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Geometry effects on Rayleigh-Bénard convection in rotating annular layers
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Rayleigh-Bénard convection is investigated in rotating annular cavities at a moderate dimensionless rotation
rate � = 60. The onset of convection is in the form of azimuthal traveling waves that set in at the sidewalls and at
values of the Rayleigh number significantly below the value of the onset of convection in an infinitely extended
layer. The present study addresses the effects of curvature and confinement on the onset of sidewall convection by
using three-dimensional spectral solutions of the Oberbeck-Boussinesq equations. Such solutions demonstrate
that the curvature of the outer boundary promotes the onset of the wall mode, while the opposite curvature of the
inner boundary tends to delay the onset of the wall mode. An inner sidewall with a radius as low as one tenth of
its height is sufficient, however, to support the onset of a sidewall mode. When radial confinement is increased
the two independent traveling waves interact and eventually merge to form a nearly steady pattern of convection.
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I. INTRODUCTION

Flows induced by thermal buoyancy in rotating systems
play an important role in many industrial processes as well as
in numerous problems of geophysical and astrophysical fluid
dynamics. For this reason numerous theoretical investigations
and laboratory experiments have been devoted to the properties
of convection in rotating layers. A peculiar property is the
subject of this paper, namely the fact that the onset of
convection may occur first at the sidewall of the fluid layer.

For a laterally unbounded horizontal layer with constant
temperatures T1 and T2,T1 > T2, applied at bottom and
top, respectively, and rotating about a vertical axis it has
been established by Chandrasekhar that overstability is only
possible if the Prandtl number is below a certain value of
about 0.69 [1]. Here the Prandtl number denotes the ratio
between the kinematic viscosity ν and the thermal diffusivity
κ . When a rotating fluid layer is bounded by lateral rigid
sidewalls, however, the onset of convection can occur via
a supercritical Hopf bifurcation for all Prandtl numbers [2].
When the Coriolis number, which is defined by � = 2πf d2/ν,
where f is the rotation frequency and d is the height of
the layer, is greater than about 30 [3], the onset of sidewall
modes becomes preferred in comparison with the onset of
convection in the bulk and the instability of the state of pure
conduction occurs via a traveling wave attached to the sidewall.
As expected for a supercritical bifurcation, the amplitude of
the sidewall convection grows in proportion to

√
Ra − Rac.

Here the definition Ra = gαd3(T1 − T2)/νκ is used for the
Rayleigh number, with gravity g and coefficient of thermal
expansion α. The onset of the traveling wave attached to the
sidewall is facilitated by the fact that part of the Coriolis force
is balanced by the pressure.

The so-called wall mode has been widely studied exper-
imentally and theoretically in the past years mainly within
cylindrical cavities. It was first experimentally identified
through shadowgraph imaging in 1991 [4]. The critical

Rayleigh number for the onset of the wall mode has been
determined numerically in Ref. [5]. At small amplitudes its
dynamics is well described by a complex Ginzburg-Landau
equation (CGL) [6]. The coefficients of the CGL equation
have been determined experimentally [6] and numerically [7]
with good agreement. In Ref. [7] the onset of the wall mode in
a cylinder of aspect ratio � = 1 has been studied numerically.
Here � denotes the ratio of radius to height of the cylindrical
box. Also the limit cases of � → ∞ [8] or of a very narrow
channel [9] have been studied.

In this study, we are concerned with rotating Rayleigh-
Bénard convection in an annular gap between two coaxial
cylindrical boundaries. Such a system allows us to investigate
linear and nonlinear properties of waves at the inner and
the outer boundary of the annular layer. In comparison with
convection in a rotating cylinder, the convection planform is
strongly dependent on the two geometric parameters which are
the radii ratio and the aspect ratio. Most theoretical analyses
of wall-attached convection assume the idealization of planar
sidewalls. Liao et al. [10] have performed linear and weakly
nonlinear analysis of the case of rapidly rotating straight
channels to study the dependence of the convection planform
on the aspect ratio and on the Prandtl number. When curvature
becomes significant, the two oppositely traveling modes are
characterized by different critical Rayleigh numbers and
complex Ginzburg-Landau equations are no longer applicable.
Three-dimensional numerical simulations of fully nonlinear
convection have been reported by Li et al. [11], who focused
their study on the interactions between the inner and outer wall
modes. These nonlinear simulations revealed interesting new
solutions when the two oppositely traveling three-dimensional
waves interfere intensively.

The present study is primarily concerned with the effect
of the curvature on the onset of wall modes convection at a
moderate rotation rate, � = 60, which is typical for the regime
between the minimum value of � for the onset of the sidewall
mode and the high value of � = 500 used by Li et al. [11].
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SÁNCHEZ-ÁLVAREZ, SERRE, DEL ARCO, AND BUSSE PHYSICAL REVIEW E 89, 063013 (2014)

The asymptotic theory of Ref. [11] suggests that the results
presented in the present paper are qualitatively correct at even
higher values of �. The characteristic length scales decrease
with increasing � and the numerical effort required for their
resolution will have to increase. The chosen value of � thus
appears to be an optimal one.

We are interested in the onset of convection in finite annular
channels in which the dynamical asymmetry of the modes at
the inner and outer curved walls becomes important. When
the channel width is sufficiently large with respect to the
radial extension of wall modes, the nonlinear interaction of
the waves near the onset is weak such that they can be
studied independently on both concave and convex walls.
On the other hand, when the channel is narrow, the two
oppositely traveling three-dimensional waves always interact
nonlinearly.

The paper starts with the mathematical formulation of the
problem and an outline of the numerical method for direct
numerical simulations in Sec. II. Results of the numerical study
are presented in Secs. III and IV. We first present the curvature
dependence of the convection onset in annular cavities with
moderate to high curvatures of the inner sidewall (small to
moderate radii ratio), then turn to the radial confinement effect
for annular cavities with aspect ratios of the order unity. An
outlook on convection at higher Rayleigh numbers is given in
Sec. V.

II. NUMERICAL INTEGRATION OF THE BOUSSINESQ
EQUATIONS

We are considering a horizontal annular fluid layer heated
from below of height d with outer radius rout = d�out and
inner radius rin = d�in (Fig. 1). Such a geometry is fully
characterized by its aspect ratio L ≡ �out − �in and its radii
ratio χ ≡ �in/�out.

As in most works on convection in rotating layers we
adopt the Oberbeck-Boussinesq approximation in that the
temperature dependence of the density is taken into ac-
count only in the gravity term. The temperature difference
applied between the lower and upper boundary is T1 − T2.
The temperature is made dimensionless using the definition
T = [T ∗ − (T2 + T1)/2]/(T1 − T2), where T ∗ represents the
dimensional temperature. Using d, d2/κ, and κ/d as scales for
length, time, and velocity, respectively, we write the equations
of motion relative to the rotating frame of reference and the

Ω

g
dL

dΓou t

dΓin

T1

T2

d

FIG. 1. Geometrical model of the problem of Rayleigh-Bénard
convection in an rotating annular cavity with height d , inner radius
rin = d�in, outer radius rout = d�out, and aspect ratio L = �out − �in.
The lower and upper boundaries are kept at constant temperatures T1

and T2, respectively, being T1 > T2.

heat equation as follows:

1

Pr

(
∂V
∂t

+ V · ∇V
)

= −∇p − 2�ẑ × V + ∇2V + RaT ẑ,

(1)

∇ · V = 0, (2)

∂T

∂t
+ V · ∇T = ∇2T , (3)

where �, Pr, and Ra are the Coriolis, Prandtl, and Rayleigh
numbers, respectively, defined in the introduction. ẑ is the
unit vector in the axial direction (opposite to the direction of
gravity). For an annular channel it is convenient to introduce
a cylindrical polar coordinate system (r , θ, z). The velocity
components are V = (Vr,Vθ ,Vz) and p is the the dynamic
pressure. In order to focus the attention on the sidewall mode
we assume that the centrifugal force is negligible, rout�

2 �
gd4/ν2, which is quite well approached in most experiments
[4]. For a recent analysis of the wall mode in the presence of
the centrifugal force, see Ref. [12].

Highly conducting upper and lower boundaries are assumed
such that the temperature T is fixed at the values T = ∓0.5 at
z = ±0.5. No-slip boundary conditions (Vr = Vθ = Vz = 0)
are applied at all walls since these are fixed in the rotating
frame. Insulating thermal boundary conditions are used at the
vertical sidewalls since this kind of boundary condition is most
relevant to experiments in which Plexiglas is often used.

Numerical solutions of Eqs. (1)–(3) are obtained through a
pseudospectral collocation–Chebyshev expansion in both the
radial and the axial directions (r , z), and a Fourier expansion is
used in the azimuthal direction. This choice takes into account
the orthogonality properties of Chebyshev polynomials and,
in particular, provides exponential convergence, referred to
as spectral accuracy [13]. The time integration scheme is
semi-implicit second-order accurate. It corresponds to a com-
bination of the second-order Euler backward differentiation
formula and the Adams-Bashforth scheme for the nonlinear
terms. The capability and the accuracy of the present code
to model various rotating Rayleigh-Bénard phenomena have
already been exemplified in Refs. [14,15]. A single grid with
mesh (33 × 128 × 33) in the radial, azimuthal, and axial
directions has been used. Such mesh is reliable because the
dependence of the solution on both the vertical and the radial
coordinates remains smooth. In particular at the moderate
rotation rate � = 60, the Ekman layers at the top and bottom
boundaries are well resolved with a minimum of four mesh
points in each boundary layer because of the decreasing mesh
size due to the Gauss-Lobatto points distribution near the
boundary. For all parameters, spectral coefficients series of
any solution have been shown to converge.

The corresponding time step is equal to δt = 5 × 10−3.
Computations are initialized from a conducting state corre-
sponding to a fluid at rest. When the Rayleigh number is
increased the linear profile of the temperature is perturbed
by a white noise with an amplitude of 0.1%.

The HPC resources of CNRS at IDRIS have allowed
us to perform three-dimensional numerical simulations of
time-dependent solutions over a wide range of geometrical
parameters.
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III. CURVATURE DEPENDENCE OF ONSET OF
CONVECTION ON SIDEWALLS

As mentionned in Sec. II the annular channel is fully
characterized by its aspect ratio L and its radii ratio χ .
These two parameters define the relative channel width and
the relative sidewall curvatures, respectively. Curvature is
defined from a combination of these two parameters. When
confinement is not too strong and curvature effect is physically
significant, stability analysis of a rotating annulus by Li et al.
[11] reveals that convective instability at the onset assumes
the form of a single retrogradely propagating wave attached
to the outer sidewall. When the radius ratio χ is moderate,
meaning that curvatures of both sidewalls are of the same
order of magnitude, convection slightly above the onset gives
rise to another progradely propagating wave attached to the
inner sidewall. The frequencies, wave numbers, and critical
Rayleigh numbers of these two oppositely traveling waves
are different, leading eventually to nonlinear interactions as
investigated by Li et al. [11].
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FIG. 2. Critical Rayleigh number, Rac, at the inner sidewall
region (closed circles) and at the outer sidewall region (open circles),
vs dimensionless inner radius, �in, for Pr = 0.7 (top) and Pr = 5.3
(bottom). The numbers above the data points indicate azimuthal wave
number of the selected mode. The lines are only a guide to the eye.

In this section, we are interested in the effects of the
curvature on the onset of sidewall convection along the convex
inner and the concave outer wall. When the annular region is
sufficiently wide, the onsets of convection at the inner and the
outer sidewalls occur nearly independently and the interaction
of the two modes is negligible at values of Ra close to onset.

Nonlinear computations have been carried out in a cavity
with a fixed aspect ratio L = 2. That corresponds to a good
compromise between weak confinement and computational
savings since a rough estimate of the radial extension of wall
modes yields about 0.2 in dimensionless units at moderate
rotation rate � = 60, according to the asymptotic analysis
of Hermann and Busse [8] for a plane wall. Curvature is
varied by changing the cavity in a range of dimensionless
inner radii, 0.1 � �in � 1.5, that corresponds to a variation
of the curvature parameter χ in the range 0.048 � χ � 0.43.
Since all computations have been for the fully nonlinear system
of Eqs. (1)–(3), the critical values of Rayleigh number Rac

are determined by using the property that the kinetic energy
of convection increases linearly with Ra for a limited region
above Rac. The azimuthally averaged square of the vertical
velocity at the distance of 0.12 from the sidewalls on the
midplane of the layer is computed at several supercritical
Rayleigh numbers. Those values exhibit a well-defined linear
dependence on Ra that can reliably be extrapolated to zero for
the determination of the critical values Rac for the onset of
sidewall convection at the inner as well as the outer sidewall.
Results for the inner and the outer sidewalls are shown in Fig. 2
for two different Prandtl numbers.

For the convection at the inner wall, critical value of the
Rayleigh numbers Rac show the expected trend predicted
by linear stability analysis [11], namely that they increase
with decreasing the inner radius. In other words, curvature
inhibits sidewall convection at the inner wall. But even when
the curvature is very strong, corresponding to a very small
inner radius, typically rin = 0.1d here, it cannot prevent the
onset of sidewall convection. Contrary to what one might have
expected, solutions show that sidewall convection can occur
on an inner sidewall having a perimeter much smaller than
the theoretical azimuthal wavelength, which is about 2.1d [5].
This is evident from the m = 1 wave shown in Fig. 3 in the case
of an inner radius rin = 0.1d. Our numerical simulations show
the opposite trend for convection on the outer sidewall with
a destabilization effect of the curvature. The critical Rayleigh

FIG. 3. Isotherms at midheight in an annular cavity with �in =
0.1 and L = 2 at � = 60. (a) Pr = 5.3, Ra = 6150. (b) Pr = 0.7,
Ra = 5750.
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number may appear to be less sensitive to curvature on this
sidewall but it is simply because the curvature variations
between two outer radius positions are smaller than on the
inner sidewall.

In the limit of large inner radii, critical Rayleigh numbers on
both sidewalls seems to tend to a single asymptotic value that
is about Rac = 4900 and Rac = 5300 for Pr = 0.7 and Pr =
5.3, respectively. These values agree reasonably well with the
critical Rayleigh numbers for a straight channel obtained in
Ref. [8]. Please note a misprint in the caption of Fig. 2 of the
latter paper: It should be τ 2 = 4�2d4/ν2.

A property of the plots in Fig. 2 is that the values of Rac do
not vary monotonically. That is caused by the discrete nature
of the azimuthal wave numbers m. Since the minimizing value
of m stays constant for a certain range of sidewall curvature,
this value of m is no longer quite optimal at the ends of this
range where it competes with values m + 1 or m − 1.
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FIG. 4. Critical frequency, ωc, for the inner sidewall mode
(closed circles) and for the outer sidewall mode (open circles), vs
dimensionless inner radius, �in, for Pr = 0.7 (top) and Pr = 5.3
(bottom). The numbers over the circles indicates azimuthal wave
numbers of the nonlinearly selected mode. The lines are only a guide
to the eye.

The frequency exhibits a linear dependence with Ra − Rac,
with a finite intercept at onset [16]. This behavior allow us
to compute the critical frequencies at onset. The results are
shown in Fig. 4 for two different Prandtl numbers.

IV. INTERACTIONS OF SIDEWALL CONVECTION IN
ANNULAR LAYERS

In this section, we are interested in the confinement
effect on the onset of sidewall convection. We consider
three rotating annular cavities with aspect ratios L less than
the dimensionless inner radius �in which is kept constant,
�in = 7.5, in all three cases. The aspect ratio L is lowered
from L = 5 to L = 1.5 and L = 0.75 in order to increase the
confinement. In contrast to the previous section, the radius
ratios are varying from χ = 0.6, χ = 0.75, to χ = 0.9 in the
three cases. For this range of χ , the curvatures of both sidewalls
are close in absolute value and two oppositely traveling waves
can be expected near the onset of convection. Their nonlinear
interactions has previously been observed by Li et al. [11]
at χ = 0.75 for � = 300. Since the critical Rayleigh number
for sidewall convection is given by about Rac = 5340, we are
carrying out our computations at Ra = 5600 which is about
5% above the onset.

For L = 5, the annular channel is sufficiently wide and
the two sidewall modes do not interact and travel in opposite
directions as shown in Fig. 5(a) while the fluid in the
interior between the walls is nearly at rest. Both waves have
nearly the same absolute values of their frequencies and
wave numbers, ωin = −9.87, ωout = +9.99, and kin = 4.13,
kout = 4.08, respectively.

For L = 1.5, the annular channel is sufficiently narrow now
such that some interaction between the oppositely traveling
waves occurs as it is apparent in Fig. 5(b). The inner and
outer travelling waves are characterized by their wave numbers
kin = 3.73, kout = 3.66 and the corresponding frequencies
ωin = −10.09, ωout = +9.08. This interaction occurs in the
form of a nearly linear superposition as is shown in Fig. 6,
where the z velocity in the middle of the channel at midheight
has been plotted as a function of time. This temporal signal
exhibits a period of 6.09, which corresponds to the sum
ωb = ωout + ωin = +1.01 of the traveling wave frequencies.
In this intermediate region a pairing between the convection

(a) (b)

FIG. 5. Isotherms at midheight in an annular cavity with �in =
7.5 for Pr = 5.3 at � = 60. (a) Sidewall traveling waves (L = 5,
Ra = 5600). (b) Interaction of two counter-rotating waves in a narrow
annular cavity (L = 1.5, Ra = 5600).
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FIG. 6. Vertical velocity at the middle of the cross section of the
annular channel as function of time for the same parameter values as
in Fig. 5(b).

structures on opposite sides of the annular layer can be
observed leading to transverse rolls. Owing to the opposite
drifts of the sidewall modes the rolls get stretched in the
direction parallel to the sidewalls until they break and new
transverse rolls are formed. A similar situation at much higher
rotation is shown in Ref. [11].

For L = 0.75, the width of the channel is of the same order
of magnitude as the radial extent of the sidewall modes, and the
latter can no longer be realized as separate waves. Instead they
combine to form a nearly steady pattern of convection in the
form of rolls oriented nearly perpendicular to the sidewalls as
shown in Fig. 7 In the limit of an infinite radius corresponding
to a straight channel both sidewalls are equivalent and a steady

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 7. Convection patterns in the narrow channel with L = 0.75,
�in = 7.5, for � = 60. (left) Pr = 5.3 and (a) Ra = 6000, (b) Ra =
12 000, and (c) Ra = 17 600. (right) Pr = 0.7 and (d) Ra = 6000,
(e) Ra = 8000, and (f) Ra = 12 000. Only a quarter of the cavity is
shown (view from the top).

convection pattern must be expected [9,10,17]. In the present
configuration the dominance of the mode at the outer wall gives
rise to a pattern drifting steadily in the retrograde direction with
a frequency somewhat larger than the sum of the two sidewall
mode frequencies. The orientation of the rolls is not strictly
radial but exhibits a spirallike inclination turning inward in the
prograde direction, at least for lower values of Ra.

When increasing Rayleigh number, the direction of spi-
ralling changes sign (Ra = 12 000) and at high Rayleigh
numbers (Ra = 17 600) the angle reflects a spiral turning
outward with the sense of rotation (see Fig. 7).This change
can be attributed to an increasing mean shear in the channel.
The steady convection is associated with a mean axisymmetric
azimuthal flow. In the limit of an infinite radius of the
channel the flow will be antisymmetric with respect to the
vertical midplane of the channel. Near the upper and lower
boundaries there are slight reversals of this shear flow which
can also be seen, for instance, in the related problem treated
by Plaut [7]. The average over the height of channel of this
flow is shown in Fig. 8 and it is evident that its amplitude
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FIG. 8. Vertically averaged profiles of the axisymmetric compo-
nent of the azimuthal velocity Vθ for Pr = 5.3 (top) and Pr = 5.3
(bottom) for the cases of Fig. 7.
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(i) (ii)

(iii)(iv)

FIG. 9. Temporal evolution of a very nearly periodic pattern
for �in = 3, L = 3, � = 60, Pr = 5.3, Ra = 7000. The pattern
is shown at four subsequent time steps separated by the time
1.75 × 10−2[d2/κ]. The sense of time is followed clockwise such
that a fifth plot would be nearly identical to plot (i).

increases strongly with the Rayleigh number. At Ra = 17 600
in the case of Pr = 5.3 and at Ra = 12 000 in the case
of Pr = 0.7 the amplitude of the mean shear has become
strong enough to clearly reverse the sense of spiraling of
the convection rolls. The Prandtl number dependence of this
effect is easily understood by looking at Eq. (1), according
to which the Reynolds stress term is multiplied by Pr−1.

V. OUTLOOK ON CONVECTION AT HIGHER RAYLEIGH
NUMBER

The dynamics of the sidewall modes of convection which
has been the subject of this paper is only a particularly simple
part of the dynamics of convection in rotating annular layers.
Rather chaotic pattern evolutions may be observed at higher
Rayleigh numbers than those considered in this paper. Besides
the two sidewall convection waves propagating in opposite
azimuthal directions, interior convection rolls can be observed
when the aspect ratio L is sufficiently large, say, L > 2.5.
Besides their interaction with the sidewall modes, the interior
convection is influenced by the dynamics of the Küppers-
Lortz instability [18]; for an experimental realisation see
Ref. [19].

Here we give an impression of such a time-dependent state
of convection by the example shown in Fig. 9. A particularly
simple case has been chosen by ensuring that the wave numbers
min and mout of the sidewall modes satisfy the ratio 2, min = 12
and mout = 24. Thus the pattern in each of the four pictures
of Fig. 9 exhibits a fourfold periodicity in azimuth. Even with
this symmetry and even when a shift in azimuth is allowed for,
the pattern is not strictly periodic in time, however.

Highly chaotic patterns are seen when the Rayleigh number
and the aspect ratio L are increased in the absence of simple
ratios mout/min. The incessantly propagating sidewall modes,
however, provide a regularity to this convection chaos, the
beauty of which can be captured only in a movie.
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