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ABSTRACT

Numerical MHD simulations play an increasingly important role for understanding the mechanisms of stellar
magnetism. We present simulations of convection and dynamos in density-stratified rotating spherical fluid shells.
We employ a new 3D simulation code for obtaining the solution of a physically consistent anelastic model of the
process with a minimum number of parameters. The reported dynamo simulations extend into a “buoyancy-
dominated” regime where the buoyancy forcing is dominant while the Coriolis force is no longer balanced by
pressure gradients, and strong anti-solar differential rotation develops as a result. We find that the self-generated
magnetic fields, despite being relatively weak, are able to reverse the direction of differential rotation from anti-
solar to solar-like. We also find that convection flows in this regime are significantly stronger in the polar regions
than in the equatorial region, leading to non-oscillatory dipole-dominated dynamo solutions, and to a concentration
of magnetic field in the polar regions. We observe that convection has a different morphology in the inner and the
outer part of the convection zone simultaneously such that organized geostrophic convection columns are hidden
below a near-surface layer of well-mixed highly chaotic convection. While we focus our attention on the
buoyancy-dominated regime, we also demonstrate that conical differential rotation profiles and persistent regular
dynamo oscillations can be obtained in the parameter space of the rotation-dominated regime even within this
minimal model.

Key words: convection – dynamo – magnetohydrodynamics (MHD) – stars: magnetic field – Sun: magnetic fields
– Sun: rotation

1. INTRODUCTION

Recent progress in observational and computational cap-
abilities have led to substantial advances in our understanding
of the origins of stellar and planetary magnetism and
variability. Dynamo processes driven by convection in the
presence of rotation play a key role. This process is particularly
complex in the case of turbulent convection in stellar and
planetary envelopes. The interaction of convection, magnetic
field, and rotation results in variations of the rotation rate with
depth and latitude, called differential rotation, and also in
large-scale meridional flows. Differential rotation is a crucial
part of dynamo mechanisms. It has been measured quite
accurately for the solar surface by tracking the motion of
various features and also through analysis of the Doppler shift
of spectral lines. Moreover, helioseismology data from the
Solar and Heliospheric Observatory and Solar Dynamics
Observatory space missions and from the ground-based
network GONG have provided measurements of the internal
rotation (e.g., Schou et al. 1998) and of the meridional
circulation of the Sun (Zhao et al. 2013).

Recently, high-precision spectroscopic and photometric
observations have enabled measurements of the differential
rotation on other stars. The most prominent feature of the solar
differential rotation is that the equatorial zone rotates faster
than higher latitude regions. For other stars, this type of
differential rotation is called solar-like rotation. When the
equator rotates slower than the polar regions then such a
rotational profile is called anti-solar. Anti-solar differential
rotation has been observed by Doppler imaging techniques on
several K-giant stars (Strassmeier et al. 2003; Kovári

et al. 2015). Recent analysis of the high-precision light curves
from the Kepler mission for a sample of 50 G-type stars by
Reinhold & Arlt (2015) found 21–34 stars with solar-like
differential rotation and 5–10 stars with anti-solar rotation. The
latter work awaits confirmation from independent studies.
One of the first theories of nonlinear convection in rotating

shells, developed in the Boussinesq approximation by Busse
(1970; also Busse 1973), demonstrated that the dynamical
effects of rotation on convection are a primary mechanism of
stellar differential rotation. This theory revealed that the basic
properties of differential rotation primarily depend on the
supercritical value of the Rayleigh number which measures the
strength of the buoyancy forces and determines the magnitude
of convection motions. For relatively small supercritical
Rayleigh numbers convection develops mostly in the equatorial
region in the form of convective rolls (also known as “banana
cells”) oriented along the rotation axis. Angular momentum
transport by these cells causes solar-like differential rotation.
This regime of weakly supercritical Rayleigh numbers
corresponds to small Rossby numbers defined as the ratio of
the rms convective velocity to the mean rotational velocity.
This regime is called rotationally dominated. Early numerical
simulations in the Boussinesq approximation by Gilman (1976)
confirmed these results, and also found that at high supercritical
Rayleigh numbers when convection develops at all latitudes
differential rotation may become anti-solar. This regime is
characterized by large (typically greater than 1) Rossby
numbers and is called buoyancy-dominated. While the
rotationally dominated regime is likely to occur in the deep
convection zone where convective velocities are small, Gilman
& Foukal (1979) noticed that on the Sun a typical
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supergranulation turnover time is much shorter than the
rotation period and thus the convection is in the buoyancy-
dominated regime. This suggests that on the Sun a combination
of the two regimes takes place, resulting in a complicated
differential rotation profile.

Indeed, the differential rotation profile of the Sun determined
by helioseismology (e.g., Schou et al. 1998) turned out to be
quite different from the theoretical predictions. It is character-
ized by a nearly radial orientation of angular velocity at
midlatitudes (the so-called “conical profile”). The angular
velocity also decreases monotonically from the equator to the
poles by about 30%. In addition, helioseismology inferences
reveal two narrow rotational shear layers at the boundaries of
the convection zone: the so-called tachocline at the bottom and
a near-surface shear layer at the top.

Substantial efforts have been expended to reproduce the
observed solar rotation in three-dimensional numerical simula-
tions. These efforts were reviewed by Miesch (2005) and more
recently by Brun et al. (2014). Historically, simulations have
been successful in reproducing the decrease in angular velocity
from equator to poles. However, a major discrepancy is that
most simulations tended to feature angular velocity contours
parallel to the rotation axis (the so-called “cylindrical profiles”),
rather than conical profiles. The profile of the differential
rotation is governed by the zonal component of the vorticity
equation and its analysis suggests that cylindrical profiles may
be avoided if (a) baroclinic forcing with non-vanishing
latitudinal entropy gradient exists, or if (b) sufficiently strong
Reynolds stresses or (c) Lorentz forces develop (e.g.,
Miesch 2005; Miesch et al. 2006). Pursuing alternative (a),
Miesch et al. (2006) imposed a latitudinal gradient of entropy
as a bottom boundary condition in global convection simula-
tions. They were so successful in finding conical differential
rotation profiles that many groups have subsequently adopted
this model as a standard (e.g., Browning et al. 2006; Nelson
et al. 2013; Fan & Fang 2014). While there is physical
justification for a non-vanishing latitudinal entropy gradient,
this model assumption must be regarded with caution as the
imposed latitudinal variations in entropy have not been
generated self-consistently by the convective motions in the
simulations. Large amplitude Reynolds stresses required to
realize alternative (b) can be achieved by driving convection
more strongly. Because most early studies argued that the solar
magnetic field cannot exert substantial control over differential
rotation, alternative (b) has been explored most often. A recent
work in this direction is the attempt of Guerrero et al. (2013b)
to find a regime close to the real solar rotation by varying the
gradient of the background specific entropy and the frame
rotation rate in a numerical anelastic model. These variations
correspond to an increasing effective Rayleigh number and thus
to a more strongly driven convection. However, the simulations
did not find an intermediate regime with a “conical” profile.
Instead they showed,surprisingly, that the transition between
the solar and anti-solar rotational profiles is rather sharp. Most
recently similar results have been reported by Gastine et al.
(2013, 2014), Käpylä et al. (2014), Mabuchi et al. (2015), and
Karak et al. (2015).

Alternative (c), namely, that dynamo effects are crucial in
shaping the profile of differential rotation, is much less
explored. A significant number of dynamo simulations have
been published previously, but most of them aimed to
reproduce and explain solar magnetic features and activity

cycles, (e.g., Browning et al. 2006; Ghizaru et al. 2010; Nelson
et al. 2013). Only recently have a few studies, of which we
mention Fan & Fang (2014) and Mabuchi et al. (2015),
appeared that aim to investigate whether the solar magnetic
field plays an active role in shaping the solar differential
rotation profile. These studies report evidence in support of this
hypothesis. This is hardly surprising as it is well-established
that the main effect of a self-sustained magnetic field on
convection is to suppress differential rotation (e.g., Grote &
Busse 2001; Busse et al. 2003; Simitev & Busse 2005). This
finding is confirmed by Aubert (2005) and Yadav et al. (2013)
who also provide scaling laws for this effect. However, the
effects of dynamo action on convection in the buoyancy-
dominated regime are less well explored. Studies include the
aforementioned papers by Fan & Fang (2014), Karak et al.
(2015), and Mabuchi et al. (2015) who report a number of
similar results although their models are rather different from
each other and in all cases also include factors that contribute to
baroclinic forcing such that hypothesis (c) is not addressed in
isolation.
In this context our paper has several goals. We wish to study

the effects of self-generated magnetic fields on the convective
flows of a density-stratified fluid in a rotating spherical shell
using a minimal self-consistent model. We wish to focus our
attention on dynamos near the transition to buoyancy-
dominated convection but we also report selected results in
the rotation-dominated regime. To this end, we employ the so-
called Lantz–Braginsky anelastic approximation (Braginsky &
Roberts 1995; Lantz & Fan 1999; Jones et al. 2011). It has the
advantages that the dynamics of the system depends on a
minimal number of non-dimensional parameters while ad hoc
parametrizations of physical effects that may be used to better
“fit” observations are excluded. We present a newly imple-
mented numerical simulation code for the solution of the
Lantz–Braginsky anelastic equations, as well as code validation
results based on published benchmark solutions against four
other independently developed codes (Jones et al. 2011). Since
the dynamo processes operating in the Sun and stars are still
subject to controversies with various competing proposals, we
believe that it is important that our results are readily
reproducible by other groups.
In Section 2 we introduce the mathematical model based on

the anelastic approximation and discuss the numerical method
and diagnostic output. In Section 2.5 we present the benchmark
validation results. In Section 3 we discuss the properties of
dynamos in the buoyancy-dominated regime of convection. In
Section 4 we demonstrate that conical differential rotation
profiles and persistent regular dynamo oscillations can be
obtained in the rotation-dominated regime. In Section 5, we
present a summary of our main results and compare them to
related recent studies. We also outline topics for future
research.

2. MATHEMATICAL MODEL AND NUMERICAL
METHOD

We consider an electrically conducting, perfect gas confined
to a spherical shell. The shell rotates with a fixed angular
velocity k̂W about the vertical axis and an entropy contrast SD
is imposed between its inner and outer surfaces.

2

The Astrophysical Journal, 810:80 (16pp), 2015 September 1 Simitev, Kosovichev, & Busse



2.1. Anelastic Governing Equations

Assuming a gravity field proportional to r1 2, there exists a
hydrostatic polytropic reference state of the form

T T P P c c d r, , , , 1c
n

c c
n 1

0 1¯ ¯ ¯ ( )r r z z z z= = = = ++

with parameters c 2 1 1o0 ( ) ( )z h h= - - - , c 11 ( )h= +
1 1o

2( ) ( )z h- - , and N n1 exp 1o ( ) ( ( ) )z h h= + +r . The
parameters cr , Pc, and Tc are reference values of density,
pressure, and temperature at the middle of the shell. The gas
polytropic index n, the density scale height number Nr, and the
radius ratio η are defined below. Convection and magnetic field
generation are described by the equations of continuity,
momentum, energy, and magnetic flux. In the anelastic
approximation (Gough 1969; Braginsky & Roberts 1995;
Lantz & Fan 1999; Jones et al. 2011) these equations take the
form
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where u is the velocity, B is the magnetic flux density, S is the
entropy, and P includes all terms that can be written as
gradients. The viscous force (Fn) and the viscous (Qn) and Joule
(Qj) heating are defined in terms of the deviatoric stress tensor
(Sij

ˆ )
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where the double-dot symbol (:) denotes the Frobenius inner
product. We assume that the viscosity ν and the entropy
diffusivity κ are constant throughout the shell. The governing
equations are parametrized using the thickness of the shell
d r ro i= - as a unit of length, d2 n as a unit of time, SD as a
unit of entropy, dc0n m r as a unit of magnetic induction, cr
as a unit of density, and Tc as a unit of temperature. Here, ri and
ro are the inner and the outer radius, and λ and 0m are the
magnetic diffusivity, and permeability, respectively. The
system is then characterized by eight non-dimensional para-
meters: the radius ratio r ri oh = , the polytropic index n, the
density scale number N r rln i o( ¯ ( ) ¯ ( ))r r=r , the Rayleigh
number c T d SR c1

2 ( )nk= D , the thermal Prandtl number
Pr n k= , the magnetic Prandtl number Pm n l= , and the
Coriolis number d2 2t n= W .

Since the mass flux v ur̄º and the magnetic flux density B
are solenoidal vector fields, we employ a decomposition in

poloidal and toroidal components,

u r rrv r w a, 42( )¯ ˆ ˆ ( )r =  ´  ´ +  ´

B r rh g b, 4( )ˆ ˆ ( )=  ´  ´ +  ´

where r̂ is the radial unit vector, r is the length of the position
vector r, v, w, h, and g are the poloidal and toroidal scalars of
the momentum and magnetic field, respectively. Equations (2a)
are then satisfied automatically. Scalar equations for v and w
are obtained, and effective pressure gradients are eliminated by
taking r̂ ·  ´ ´ and r̂ · ´ of Equation (2b). Similarly,
equations for h and g are obtained by taking r̂ · ´ and r̂· of
Equation (2d). Spectral projections of the resulting poloidal–
toroidal equations are presented in the Appendix; see also
Section 2.3.

2.2. Boundary Conditions

Equations (2) must be supplemented by boundary condi-
tions. For the simulation results presented in this work the
following boundary conditions are used. The inner and the
outer surfaces of the shell are assumed to be stress-free,
impenetrable boundaries for the flow
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In several cases discussed in Section 4 we use the no-slip
condition at the inner boundary,

v v w r r0, 0, 0, at . 6r i ( )= ¶ = = =

A fixed contrast of the entropy is imposed between the inner
and the outer surfaces

S r r S r r1 at , 0 at . 7i o ( )= = = =

The boundary conditions for the magnetic field are derived
from the assumption of electrically insulating external regions.
The poloidal function h is then matched to a function h e( ),
which describes an external potential field,
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We remark that our code presented below allows various other
choices of boundary conditions to be made for all of the
dynamical variables.

2.3. Numerical Method

To perform the numerical simulations of this study, we have
extended our Boussinesq code (Tilgner & Busse 1997; Busse
et al. 2003; Simitev & Busse 2005, 2009, 2012a; Busse &
Simitev 2006, 2008) to solve the anelastic equations described
in Section 2. Despite similarities with the Boussinesq code, this
is a major modification both in terms of the mathematical
model and the numerical code. For the numerical solution of
the problem we have adapted the pseudo-spectral method
described by Tilgner (1999). The scalar unknowns v, w, h, g,
and S are expanded in Chebychev polynomials Tp in the radial
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direction r and in spherical harmonics in the angular directions
,( )q j , e.g.,
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where Pl
m denotes the associated Legendre functions,

x r r r2 1i( ) ( )= - - , and Nl and Nr are truncation parameters.
A system of equations for the coefficients in these expansions
is obtained by a combination of a Galerkin spectral projection
of the governing equations in the angular directions and a
collocation constraint in radius. This system is presented in the
Appendix.

Computation of nonlinear terms in spectral space is
expensive, so nonlinear products and the Coriolis term are
computed in the physical space and then projected onto the
spectral space at every time step. A standard 3/2-dealiasing in
θ and j is used at this stage. A hybrid of a Crank–Nicolson
scheme for the diffusion terms and a second order Adams–
Bashforth scheme for the nonlinear terms is used for integration
in time.

Calculations are considered adequately resolved when the
spectral power of the kinetic and magnetic energy drops by
more than two orders of magnitude from the spectral maximum
to the cut-off wavelength as suggested by, e.g., Christensen
et al. (1999). A range of numerical resolutions has been
employed in this study varying from (Nr = 61, Nl = 96) in less
demanding cases to (Nr = 121, Nl = 144) in more strongly
stratified or turbulent runs. Correspondingly, the physical
gridpoints on which nonlinear terms are evaluated have been
varied up to Nr = 121, N 216=q , N 437=j . We find that this
provides adequate resolution as demonstrated in Figure 1 for a
typical dynamo solution.

The pseudo-spectral approach described above is the most
common method for solving the fundamental equations of
convection-driven flow and electromagnetic induction within a
rotating spherical shell filled with an electrically conducting
fluid. The approach was pioneered by Glatzmaier (1984) and
with appropriate modifications it has been widely used by
various groups for modeling convection-driven geo-, solar, and
planetary dynamos. A number of codes based on similar
principles have been developed that differ mainly in details
such as time-stepping methods and treatment of radial
dependence, with finite differencing and Chebyshev decom-
position in r being two popular choices. Early versions of some
codes were derived directly from the code of Glatzmaier

(1984), including the anelastic ASH code extensively used for
solar simulations (Clune et al. 1999) and the Boussinesq MAG
code used for geodynamo simulations (Olson et al. 1999).
Other codes including ours were developed independently
(e.g., Jones et al. 1995; Tilgner 1999; Hollerbach 2000). While
it is not feasible to provide here a comprehensive list of existing
numerical codes and discuss the numerous variations in actual
implementations, we refer to a series of benchmarking papers
(Christensen et al. 2001; Jones et al. 2011; Jackson et al. 2014;
Marti et al. 2014) and to the reviews (Miesch 2005; Wicht &
Tilgner 2010) for an overview of codes commonly used in the
solar context and in the geo-/planetary context, respectively.
These references also include discussions of other essentially
different numerical approaches to the solution. Recent studies
related to ours (Fan & Fang 2014; Karak et al. 2015; Hotta
et al. 2015; Mabuchi et al. 2015) use finite difference methods
to solve comparable but different sets of equations. Local
methods have better parallel efficiency but also inferior
accuracy (Tilgner 1999). They also have difficulties with
imposing global boundary conditions for the magnetic field,
e.g., all of the above dynamo models use the unphysical radial
condition for the magnetic field on the outer surface. They also
encounter difficulties in treating spherical geometries, e.g., Fan
& Fang (2014) and Karak et al. (2015) consider wedges and not
spherical shells. Our code has been developed and optimized
independently over a number of years and a large database of
Boussinesq results is available for comparison. The current
anelastic version of our code is new and perhaps unique among
other spectral codes, with the exception of the ASH code, in
allowing for a radial dependence of the viscosity and the
thermal and magnetic diffusivities. However, the latter facilities
have not been used in the present analysis.

2.4. Diagnostic Output Quantities

We characterize convection and dynamo solutions by their
kinetic and magnetic energy and heat transport given by a
Nusselt number. The energies can be conveniently split into
poloidal and toroidal components, mean and fluctuating
components, and further into equatorially symmetric and
equatorially antisymmetric components. We thus obtain a
good characterization of the scales of the convective flow and
of the multipole structure of dynamos. The mean and
fluctuating toroidal and poloidal components of the total

Figure 1. Time-averaged power spectra of kinetic (full circles) and magnetic (empty circles) energy as a function of (a) the harmonic degree l, (b) the harmonic order
m, and (c) the Chebyshev polynomial degree p in the case 0.65h = , R 6 106= ´ , Pr 1= , Pm 2= , 2000t = , n = 2, N 3=r .
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kinetic energy Ekin are defined as
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where angular brackets áñ denote averages over the spherical
volume of the shell, overlaid lines denote axisymmetric parts,
and overlaid check marks denote non-axisymmetric parts of a
scalar field. The total magnetic energy Emagn can be split in a
similar way with components defined as in Equation (10a) but
with h and g replacing v and w and without the factor 1r̄-

within the angular brackets. The total energies are, of course,
the sum of all components. The Nusselt number is defined as
the ratio between the values of the luminosity of the convective
state Lconv and the luminosity of the basic conduction state
Lbasic,
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with the integral taken over a spherical surface V r( )¶ at radius r.
Apart from quantifying the heat transport of convection, the

value of the Nusselt number serves as a convenient proxy for the
super-criticality of the convective regime.
Other diagnostic quantities used below are the non-

dimensional magnetic Reynolds number, ERm Pm 2 kin= ,

Rossby number, ERo
2

2 kin
t

= , and Lorentz number

ELo
2

2 magn
t

= .

2.5. Benchmarking and Validation

To validate the new code we present a comparison with the
anelastic benchmark simulations recently proposed by Jones
et al. (2011). For the comparison we employ an alternative
parametrization based on the magnetic rather than viscous
diffusion timescale, used in the benchmark models. Our output
results from the three benchmark cases defined in Jones et al.
(2011) are summarized in Table 1 and selected components of
the solution are plotted in Figure 2. The mean values and the
means of the deviations computed from the values reported by
the four codes included in Jones et al. (2011) are also listed in
Table 1. We achieve perfect agreement with the benchmark
results for the hydrodynamic case and the steady dynamo case,
labeled Benchmark 1 and Benchmark 2. Our results for the
unsteady dynamo case labeled Benchmark 3 show some
insignificant differences from the values reported in Jones
et al. (2011). The reason for the discrepancies is the use of
imposed two-fold azimuthal symmetry and lower resolution in
our code to reduce computing time.

Table 1
Comparison with the Benchmark Solutions Reported by Jones et al. (2011)

Benchmark 1: Benchmark 2: Benchmark 3:
Hydrodynamic Convection Steady Dynamo Unsteady Dynamo

η 0.35 0.35 0.35
n 2 2 2
Nr 5 3 3

Pr 1 1 2
Pm 1 50 2
τ 2000 1000 4 × 104

R 351806 8 × 104 2.5 107´
Nr/Nr 129/129 129/129 111/111
Nl/Nq 128/128 128/128 120/144
Nm/Nj 129/257 129/257 61/73

Timestep 4 10 6´ - 1 10 6´ - 1 10 7´ -

E 81.87991 4.19405 105´ 2.32730 105´
Mean ± Mean Dev. 81.680 ± 0.245 4.186 0.013 105( ) ´ 2.317 0.014 105( ) ´
Ep 0.02201 53.0100 100.40

Mean ± Mean Dev. 0.0220 ± 0.0001 52.90 ± 0.15 111.75 ± 3.75
Et 9.37598 6.01725 104´ 1.81399 104´
Mean ± Mean Dev. 9.3568 ± 0.0282 6.001 0.018 104( ) ´ 1.355 0.008 104( ) ´
M L 3.20172 105´ 2.58012 105´
Mean ± Mean Dev. 3.194 0.088 105( ) ´ 2.413 0.023 105( ) ´
Mp L 1.69650 104´ 2.91155 104´
Mean ± Mean Dev. 1.692 0.005 104( ) ´ 2.155 0.070 104( ) ´
Mt L 2.41185 105´ 1.17292 104´
Mean ± Mean Dev. 2.412 0.028 105( ) ´ 0.948 0.003 104( ) ´
Luminosity 4.19886 11.50302 42.50992
Mean ± Mean Dev. 4.19886 3 10 6 ´ - 11.503 4 10 5 ´ - 42.75 ± 0.15

Note. The values labeled “mean ± mean deviation” are the respective means and the means of the deviations computed from the values reported by the four codes
included in Jones et al. (2011).

5

The Astrophysical Journal, 810:80 (16pp), 2015 September 1 Simitev, Kosovichev, & Busse



3. DIFFERENTIAL ROTATION AND DYNAMO ACTION
IN THE BUOYANCY-DOMINATED REGIME

It is well known that as buoyancy forcing becomes
significantly larger than the Coriolis force, anti-solar differ-
ential rotation develops. Such a buoyancy-dominated regime
was first identified by Gilman (1976) and Gilman & Foukal
(1979), and more recently it was studied by Aurnou et al.
(2007) and Gastine et al. (2013). More recent studies include
the works of Guerrero et al. (2013a, 2013b), which are closely
tailored to the solar case. These studies consistently found that

due to vigorous mixing angular momentum is homogenized
within the whole volume of the shell, and this leads to a strong
retrograde zonal flow in the equatorial region, and thus to the
anti-solar type of rotation profile.

3.1. Transition Between Rotation-dominated and
Buoyancy-dominated Regimes

Here, we investigate the transition from the rotation-
dominated regime to the buoyancy-dominated regime for
non-magnetic and magnetic (dynamo) cases. Figure 3

Figure 2. Structures of the solutions to benchmark cases 1–3 (left to right). The first plot in each column shows azimuthally averaged isocontours of uj (left half) and
of the streamlines r vsin ( )q ¶q (right half) in the meridional plane. The second plot in each column shows isocontours of ur in the equatorial plane. The third plot in
each column shows isocontours of Br at r ro= .
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demonstrates the transition from the solar-type to the anti-solar
type of differential rotation in a set of cases with an increasing
value of the Rayleigh number R and all other parameter values
kept fixed. The increase of the Rayleigh number is the most
direct approach to the buoyancy-dominated regime as R is a
direct measure of the magnitude of buoyancy forcing. We
remark, however, that the buoyancy-dominated regime can also
be reached if other control parameters are varied. For instance,

a decrease in the Coriolis number τ at fixed values of the other
parameters including R will equally bring convection to the
buoyancy-dominated regime since τ is a measure of the
Coriolis force. Reaching the regime by varying the other
parameters is also possible but less straightforward. In the case
of Figure 3 the transition to the buoyancy-dominated regime
happens between R 105= and R 2 105= ´ . The Coriolis-
dominated regime is characterized by columnar convection

Figure 3. Structures of convection showing the transition to the buoyancy-dominated regime with increasing value of the Rayleigh number as indicated in the plot and
0.65h = , Pr 0.3= , Pm 3= , 200t = , n = 2, and N 3=r . The plots in the first column show time- and azimuthally averaged isocontours of uj (left half) and of the

streamlines r vsin ( )q ¶q (right half) in the meridional plane. The plots in the second column show contours of instantaneous ur on the spherical surface
r r r 2i o( )= + . The plots in the third column show contours of instantaneous ur in the equatorial plane.
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structures that are oriented parallel to the rotation axis and
mostly outside the tangent cylinder, the cylinder that touches
the inner core at the equator.

In the case of Figure 3, columnar convection has a dominant
azimuthal wave number of 8. This number, however, varies as
the parameter values are varied. Since even in the strongly
chaotic regime the azimuthal wave number of convection
remains similar to that near the onset of convection, it is useful
to note the study of Busse & Simitev (2014) where the critical
onset for this problem has been studied. Differential rotation in
the Coriolis-dominated regime is solar-like and geostrophic,
i.e., constant on cylindrical surfaces. Meridional circulation is
relatively weak but changes from a single cell to two cells in a
hemisphere with the increase of R. In this connection we note
recent observational results by Zhao et al. (2013) that report
two-cell meridional circulation in the solar convection zone.

Convection in the buoyancy-dominated regime for
R 2 105> ´ in the case of Figure 3 becomes disorganized.
Convective columns are broken, and the convection pattern
loses its anisotropy with respect to the axis of rotation.
Convection, for instance, is now not restricted to the region
outside of the tangent cylinder but produces vigorous flows in
the polar regions as well. Meridional circulation appears to
return to a single-cell pattern but the symmetry with respect to
the equatorial plane is lost. This, of course, is due to the fact
that the Coriolis force is no longer dominant and the role of
rotation is much diminished.

The most notable effect is the sign reversal of the differential
rotation that switches from the solar-like to the anti-solar
profile. The anti-solar differential rotation remains largely
constant on cylinders parallel to the rotation axis. While some
conical features are present in the case of Figure 3 they seem to
be confined near the surface and appear less significant.

3.2. Effects of Magnetic Field on Differential Rotation

While solar convection is likely dominated by buoyancy, it
is rather challenging to reconcile the anti-solar differential
rotation found in the buoyancy-dominated regime with
observations. It is well known from helioseismology observa-
tions that solar differential rotation is prograde and strongly
non-geostrophic (e.g., Thompson et al. 1996). In this situation,
magnetic effects may provide one possible mechanism for
reversing the anti-solar differential rotation into the solar-like
type (Fan & Fang 2014; Karak et al. 2015; Mabuchi
et al. 2015). This is not unreasonable to expect. Indeed, it is
well-established that the main effect of self-generated magnetic
field on convection is to impede differential rotation.
This effect is measured by a strong decrease of mean toroidal
kinetic energy in dynamo solutions initially demonstrated by
Grote & Busse (2001) and later studied in the parameter
space by Simitev & Busse (2005; see their Figure 16) and
Busse & Simitev (2005; see their Figure 7). It has also been
investigated by Aubert (2005) and Yadav et al. (2013). To
explore the effect of magnetic field on buoyancy-dominated
convection as described in the preceding section, we have
performed a systematic comparison between large sets of
simulations of non-magnetic convection and of self-sustained
dynamos.

Figures 4 and 5 summarize the results of four such sequences
of cases, with one pair at Prandtl number Pr 1= and Coriolis
number 2000t = and the other pair at somewhat smaller
values Pr 0.5= and 300t = . One sequence in each pair is

non-magnetic while the other sequence includes a self-
generated magnetic field. The specific choice of parameters is
motivated by properties of solar convection as discussed below.
Time-averaged components of the kinetic and magnetic energy
densities are plotted as a function of the increasing Rayleigh
number R for both the convection-only cases and the dynamo
cases. The top row of Figure 4 shows the time-averaged value
of the differential rotation at the equator on the outer surface of
the spherical shell, u r , 2o( )pj , and serves as an easily
accessible indicator of the type of differential rotation. The
transition from the rotation-dominated regime (solar-like
rotation) to the buoyancy-dominated regime (anti-solar rota-
tion) is thus easily identified by the sign change of u r , 2o( )pj
(marked by a dash–dotted line in Figures 4 and 5).
Convection in the absence of magnetic field is characterized
by an abrupt as opposed to a gradual increase of both
differential rotation and meridional circulation. The total
magnetic energy of the self-sustained field is on average an
order of magnitude smaller than the kinetic energy, but the
magnetic field has a significant effect on both the differential
rotation and meridional circulation. In contrast to the non-
magnetic case, they are strongly reduced and show no abrupt
change in their values.
In the sequences shown in Figures 4(a), (c), and (e), the

transition from solar-like to anti-solar differential rotation is, in
fact, suppressed. While we expect that if buoyancy is further
increased, i.e., by increasing R, convection will eventually
arrive once again at the transition to retrograde rotation, we
emphasize that the suppression of the transition happens over a
large interval of R comparable to the interval between the onset
of convection and the solar-antisolar transition itself.
In the sequences shown in Figures 4(b), (d), and (f) the

suppression of the solar–antisolar transition is not observed,
even though the effects of decreasing differential rotation and
meridional circulation are visible. This difference illustrates
other important parameter dependences, primarily those on the
Prandtl and the Coriolis numbers, Pr and τ, respectively. In the
region of low values of Prandtl and Coriolis numbers
convection is known to be rather different from columnar
convection in that it takes the form of an equatorial belt of large
cells attached near the outer surface of the spherical shell
(Ardes et al. 1997; Busse & Simitev 2004). Differential rotation
generated by equatorially attached convection is typically less
affected by the braking effect of the magnetic field (Simitev &
Busse 2005).
Figure 5 shows the dependence of the Rossby, Lorentz, and

magnetic Reynolds number values on the Rayleigh number of
the same sequences as shown in Figure 4. The transition from
rotation-dominated to buoyancy-dominated convection hap-
pens at about Ro 1= in the sequence of Figures 4(a), (c), and
(e) and at about Ro 0.5= in the sequence of Figures 4(b), (d),
and (f). These values are similar to the ones reported by Gastine
et al. (2014), Karak et al. (2015), and Mabuchi et al. (2015), but
a weak dependence on the Prandtl and the Coriolis numbers
appears to exist. The dynamo effects do not appear to affect the
value of the Rossby number for the transition, in agreement
with Karak et al. (2015) and Mabuchi et al. (2015).
Further notable effects of the magnetic field are summarized

in Table 2. These effects are illustrated in terms of one selected
strongly chaotic case discussed below.
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3.3. Structure and Dynamics of Convective Flows and
Magnetic Fields in the Buoyancy-dominated Regime

Figure 6 shows a comparison of the spatial structures of the
convective flow of a non-magnetic case and those of a self-
sustained magnetic dynamo case at identical parameter values

0.65h = , Pr 1= , 2000t = , R 107= , n = 2, N 3=r , and for
the dynamo solution Pm 2= . At 0.65h = the shell thickness is
slightly thicker than the thickness of the solar convection zone
and is selected for ease of numerical simulation. The typical size
of convective structures is related to the thickness of the shell and
thus thinner shells require spherical harmonics decomposition of
higher order and degree to resolve the angular structure of the
flow. The value Pr = 1 is appropriate in the sense that turbulent
mixing tends to homogenize the flow and molecular diffusivities
are replaced by effective turbulent diffusivities of similar
magnitude. At 2000t = the Coriolis number is moderately
but not excessively large, reflecting the model assumption that
the flow in the deep convection zone is buoyancy rather than
rotation dominated. The values of the polytropic index n = 2 is

adequate, while the value of the density scale height N 3=r is
much lower than estimated for the solar convection zone.
However, increasing Nr much beyond 5 becomes computation-
ally very demanding. Finally, the value of the Rayleigh
number has been selected such that the non-magnetic convection
case is located in the buoyancy-dominated regime, the onset of
which is at R 5.2 106= ´ for these parameter values.
In the case of non-magnetic convection shown in the left

column of Figure 6, differential rotation is in the anti-solar
direction. It is strongly geostrophic, i.e., constant on cylinders
parallel to the rotation axis. The retrograde differential rotation
is monotonously increasing toward the outer surface of the
spherical shell. Note that this is also true for solar-like
differential rotation in the rotation-dominated regime. The
structure of the flow changes significantly with radius. The first
two rows of Figure 6 show isocontours of the radial velocity
near the surface and somewhat below mid-depth within the
spherical shell. The flow near the surface is a patchwork of
small-scaled up- and down-wellings distributed in a very
chaotic pattern over the full surface of the spherical shell. No

Figure 4. (a), (b) Differential rotation at the equator u r , 2o( )pj . (c), (d) Average kinetic energy densities and (e), (f) average magnetic energy densities as functions of
the Rayleigh number R in the cases (a), (c), (e) for 0.65h = , Pr 1= , 2000t = , n = 2, N 3=r , and in the cases (b), (d), (f) for 0.65h = , Pr 0.5= , 300t = , n = 2,
N 3=r . Nonmagnetic convection cases are denoted by thin symbols in (a)–(d). Dynamo cases are denoted by thick symbols in all panels and have Pm 2= in (a), (c),
(e) and Pm 6= in (b), (d), (f). Black circles, red squares, green pluses, and blue crosses denote Xp, Xt , Xp˜ , Xt˜ , with X E M,= . Vertical dashed–dotted lines denote the
transition to buoyancy-dominated regime.
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visible structure can be discerned and the location of the
convective cells changes chaotically in time (not shown). The
scale of the convective structures increases in depth and near
the equator elongated convective cells tilted clockwise in the
northern hemisphere and tilted anticlockwise in the southern
hemisphere are found. On average this equatorial pattern drifts
in the retrograde direction carried away by the strong anti-solar
differential rotation. The radial structure thus described is also
evident in the contour lines of the radial velocity in the
equatorial plane plotted in the third row of Figure 6. Finally,
the meridional flow takes the form of two large circulations in
the poleward direction at the surface of the shell. The
meridional circulations are nearly strictly mirror-symmetric
with respect to the equatorial plane. This and the symmetry of
the differential rotation are remarkable large-scale coherent
features of this otherwise very chaotic solution.

As noted above, the magnetic energy is significantly lower
than the kinetic energy of the flow. The influence of the
magnetic field on convection, however, in the dynamo case
shown in the left column of Figure 6 is quite remarkable. The
most notable effect is, of course, the reversal of the direction of
differential rotation from the anti-solar to solar-like type. A
further remarkable difference is that the maximum of the
differential rotation occurs in the depth of the spherical shell
rather than at the surface, as is always observed in the case of
non-magnetic convection. This is potentially a significant effect
as it means that there is a negative gradient of differential
rotation in the subsurface layer of the shell.

In the magnetic case the structure of the flow also changes
significantly with radius. The first two rows of Figure 6 show
isocontours of the radial velocity at the same radial values as in
the non-magnetic case. The flow near the surface is again a
patchwork of small-scaled up- and down-wellings distributed
in a very chaotic pattern. No visible structure can be discerned
and the location of the convective cells changes chaotically in
time (not shown). An important effect of the magnetic field is
that in the magnetic dynamo case convection appears to be
stronger in the polar regions rather than outside the tangent
cylinder. The main difference, however, appears in depth.
Large-scale convective columns arranged in a cartridge belt
pattern outside the tangent cylinder and spanning both
hemispheres to about mid-latitudes are clearly visible. The

columns drift in the prograde direction due to the solar-like
differential rotation. This is also a significant observation
because it indicates that very little may be inferred for the
structure of deep convection from observations of near surface
flows. In particular, it is not known whether or not large-scale
convective columns exist in the deep solar convection zone.
Our results indicate that large-scale convective columns hidden
from view by much smaller-scale chaotic convection with no
discernible structure is a likely dynamical possibility. Finally,
the meridional flow of the magnetic dynamo case appears
rather disorganized with a number of smaller-scale circulations
appearing in both hemispheres as shown on the right panel of
the bottom row of Figure 6.
The structure of the generated magnetic field in the dynamo

case is shown in Figure 7. The magnetic field has a large-scale
dipole component emerging from a patchwork of small-scale
magnetic features. The dipole is mainly supported by strong
polar magnetic flux tubes in the polar region, which in turn are
due to the relatively strong polar convection. The predominant
polarity is less clear in the equatorial region where the magnetic
field structures are smaller in scale and of both polarities. The
dipole solution is non-oscillating. Unfortunately, we have not
been able to locate oscillating dynamos in this regime and to
observe the direction of dynamo wave propagation. This is left
for future studies.

4. REMARKS ON ANELASTIC DYNAMOS IN THE
ROTATION-DOMINATED REGIME

While the attention in this paper is focused on dynamo
effects near the transition from rotation-dominated to buoy-
ancy-dominated convection, in this section we wish to
demonstrate that conical profiles of differential rotation as well
as regular and persistent dynamo oscillations can be found in
the parameter space of our minimal convection-driven dynamo
model without recourse to additional modeling assumptions.
We also take the opportunity to elucidate some of the points
made about buoyancy-dominated dynamos above by compar-
ison with features in the rotation-dominated regime.
Perhaps the only clear example of a conical profile of

differential rotation in a single-layer simulation with spheri-
cally symmetric boundary conditions is that reported in the

Figure 5. Time-averaged values of the Rossby number Ro (black diamonds) and the Lorentz number Lo (red circles) measured on the left-hand axis and of the
magnetic Raynolds number Rm (blue crosses) measured on the right-hand axis. Panel (a) shows the same sequences illustrated in Figures 4(a), (c), and (e) and panel
(b) shows the same sequences illustrated in Figures 4(b), (d), and (f). The thin symbols indicate the values of Ro for non-magnetic convection and bold symbols
represent the dynamo cases.
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Figure 6. Comparison between non-magnetic convection (left) and dynamo (right) at identical parameter values 0.65h = , Pr 1= , 2000t = , R 107= , n = 2, N 3=r ,
and for the dynamo Pm 2= . Plots in the first row show ur at r r0.95 i= + , plots in the second row show ur at r r0.3 i= + , plots in the third row show ur in the
equatorial plane, and plots in the fourth row show isocontours of the differential rotation uj (left half) and of the streamlines r vsin ( )q ¶q (right half) in the meridional
plane. The plots in the first three rows are instantaneous snapshots, while the density plots in the fourth row are time-averaged.
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work of Brun & Toomre (2002). However, these authors use
subgridscale parametrization of diffusivities, which clearly
affects results. Following Miesch et al. (2006), the majority of
models that report conical profiles seem to impose a non-zero
latitudinal gradient of entropy as their bottom boundary
condition (e.g., Fan & Fang 2014) or to include anisotropic
heat conductivity (e.g., Karak et al. 2015) or a stably stratified
layer at the bottom of the convection zone (e.g., Mabuchi
et al. 2015), all of which increase the baroclinicity and induce
conical profiles. In this context, Figure 8 shows an example of
differential rotation with some conical features in the lower part
of the convection zone, obtained in our minimal self-consistent
formulation of the problem. The parameter values of this run
are the same as those for the sequence of cases reported in
Figures 4 (a), (c), and (e), with a value of the Rayleigh number
that places it in the rotation-dominated regime, and a somewhat
larger value of Pm which is known to promote stronger dipolar
fields (Simitev & Busse 2005). This run differs from the latter
sequence only in that it uses a no-slip velocity condition on the
inner spherical boundary. Convection in the polar regions is
weak, if not fully absent. Convective flows are confined outside
of the tangent cylinder and this is where the dynamo process is
also located resulting in a magnetic field that is strong near the
equator and at midlatitudes but weak in the polar regions. We
wish to contrast this situation with the situation discussed in
connection to the dynamo case presented in Figures 6 and 7.
This comparison makes it rather obvious that in the latter case
vigorous convection in the polar regions gives rise to strong
magnetic field in the same regions. The dynamo shown in
Figure 8 is an oscillatory dynamo and the comparison with the
case of Figure 7 elucidates the reasons why the latter is non-
oscillatory. While in the case of Figure 8 both the magnetic
field and the differential rotation achieve their maxima in the

same region (the equatorial region), in the case of Figure 7 the
regions where the maximal amplitude of the magnetic field and
of the differential rotation occur do not coincide which is
detrimental to aW oscillations (Busse & Simitev 2006;
Warnecke et al. 2014).
To illustrate the oscillations in question, we present in

Figure 9 one period of a predominantly dipolar dynamo wave.
The parameter values of this run are identical to the cases
shown in Figure 8 except for a slightly larger value of the
Rayleigh number which helps to make the oscillations more
regular. The dynamo wave is driven by the aW mechanism first
proposed by Parker (1955) and later confirmed in three-
dimensional simulations by Busse & Simitev (2006), see also
(Schrinner et al. 2012; Simitev & Busse 2012a; Warnecke
et al. 2014). The dynamo wave propagates in the direction of
the poles. This case shows similar conical features of the
differential rotation profile, and Figure 9 also illustrates their
variations in time. Figure 10 shows the dominant dipolar and
quadrupolar components of the magnetic field represented by
the time series of the appropriate coefficients in the spherical
harmonic expansions of the toroidal and poloidal scalars of the
magnetic field. The time series show that the oscillations are
very regular and persistent over the course of the simulation
and that the dipole is dominant.
We wish to conclude this section with the remark that the

parameter space of the minimal model formulation seems to
merit further investigation especially in the case when self-
generated magnetic fields are present.

5. CONCLUSION

We have presented in this paper several sets of convective
dynamo simulations in density-stratified rotating spherical fluid

Table 2
Summary of the Effects of Self-sustained Magnetic Field and Comparison with Non-magnetic Convection

Non-magnetic convection Dynamo

Monotonic increase/decrease of differential rotation toward the outer surface in solar/
antisolar cases

Differential rotation attains a maximum inside shell and a subsurface
decrease

Retrograde differential rotation in buoyancy-dominated regime Differential rotation reversed from antisolar to solar-like
No columnar structure at depth Convective columns visible in depth

Figure 7. Magnetic field components of the same case as in the right column of Figure 6. The left plot shows contours of Br at r r1.13 i= + , and the right plot shows
contours Bj and meridional field lines.
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shells based on a physically consistent anelastic model with a
minimum number of parameters. The computations are
performed using a new simulation code that is also presented
here for the first time along with code validation results against
published benchmark solutions. We demonstrate that conical
differential rotation profiles and persistent regular dynamo
oscillations can be obtained in the parameter space of this
minimal formulation without recourse to additional modeling
assumptions. The main focus of the work is placed on
extending the dynamo simulations into a “buoyancy-domi-
nated” regime where the buoyancy forcing is dominant while
the Coriolis force is no longer balanced by pressure gradients
and where strong anti-solar differential rotation develops as a
result. The dynamo solutions are compared to identical sets of
non-magnetic convection solutions to reveal the effects of the
self-sustained magnetic field on convection in general and on
the differential rotation in particular. The most significant
results are summarized in Table 2 and below we discuss some
similarities between our solutions and solar and stellar
convection.

We also wish to compare our results to studies on a similar
topic reported in the recent literature, in particular the works of
Fan & Fang (2014), Karak et al. (2015) and Mabuchi et al.
(2015) where dynamo simulations are reported and of Gastine
et al. (2013) and Hotta et al. (2015) where hydrodynamic

simulations are reported. Before we comment on similarities
and differences in solutions, we wish to point out that with the
exception of the model considered by Gastine et al. (2013), the
models considered by the other groups have significant and
essential differences compared to ours. The models of Hotta
et al. (2015), Karak et al. (2015), and Mabuchi et al. (2015) are
fully compressible models in contrast to our anelastic
approximation. Hotta et al. (2015) use artificially enhanced
viscosity, a radius dependent cooling term and are interested
mainly in the properties of the near-surface convection layer.
The model of Mabuchi et al. (2015) consists of two layers—a
stably stratified layer surrounded by a convective envelope.
The models of Fan & Fang (2014) and Karak et al. (2015)
consider wedges, i.e., partial spherical shells, and are not fully
spherical, so polar convection is effectively not represented in
their solutions. This partly explains why they find oscillatory
dynamos. Conical differential rotation profiles are promoted in
the latter four models due to the inclusion of secondary
physical effects: Fan & Fang (2014) impose a latitudinal
entropy gradient as a bottom boundary condition; Fan & Fang
(2014), Hotta et al. (2015), and Karak et al. (2015) include
radial variation in diffusivities and parametrizations of
unresolved scales. Numerical implementations also differ—all
codes except that of Gastine et al. (2013) are based on finite-
difference methods while ours is pseudo-spectral. An artificial

Figure 8. Flow and field structures in the case 0.65h = , Pr 1= , 2 103t = ´ , R 1.8 106= ´ , Pm 8= , n = 2, N 3=r with the no-slip condition on the inner
boundary. The top left plot shows time-averaged isocontours of the differential rotation uj (left half) and of the streamlines r vsin ( )q ¶q (right half) in the meridional
plane. The top right plot shows contours of instantaneous ur at r r0.5 i= + . The bottom left plot shows contours of instantaneous Bj (left half) and meridional field
lines (right half). The bottom right plot shows contours of instantaneous Br at r r1.13 i= + .
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radial magnetic field condition is imposed on the outer
boundary in these studies which may significantly distort
dynamo effects. Despite the differences in modeling strategy, it
is significant that we find a number of similarities in our
simulations. This increases the confidence in the robustness of
the reported results.
Oscillations obtained in dynamos generated within the

rotation-dominated regime, with few exceptions (Warnecke
et al. 2014), appear to always travel in the poleward direction
much as illustrated in Figure 9. For references see Busse &
Simitev (2006), Simitev & Busse (2012a), and also Schrinner
et al. (2012). There is some evidence that dynamo waves can
travel toward the equator when a negative radial gradient of the
differential rotation profile exists (Simitev & Busse 2012b), and
when in addition to the latter the α-effect, proportional to

u u B B( ) · ( ) · r̄-  ´ +  ´ , is positive (negative) in the
northern (southern) hemisphere (Warnecke et al. 2014). This
evidence supports an early analysis by Yoshimura (1975).
While we commonly find dipolar oscillations in the rotation-
dominated regime, our dynamos in the buoyancy-dominated
regime do not oscillate. This is in contrast to the results of Fan
& Fang (2014) and Karak et al. (2015), which may be
attributed to the absence of polar convection in their
simulations due to the absence of conical polar sections used
in their geometrical configuration. On the other hand, we agree
with Mabuchi et al. (2015) who use a full spherical shell and
find that dynamos with anti-solar rotation are predominantly
dipolar and non-oscillatory. Despite being relatively weak the
self-sustained magnetic fields in the buoyancy-dominated
regime reported in the present study are able to reverse the
direction of differential rotation from anti-solar to solar-like.
From the perspective of oscillations, it is significant that we
find that differential rotation attains a maximum inside the shell
and that a negative radial gradient is persistently maintained in
the near-surface layer. This may facilitate equatorward dynamo
wave propagation in the buoyancy-dominated regime. The
differential rotation in our buoyancy-dominated dynamos, e.g.,
Figure 6, has a cylindrical profile, in contrast to the more
conical profiles reported by Fan & Fang (2014), Karak et al.
(2015), and Mabuchi et al. (2015). This difference is almost
certainly caused by the fact that a non-zero latitudinal gradient
of entropy is imposed as a bottom boundary condition by Fan
& Fang (2014), that an anisotropic heat conductivity is used by

Figure 9. One period of dipolar oscillations in the case 0.65h = , Pr 1= ,
2 103t = ´ , R 2.5 106= ´ , Pm 4= , n = 2, N 3=r with the no-slip

condition on the inner boundary. Time between plots is t 0.09D = starting at
t0 = 96.8174 in the time series shown in Figure 10. The first row shows
contours Bj to the left and meridional field lines to the right. The second row
shows contours uj to the left and the streamlines r vsin ( )q ¶q to the right, all in
the meridional plane.

Figure 10. Regular and persistent dipole-dominated oscillations shown in the
time series of the axisymmetric toroidal coefficients G0

1 (red) and G0
2 (blue) and

the axisymmetric poloidal coefficients H0
1 (red) and H0

2 (blue) describing the
main dipolar and quadrupolar contributions in the spherical harmonic
expansion of the magnetic field in the case shown in Figure 9.
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Karak et al. (2015), and that a stably stratified layer at the
bottom of the convection zone is present in Mabuchi
et al. (2015).

We find that the dynamo-generated magnetic field can
suppress the transition from the solar-like to the antisolar-like
rotation profile thus confirming similar findings reported by
Fan & Fang (2014), Karak et al. (2015), and Mabuchi et al.
(2015). In this case the convection is significantly stronger near
the poles than in the equatorial region, leading to a
predominantly dipolar dynamo where both the toroidal and
the poloidal fluxes are stronger in the polar regions compared
to equatorial regions. Such dynamo regime with concentration
of magnetic field in the polar regions may explain the
observations of polar starspots in young solar-type stars which
exhibit reduced but still the solar-type differential rotation
(Brown et al. 2014 also see Yadav et al. 2015). While starspots
reduce locally the vigor of convection in the near surface layer
of the convection zone, sufficiently strong convection in depth
is required to generate magnetic fields that are large enough to
cause starspots in the first place. Our calculations do not have
sufficient resolution to resolve strongly turbulent stellar near
surface layers.

Our simulations confirm the findings of Gastine et al. (2013)
and Hotta et al. (2015) that different regimes of convection
occur in the inner and at the outer part of the spherical shell
simultaneously such that organized geostrophic convection
columns are hidden below a near-surface layer of well-mixed
highly chaotic convection. Both of the latter studies are non-
magnetic and the work of Hotta et al. (2015) reports
simulations in the rotation-dominated regime only. The model
of Gastine et al. (2013) is quite similar to ours and it is one of
the aims of the present paper to extend their analysis through
considerations of dynamo effects. On the Sun small-scale
turbulent convection is clearly observable in the subsurface
layer of the solar convection zone while simulations inevitably
find some columnar structures. Evidence of different convec-
tion morphology as a function of radius is significant because it
provides a bridge between observations and simulations. The
deeper large-scale organized convection columns are likely to
play important role in the solar dynamo and its magnetic
cycles.
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APPENDIX
SPECTRAL PROJECTION OF THE TOROIDAL–

POLOIDAL GOVERNING EQUATIONS

Scalar equations for v and w are obtained, and effective
pressure gradients are eliminated by taking r̂ ·  ´ ´ and
r̂ · ´ of Equation (2b). Similarly, equations for h and g are
obtained by taking r̂ ·  ´ and r̂· of Equation (2d). The scalar
unknowns v, w, h, g, and S are then expanded in Chebychev
polynomials Tp in the radial direction r, and in spherical
harmonics Yl

m in the angular directions ,( )q j as shown in
Equation (9). After a standard Galerkin projection procedure
in the angular directions ,( )q j the following set of
partial differential equations for the spectral expansion
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and the following notation for some radial functions is used for
brevity
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The expression for the viscous dissipation in Equation (13) is
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Finally, square brackets with a subscript (and superscript) as in
[·]j or l

m[·] denote a component of a vector or an appropriate
coefficient in a spherical harmonic expansion, respectively.

The solution of Equations (11) proceeds as described in
Section 2.3.
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