
sults for the stability diagram can be obtained by
the Galerkin approach in a one-mode approxima-
tion, as described in the following.
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Inserting the ansatz given by Eq. (32) into
Eq. (31) and projecting on the critical modee−ikcx

one gets in the leading order

∂tA= ∇2
kc
[−2k2

c(r +1)A+3|A|2A−∇2
kc

A]−k4
cA ,

with ∇2
kc
≡ (∂x+ ikc)

2+∂ 2
y . (79)

Above threshold one may derive for the amplitude
A0 with the ansatz Eq. (35) via Eq. (79) the follow-
ing expression:

A2
0 =

2k2
c

3

[

r −
[

(Q+kc)
2−k2

c

]2

2k2
c(Q+kc)2

]

=
2k2

c

3

[

r − (k̃2−1)2

2k̃2

]

. (80)

One can easily see that this amplitudeA0 van-
ishes at the neutral curve Eq. (28) for arbitrary val-
ues ofr. Inserting perturbation Eq. (74) with the
amplitude given by (80) into Eq. (79) the growth
rate σ is again calculated from a 2× 2 eigen-
value problem. The various stability boundaries
are determined via the neutral stability condition
σ(r,Q,θ) = 0 in terms of the control parameter
r(Q,θ) by keeping simultaneously only the lead-
ing terms ins. Minimization of r(Q,θ) with re-
spect toθ gives in the rangeQ> 0 the angleθ = 0
and therefore an Eckhaus stability boundary

rE =
3k̃8−2k̃6−6k̃2+5

2k̃2(k̃4+3)
, (81)

that coincides with the result obtained in the
framework of the free energy considerations [see
Eq. (49)]. For̃k between the neutral curve given by
Eq. (28) and the Eckhaus boundary in Eq. (81) the
periodic solution in Eq. (35) withA0 from Eq. (80)
is unstable with respect to long-wavelength per-
turbations along the wave vector, i.e.s→ 0 and
θ = 0.

In the vicinity of the band centerk̃= 1 one has in
the leading orderrE = 6(k̃−1)2+ · · · in agreement
with the result derived via the standard amplitude
equation [see Eq. (76)].

A minimization of r(Q,θ) in the rangeQ < 0
gives the angleθ = π/2 for the zig-zag instability
line

QZZ = 0 , i.e., k̃ZZ = 1 , (82)

in agreement with Eq. (50). For the perturbations
Eq. (74) withs→ 0, θ = π/2 the growth rateσ is
negative for̃k on the right hand side of the zig-zag
line Eq. (82) up to the Eckhaus boundary Eq. (81).

A skew varicose instability with 0< θ < π/2
does not occur.

C Weakly nonlinear solution
under confinement

Close to the onset of microphase separation (r &
0) the dynamics of the amplitude of the periodic
order parameter fieldψ(r) is governed by the
Newell-Whitehead-Segel amplitude equation (33),
as described in Sec. 3.2. This equation has spa-
tially periodic solutions in extended systems as de-
scribed in Sec. 3.2, but it may also be solved in the
presence of boundaries.

Here we take into account boundary conditions
for the case of lamellae oriented parallel to the sub-
strates. With the ansatz

ψ(y) =

√

2k2
cr

3
B(y)eikc(y−y0)+c.c.. (83)

one gets, starting from Eq. (31), the following
equation of the envelopeB(y):

2
rk2

c
∂ 2

y B+
(

1− | B |2
)

B= 0. (84)

This equation has constant solutions of the form

B0(y) = B0 =±1, (85)

corresponding to a spatially periodic fieldψ(y) of
constant amplitude.

Eq. (84) also has the solution

B(y) = B0 tanh

[

kc
√

r
2

(y− ỹ)

]

(86)

and this may be used to construct approximate so-
lutions for lamellae parallel to the two boundaries.
The decomposition (83) is based on the assump-
tion, thatB(y) varies slowly on the scale 2π/kc and
close to threshold one may simplify the boundary
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conditions (59) to the following conditions,

∂yψ|y=0,Ly = 0, (87a)

ψ|y=0 = ψ0 = c·ψb , (87b)

ψ|y=Ly = ψLy = c·ψb , (87c)

by neglecting higher order derivatives ofψ. The
constantc is used to switch between different types
of boundary conditions:c= 0 corresponds to neu-
tral boundaries, andc 6= 0 to selective (symmetric)
boundaries.

In order to fulfill the boundary conditions (87) at
y= 0 andy= Ly, we use a linear superposition of
the solution (86) of the form

B(y) = v1+v2Y1(y)+v3Y2(y) , (88)

where the constantsv1,v2,v3 indicate the possible
signs±1 and with

Y1(y) = tanh

[

kc
√

r
2

(y−y1)

]

, (89a)

Y2(y) = tanh

[

kc
√

r
2

(y−y2)

]

. (89b)

The constantsy1 and y2 are determined by the
boundary conditions.

With the bulk value

ψb =

√

8k2
cr

3
(90)

the order parameterψ(y) takes the form

ψ(y) =ψb[v1+v2Y1(y)+v3Y2(y)]cos[kc(y−y0)] .
(91)

Inserting Eq. (91) into the boundary conditions
(87) one has the following equations

[

v2(1−Y2
1 (0))

√
r

2

]

cos(kcy0)+

[v1+v2Y1(0)−v3]sin(kcy0) = 0, (92a)
[

v3(1−Y2
2 (Ly))

√
r

2

]

cos(kcy0)+

[v1+v2+v3Y2(Ly)]sin(kcy0) = 0, (92b)

[v1+v2Y1(0)−v3]cos(kcy0) = c, (92c)

[v1+v2+v3Y2(Ly)]cos(kcy0) = c (92d)

for the determination of the constants of the ansatz.

Here we assumed a system sizeLy = n · (2π)/kc

and exploited the approximation that the bound-
aries do not influence each other so thatY1(Ly) = 1
andY2(0) = −1. From this one may directly de-
ducev1 = v3 =−v2.

In the following some special cases are con-
sidered to illustrate the high quality of this ap-
proximation. The cases of selective (c = 1) or
neutral (c = 0) boundaries may be solved explic-
itly. For the case of neutral boundaries we obtain
kcy0 =±π/2,y1 = 0 andy2 = Ly as a solution [see
Fig. 9 (b)]. v1 remains arbitrary in this case. If
c= 1 the value at the boundary corresponds to the
bulk value and this case is conform with the pe-
riodic one whereB(y) = ±1 = const. andy0 = 0
[see Fig. 27 (a)]. Forc < 1 the selectivity is re-
duced [see Fig. 27 (b)]. In this case an explicit so-
lution is not possible but one may use the approx-
imation sin(kcy0) ≈ 0 if c is not too small what
corresponds toy0 ≈ 0. With this approximation
we findY1(0) ≈ c andY2(Ly) ≈ −c andv1 = −1
as a solution. The example shown in Fig. 27 (b)
is for c = 0.5 what results iny1 ≈ −10.83 and
y2 ≈ Ly+10.83. Although this is only an approx-
imation it still fits very well the full numerical so-
lution. Of course this case may be studied more
accurately by taking into account the wave num-
ber change. In this case one has more free param-
eters to adjust reasonably. Furthermore in the case
of mixed boundaries this approximation becomes
more complex and higher order derivatives have to
be taken into account. The solution of the result-
ing equations becomes involved and the advantage
of the approximations gets lost in comparison with
the full numerical solution of the problem.
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Figure 27: The numerical solutionψ(y) of
Eq. (12) is shown for various boundary conditions
for lamellae parallel to the boundary: In part (a)
for selective boundariesc= 1 and in (b) for selec-
tive boundaries with a reduced selectivityc= 0.5.
The solid lines mark the numerical solution and
the analytical approximation given by Eq. (91) is
displayed by the dots. The parameters areLy =
10λe, g= 1, r = 0.021,kc = 0.7 (corresponding to
ε = 1 andα = 0.24).
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