
OFFPRINT

Pattern orientation in finite domains without
boundaries

Lisa Rapp, Fabian Bergmann and Walter Zimmermann

EPL, 113 (2016) 28006

Please visit the website
www.epljournal.org

Note that the author(s) has the following rights:
– immediately after publication, to use all or part of the article without revision or modification, including the EPLA-

formatted version, for personal compilations and use only;
– no sooner than 12 months from the date of first publication, to include the accepted manuscript (all or part), but

not the EPLA-formatted version, on institute repositories or third-party websites provided a link to the online EPL
abstract or EPL homepage is included.
For complete copyright details see: https://authors.epletters.net/documents/copyright.pdf.



A LETTERS  JOURNAL  EXPLORING  
THE  FRONTIERS  OF  PHYSICS

AN INVITATION TO 
SUBMIT YOUR WORK

www.epljournal.org

The Editorial Board invites you to submit your letters to EPL

EPL is a leading international journal publishing original, innovative Letters in all 

areas of physics, ranging from condensed matter topics and interdisciplinary 

research to astrophysics, geophysics, plasma and fusion sciences, including those 

with application potential. 

The high profile of the journal combined with the excellent scientific quality of the 

articles ensures that EPL is an essential resource for its worldwide audience.  

EPL offers authors global visibility and a great opportunity to share their work  

with others across the whole of the physics community.

Run by active scientists, for scientists 

EPL is reviewed by scientists for scientists, to serve and support the international 

scientific community. The Editorial Board is a team of active research scientists with 

an expert understanding of the needs of both authors and researchers.

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 105  Number 1 

January  2014

ISSN 0295-5075 www.epl journal.org

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 103  Number 1 

July 2013

ISSN 0295-5075 www.epl journal.org

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 104  Number 1 

October 2013

ISSN 0295-5075 www.epl journal.org

www.epljournal.org



 www.epljournal.orgA LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Quality – The 50+ Co-editors, who are experts in their field, oversee the 

entire peer-review process, from selection of the referees to making all 

final acceptance decisions.

Convenience – Easy to access compilations of recent articles in specific 

narrow fields available on the website.

Speed of processing – We aim to provide you with a quick and efficient 

service; the median time from submission to online publication is under  

100 days.

High visibility – Strong promotion and visibility through material available 

at over 300 events annually, distributed via e-mail, and targeted mailshot 

newsletters.

International reach – Over 2600 institutions have access to EPL,  

enabling your work to be read by your peers in 90 countries.

Open access – Articles are offered open access for a one-off author 

payment; green open access on all others with a 12-month embargo.

Details on preparing, submitting and tracking the progress of your manuscript  

from submission to acceptance are available on the EPL submission website 

www.epletters.net.

If you would like further information about our author service or EPL in general, 

please visit www.epljournal.org or e-mail us at info@epljournal.org.

Six good reasons to publish with EPL
We want to work with you to gain recognition for your research through worldwide 

visibility and high citations. As an EPL author, you will benefit from:560,000
full text downloads in 2013

OVER

24 DAYS

10,755

average accept to online 

publication in 2013

citations in 2013

1

2

3

4

5

6

www.epljournal.org

EPL is published in partnership with:

IOP PublishingEDP SciencesEuropean Physical Society Società Italiana di Fisica

“We greatly appreciate 

the efficient, professional 

and rapid processing of 

our paper by your team.”

Cong Lin

Shanghai University



January 2016

EPL, 113 (2016) 28006 www.epljournal.org

doi: 10.1209/0295-5075/113/28006

Pattern orientation in finite domains without boundaries

Lisa Rapp, Fabian Bergmann and Walter Zimmermann

Theoretische Physik I, Universität Bayreuth - 95440 Bayreuth, Germany

received 24 October 2015; accepted in final form 4 February 2016
published online 18 February 2016

PACS 89.75.Kd – Patterns
PACS 87.18.-h – Biological complexity
PACS 47.20.-k – Fluid instabilities

Abstract – We investigate the orientation of nonlinear stripe patterns in finite domains. Moti-
vated by recent experiments, we introduce a control parameter drop from supercritical inside a
domain to subcritical outside without boundary conditions at the domain border. As a result,
stripes align perpendicularly to shallow control parameter drops. For steeper drops, non-adiabatic
effects lead to a surprising orientational transition to parallel stripes with respect to the borders.
We demonstrate this effect in terms of the Brusselator model and generic amplitude equations.

editor’s  choice Copyright c© EPLA, 2016

Introduction. – Pattern formation is central to the
wealth of fascinating phenomena in nature. It occurs in a
great variety of physical, chemical and living systems [1,2].
Examples include patterns in isotropic and anisotropic
convection systems [3–7], chemical reactions [8,9] and
biological systems [10–12], or environmental patterns [13].

In real systems, patterns emerge in finite areas or vol-
umes. Consequently, spatially periodic patterns only con-
tain a finite number of wavelengths. Along the system
borders, the relevant fields have to obey boundary condi-
tions that influence the pattern in different ways [3,14–25].
In isotropic systems, stationary patterns may be oriented
perpendicularly to the boundaries [3,15]. In thermal con-
vection, convection rolls align perpendicularly to side walls
due to boundary conditions for the flow fields [17–19].
Boundary conditions at the side walls may also restrict
the range of possible stable wave numbers of periodic pat-
terns [20]. Traveling waves of finite wave number may be
reflected at the boundaries leading to a number of inter-
esting and complex phenomena [21–25].

However, finite systems can also be achieved when the
fluxes and forces driving a pattern, the so-called control
parameters, are sufficiently strong (supercritical) only in a
subdomain of the system. In this case, no specific bound-
ary conditions act on the fields at control parameter drops

to subcritical values. Related to this are studies of ramps
in quasi–one-dimensional systems [26], whereby smooth
ramps may lead to wave number selection [26,27] and rapid
parameter changes to pinning effects for spatially periodic
patterns [28]. But the effects of restricting two dimen-
sional patterns to a finite domain by control parameter

Fig. 1: Stripe patterns inside supercritical subdomains in the
Brusselator model. The control parameter drops on different
length scales δx,y along x and y from βm = 0.05 to subcritical
values in a wide vicinity: (a) δx = δy = λc, (b) δx = δy =
0.32λc, (c) δx = 0.32λc, δy = 1.5λc, (d) δx = 1.5λc, δy =
0.32λc.

drops have not been systematically investigated so far.
Examples of pattern orientations resulting from different
widths of the control parameter drops are shown in fig. 1
and explained in this work.

Recent experiments where pattern forming protein re-
actions take place in finite subdomains of substrates [29]
belong to this class. Control parameter drops can also
be designed in light-sensitive chemical reactions where
illumination of the reaction cell suppresses pattern

28006-p1



Lisa Rapp et al.

formation [30,31]. If the illumination is only applied to
a subdomain of the system, again no boundary conditions
for the concentration fields are defined along the edge of
the illumination mask.

We investigate how control parameter drops along the
borders of a supercritical subdomain affect the orientation
of stationary spatially periodic patterns when no bound-
ary conditions for the fields are specified. We choose the
Brusselator as a representative model system to study the
influence of the control parameter drop width. This is
complemented by studies of the so-called amplitude equa-
tions for supercritical bifurcations to spatially periodic
patterns [3]. As a general description for this class of pat-
terns, the conclusions drawn from the amplitude equations
emphasize the universality of our results.

For large drop widths, we find that stripes align per-
pendicularly to the borders of the supercritical control
parameter domain. By decreasing the length scale for the
control parameter drop, we find a surprising orientational
transition to stripes in parallel alignment. The analysis of
the amplitude equations reveals additional non-adiabatic,
resonance-like effects favouring parallel stripes.

Model systems and control parameter drop. –

Brusselator. The Brusselator is a common model for
reaction-diffusion systems [32–35]. We use it as a pro-
totype system for supercritical bifurcations to spatially
periodic patterns (Turing patterns). It describes the non-
linear behaviour of the concentration fields u(x, y, t) and
v(x, y, t):

∂tu = ∇2u + a − (b + 1)u + u2v , (1a)

∂tv = D∇2v + bu − u2v, (1b)

with the control parameter b and constant parame-
ters a, D. These equations have the homogeneous fixed
point solution

uh = a , vh = b/a. (2)

Turing patterns with the critical wave number qc bifurcate
from this basic state for control parameter values beyond
its critical one bc [34], where

bc = (1 + aη)2 , qc =
√

aη, (3)

and η :=
√

1/D. The relative distance β of the control
parameter from its critical value bc is given by

b = bc(1 + β), (4)

i.e. βc = 0. Hexagons are typical for the Brusselator near
the onset of Turing patterns. But in this work, we consider
the special case D = a2 where stripes are preferred at the
onset [35]. In this case, the critical wavelength of the
stripes according to eq. (3) is λc := 2π/qc = 2π. We
choose a = 4 throughout this work.

Amplitude equations. The two concentration fields
u and v may be combined to the vector field w(r, t) =
(u(r, t), v(r, t)). We write spatially periodic stripes with
the wave vector qc in the form [3,34]

w(r, t) = wh + Aw̃ei(qc·r) + A∗w̃∗e−i(qc·r), (5)

where wh = (uh, vh). Slow variations (compared to the
wavelength λc) of the envelope A(r, t) can be described
by a dynamical amplitude equation [3,36].

The Brusselator model is isotropic. Hence, in extended
systems only the magnitude qc of the critical wave vector
qc for Turing stripes is fixed, but not its direction. Thus,
all stripe orientations are equally likely at pattern onset.
We consider the amplitude equations in two limits of stripe
orientations: qc = (qc, 0) and qc = (0, qc), called parallel
and perpendicular hereafter. The reduction method to
amplitude equations, the so-called multiple scale analysis,
is well established for supercritical bifurcations [3,36]. The
generic amplitude equations for the two stripe orientations
in the case of a small and constant control parameter β are

∂tA = βA + LA − g|A|2A, (6)

with

L = L2
‖ := ξ2

0

(

∂x − i

2qc
∂2

y

)2

, for qc = (qc, 0), (7a)

L = L2
⊥ := ξ2

0

(

∂y − i

2qc
∂2

x

)2

, for qc = (0, qc). (7b)

The coherence length ξ0 and the nonlinear coefficient g for
the Brusselator in the special case of D = a2 are ξ2

0 = 1
and g = 3/(2a2) [35].

Control parameter drop. We introduce the control pa-
rameter drop by assuming the spatially dependent control
parameter β(x, δx):

β = β0 +
M

2

[

tanh

(

x − xl

δx

)

− tanh

(

x − xr

δx

)]

. (8)

We assume L := xr − xl ≫ λc and β0 < 0. M and β0

are chosen such that the maximum value βm = β0 + M
is small and positive. Then β(x, δx) is supercritical in the
subdomain x̄l < x < x̄r, where

x̄l,r = xl,r ±
δx

2
ln

( −β0

M + β0

)

, (9)

and drops down to the subcritical value β0 outside this do-
main. The steepness of the control parameter drop around
x̄l,r increases with decreasing values of the drop width δx.

For small values of δx, the control parameter β(x, δx)
varies rapidly in a narrow range around x̄l,r. However,
only the slowly (adiabatically) varying contributions to
β(x, δx) affect the solutions of amplitude equations. The
rapidly (non-adiabatically) varying part is smoothed out
and must be treated separately. We therefore decompose
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β(x, δx) into an adiabatic and non-adiabatic part. For
this purpose, we introduce the slow length scale δA :=
2ξ0/

√
βm > δx and choose β0 = −ε, M = 2ε (where ε is

positive and small). We then express the slowly varying
contribution B0(x) via eq. (8) by choosing δx = δA:

B0(x) = β(x, δA). (10)

The difference between β(x, δx) and B0(x) becomes
small in the centre of [xl, xr] and takes its largest val-
ues around xl,r. We expand the rapidly varying difference
β(x, δx) − B0(x) into a series to obtain

β(x, δx) = B0(x) +
M

2

∑

m

{

Bl
m(x) sin [mqc(x − xl)]

+Br
m(x) sin [mqc(x − xr)]

}

, (11)

where m = n/NL, n ∈ N and NL = L/λc. The functions
Bl,r

m (x) are localised around xl,r and we choose a Gaussian
for their representation:

Bl,r
m (x) = B̂l,r

m exp

[

− (x − xl,r)
2

δ2
G,m

]

. (12)

The Gaussian amplitudes B̂l,r
m and their widths δG,m are

determined via a correlation analysis. We calculate the
correlation function between the rapidly varying part

∆β̃(x, δ) = tanh(x/δ) − tanh(x/δA) (13)

and the test function

fm(x, δtest) =
1√

πδtest
e−x2/δ2

test sin(mqcx). (14)

We then choose the Gaussian width δG,m to be the value of
δtest that maximises the correlation function. The ampli-
tudes B̂l,r

m are calculated via the overlap integral between
fm(x, δG,m) and ∆β̃. Figure 2(a) shows the contributions
B̄l

m := εBl
m(x) sin(mqcx) for m = 1, 2 in comparison to

the full shape of β(x, δx). Both functions are localised
around xl = 0 and approach zero within a short range
(≪ δA) around the control parameter drop. The Gaussian

amplitudes B̂l,r
1 and B̂l,r

2 decrease as a function of the drop
width δx (fig. 2(b)). These non-adiabatic contributions

vanish for δx > δA. The amplitude B̂l,r
1 is usually larger

than B̂l,r
2 , except in the limit of very small drop widths.

The patterns in fig. 1 are obtained for a rectangular su-
percritical subdomain of the control parameter in the form

β = β0 +
M

4

[

tanh

(

x − xl

δx

)

− tanh

(

x − xr

δx

)]

×
[

tanh

(

y − yb

δy

)

− tanh

(

y − yt

δy

)]

. (15)

Here, we introduced a second drop width δy to describe
the additional spatial dependence of β in the y-direction.
β(x, y, δx, δy) is supercritical in the two-dimensional area
[x̄l, x̄r] × [ȳb, ȳt].

-ε

0

ε

-δA 0 δx δA

a)

x

β(x) B
−l

1(x) B
−l

2(x)

0

0.2

0.4

0.6

0 δA/4 δA/2 3δA/4 δA

b)

δx

B
^ l,r

1 B
^ l,r

2

Fig. 2: (a) Contributions B̄l
1(x) and B̄l

2(x) to the control pa-
rameter drop β(x, δx) for δx = 0.11δA. (b) Gaussian ampli-
tudes B̂

l,r
1

and B̂
l,r
2

of the localised amplitudes as a function of
the drop width δx for ε = 0.05.

Non-adiabatic effects cause an orientational

transition. – We now include the control parameter drop
into the amplitude equation using the decomposition given
in eq. (11). The control parameter β in eq. (6) is re-
placed by the slowly (adiabatically) varying part B0(x)
as given by eq. (10). The short-wavelength contributions
∝ Bl,r

m (x) exp (imqcx) with m = 1, 2, 3, 4 in eq. (11) cause
additional (non-adiabatic) terms in the amplitude equa-
tion for parallel stripes [37]. It then takes the form

∂tA = B0(x)A + L2
‖A − g|A|2A

+

4
∑

m=1

αmBm(x) (A∗)
m−1

. (16)

Here, αm are constant parameters depending on the re-
spective system. The complex localised contributions
Bm(x) due to the control parameter drop are given by

Bm(x) = i
M

4

[

Bl
m(x)e−imqcxl − Br

m(x)e−imqcxr

]

. (17)

The magnitudes of B1(x) and B2(x) are similar, as shown
in fig. 2. The coefficient B2(x) reduces the threshold of the
pattern onset [37]. B1(x) changes the supercritical bifur-
cation (in the case B1 = 0) into an imperfect one [37,38]
and, therefore, has a stronger impact than B2(x). The ef-
fects caused by B3,4(x) are restricted to the post-threshold
regime and are much smaller than B1,2(x). Hence, they
are neglected henceforth. Equation (16) can be derived
from the functional

F‖ =

∫

dxdy

[

−B0(x)|A|2 +
g

2
|A|4 +

∣

∣L‖A
∣

∣

2

−
2

∑

m=1

αm

m

(

Bm(x)A∗m

+ B∗
m(x)Am

)

]

(18)

via ∂tA = −δF‖/δA∗. For the Brusselator in the case
D = a2, we find α1 = 2a and α2 = 5/3.

The amplitude equation for perpendicular stripes with
qc = (0, qc) is not affected by resonance contributions
∝ Bm. It is described by eq. (6) with L = L2

⊥ as given
in eq. (7b) and the slowly varying control parameter
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β = B0(x), cf. eq. (10). The related functional is

F⊥ =

∫

dxdy
[

−B0(x)|A|2 +
g

2
|A|4 + |L⊥A|2

]

. (19)

For small values of δx, the coefficients B1,2 have consid-
erable magnitude (fig. 2(b)). However, the related non-
adiabatic effects only affect the amplitude equation for
parallel stripes, cf. eq. (16). Due to the imperfect bifurca-
tion, parallel stripes already have a finite amplitude below
the bulk threshold βm = 0, especially around xl,r, where
B1,2 take the largest values. This finite amplitude A de-
creases the functional F‖ for parallel stripes with respect
to F⊥. Thus, for small values of δx, parallel stripes are
preferred compared to perpendicular stripes.

For large values of δx, the non-adiabatic contributions
B1,2 become small and can be neglected (fig. 2(b)). In this
case, the amplitude equations and the functionals for the
two different stripe orientations only differ in the linear op-
erator. These include different orders of derivatives in the
x-direction: |∂xA|2 in the functional for parallel stripes,
eq. (18), and |∂2

xA|2 for perpendicular stripes, eq. (19).
Thus, spatial variations of the amplitude A(r, t) affect the
two functionals differently. The slow spatial variation of
the control parameter B0(x) in the x-direction is reflected
in a spatial variation of the amplitude A(r, t). This in-
creases both functionals. However, due to the different
orders of x-derivatives, the functional for perpendicular
stripes has a lower value [3,39]. Therefore, perpendicular
stripes will be preferred for large δx.

According to this reasoning, we predict stripes aligned
perpendicular to the supercritical border for a large drop
width δx and parallel for small δx. Therefore, we expect
an orientational transition for medium values of δx. Note,
for these considerations only the contributions B0, B1 and
B2 to the decomposition in eq. (11) are taken into account.
However, the predicted orientational transition of stripes
is rather insensitive to these approximations as confirmed
by simulations of the Brusselator in the next section.

Numerical results for the Brusselator. – In the
previous part we found an orientational transition of
stripe patterns by changing the width of control parameter
drops. This prediction is based on a reasoning including
approximations. Therefore, the effect is verified by simula-
tions of the Brusselator model, cf. eqs. (1), with supercrit-
ical subdomains of width L = 20λc, embedded in larger
subcritical domains with overall system sizes lx,y. The
model is solved using a common pseudospectral method
with periodic boundary conditions [40] and Nx,y modes,
respectively. We choose β0 = −0.05 and perturb the basic
solution by small amplitude random noise.

For large widths δx of control parameter drops, i.e. slow
variations of the control parameter, the preferred orienta-
tion of a stripe pattern is nearly perpendicular to the bor-
ders of the supercritical domain, i.e. q ∼ (0, qc), as shown
in fig. 3 for δx = 5λc. This confirms the prediction in
terms of the amplitude equations in the previous section

Fig. 3: Stripes favour a perpendicular orientation with respect
to shallow control parameter drops (δx = 5λc). Simulation of
the Brusselator started at βm = 0.001 and was slowly increased
to βm = 0.05. Parameters: lx = ly = 50λc, Nx = Ny = 1024.
Note: only a cutout of the simulation is shown.

Fig. 4: Simulations of the Brusselator model with a narrow
control parameter drop (δx = 0.5λc). Cross-sections of the
two-dimensional stripe pattern for (a) βm = −0.025, (b) βm =
−0.01, (c) βm = 0. (d) The stripe amplitude as a function
of βm implies an imperfect bifurcation. (e) Snapshot of the
parallel stripes for βm = 0.02. Simulation parameters: lx =
50λc, ly = 25λc, Nx = 1024, Ny = 512.

(for similar results for periodic modulations in extended
systems see ref. [41]). Similar orientations are obtained
for drop widths down to about δx ≃ λc.

For small δx, e.g. δx = 0.5λc, the stripes align parallelly
to the borders of the supercritical range, i.e. qc ∼ (qc, 0),
as in fig. 4(e) for βm = 0.02. Moreover, localised Tur-
ing stripe patterns of finite amplitude occur around the
borders at xl,r already at subcritical values of βm (see
cross-sections in fig. 4(a) and (b)). For increasing βm,
they expand into the whole supercritical domain. At the
bulk threshold βm = 0 (fig. 4(c)) the stripes already have a
finite amplitude throughout the range [xl, xr]. The maxi-
mum stripe amplitude of the stationary solution as a func-
tion of βm is shown in the bifurcation diagram in fig. 4(d).
The form of the bifurcation is imperfect, as expected from
the analysis on the basis of the amplitude equations in the
previous section.

The two different preferred stripe orientations for large
δx = 5λc in fig. 3 and small δx = 0.5λc in fig. 4
clearly confirm an orientational transition of stripes in the

28006-p4
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Fig. 5: Comparison of the functional for stripes as a function
of the drop width δx with the stripe wave vector qc = (0, qc)
(filled circles) and qc = (qc, 0) (open diamonds). Parameters:
β0 = −0.05, M = 0.1.

supercritical domain depending on the width of the control
parameter drop along its border.

We can further restrict the domain size by varying
the control parameter simultaneously along the x- and
y-direction, cf. eq. (15). In these rectangular domains1,
one can combine different drop widths δx and δy to trig-
ger different stripe orientations as shown by four exam-
ples in fig. 1. Combining, e.g., large drop widths at the
long side of the rectangle with small drop widths at the
short side creates a remarkably uniform stripe pattern, cf.
fig. 1(d). Using different combinations of δx,y may be a
promising tool for designing Turing patterns in localised
light-sensitive chemical reactions [42].

Orientational transition regime. – The orienta-
tional transition of stripes is deduced in terms of ampli-
tude equations and confirmed by numerical simulations of
the Brusselator model. The amplitude equations can be
derived from the functionals, eqs. (18) and (19). Calcu-
lating these functionals as a function of the drop width
allows to determine the preferred orientation for this δx.
In the range where F⊥ < F‖, a perpendicular stripe ori-
entation is expected and vice versa. For this purpose, we
perform simulations of the amplitude equations for the two
stripe orientations using the aforementioned pseudospec-
tral algorithm (simulation parameters: lx = ly = 50λc,
Nx = Ny = 1024, L = 20λc, β0 = −0.05, βm = 0.05).
When the solutions reach the stationary state, the func-
tionals displayed in fig. 5 are calculated.

The functional corresponding to perpendicular stripes
in eq. (19) does not contain the non-adiabatic contribu-
tions B1 and B2 to the control parameter drop. Re-
gardless of the assumptions made for the justification of
eq. (19) and the related amplitude equation, one may use
β(x, δx) instead of B0(x). The functional then deviates
only slightly from its constant value in the case of B0(x).
In addition, fig. 5 shows that the functional with β(x, δx)
is nearly independent of δx, i.e. stripes perpendicular to

1Simulation parameters: β0 = −0.1, βm = 0.05, Lx = 30λc,
Ly = 20λc, lx = 60λc, ly = 50λc, Nx = Ny = 1024.

the border of the supercritical range are rather insensitive
to the width δx.

For parallel stripes, q = (qc, 0), the resonance effects
covered by B1 (and B2) are relevant and the associated
functional is given in eq. (18). The two functionals for
the two different stripe orientations are shown as a func-
tion of the drop width δx in fig. 5. For narrow control
parameter drops, i.e. δx small, the functional for parallel
stripes is significantly lower. Thus, the parallel orientation
is preferred. However, the functional for parallel stripes
strongly increases as a function of the drop width. The
orientational transition takes place at the intersection of
the two functionals. For larger δx, the perpendicular ori-
entation of the stripes is preferred.

Summary and conclusions. – In this work, we iden-
tified and investigated a new class of finite pattern forming
systems confined by control parameter drops from super-
to subcritical values. These orient stripe patterns even
without boundary conditions for the relevant fields. The
stripe orientation depends on the width of the control pa-
rameter drops. We found a novel orientational transition

of stripe patterns with respect to the borders as a function
of the width of control parameter drops.

In light-sensitive chemical reaction-diffusion systems
showing Turing patterns [30,31] the transition length be-
tween the patterns (supercritical) and the homogeneous
state (subcritical) may be varied by the length of a smooth
transition between illuminated and dark areas.

The Swift-Hohenberg (SH) model [43] is, besides the
Brusselator a further paradigmatic model for studying the
formation of spatially periodic patterns [2,3]. It behaves
differently with respect to control parameter drops along
the border of a supercritical domain. The basic state of
the Brusselator is a function of the control parameter b,
cf. eq. (2). Therefore, control parameter drops change
the basic state of the bifurcation to Turing patterns. In
the case of steep control parameter drops, the bifurcation
to parallel stripes becomes imperfect, causing a different
orientation than for smooth control parameter variations.
In contrast, the basic state uh = 0 of the SH model re-
mains unchanged for spatially varying control parameters.
The onset of periodic patterns is reduced but the bifurca-
tion remains perfect. The local 1:2 resonance occurring
in the case of a steep control parameter drop is not suffi-
cient to change the stripe orientation like for the Brusse-
lator. The same applies to the mean-field model for block
copolymers (see, i.e., [44]). Therefore, we do not find the
aforementioned orientational transition of stripe patterns
in the SH or the block copolymer model. However, in
common systems where the basic state is also changed by
control parameter variations, orientational transitions of
stripe patterns are very likely.

Our results for stationary patterns may also be im-
portant for traveling waves that occur, for instance, in
the cell biological MinE/MinD protein reaction on flat
substrates [12,29]. To mimic the effects of cell confinement
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in such extended experiments, reactive membranes were
created in subdomains of the substrate [29,45]. In this
way, the traveling waves are restricted to the range above
the functionalised parts of the membrane. These may be
interpreted as subdomains with a supercritical control pa-
rameter. In this experiment the traveling waves align per-
pendicularly to the borders of the functionalised area [29].
It is very likely that this orientational behaviour is again
governed by generic principles similar to those discussed
in this work and specific molecular reaction schemes or
three-dimensional effects provide quantitative modifica-
tions [29,46,47]. Is the complex behavior of MinE/MinD
oscillations in further restricted domains, as investigated
recently in ref. [48], determined by the specific properties
of the kinetic reaction models? Or do again generic prin-
ciples of pattern formation play a leading role as described
in this work?
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