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Soliton dynamics in optical fibers using the generalized traveling-wave method
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The generalized traveling wave method (GTWM) is applied to the nonlinear Schrödinger (NLS) equation with
general perturbations in order to obtain the equations of motion for an ansatz with six collective coordinates,
namely the soliton position, the amplitude, the inverse of the soliton width, the velocity, the chirp, and the phase.
The advantage of the new ansatz is that it yields three pairs of canonically conjugated coordinates and momenta
that all are well-behaved. The new ansatz is applied to model the dynamics of a soliton in a dispersion-shifted
optical fiber described by the generalized NLS, including dissipation, higher-order dispersion, Raman scattering,
and self-steepening perturbations. It is shown that the GTWM is equivalent to the modified method of moments,
which considers the time variation of the norm, the first and the second moment of the norm, the momentum, the
first moment of the momentum, and the energy for the perturbed NLS equation.
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I. INTRODUCTION

The nonlinear Schrödinger (NLS) equation is one of the
paradigms of soliton physics because it represents a completely
integrable system and has numerous applications in practically
all fields of physics, which include charge density waves [1],
long Josephson junctions [2], optical fibers [3–5], plasmas
driven by RF fields [6], and Bose-Einstein condensates [7,8]
(see also review articles [9–11]). In particular, in optical fibers,
the perturbed NLS equation,

iut + σuxx + γ0|u|2u = R[u(x,t); x,t], (1)

is investigated [12–14], where β2 = −2σ is the group velocity
dispersion and γ0 is the nonlinear parameter responsible for
self-phase modulation. The complex function R represents
many different kinds of perturbations and may also depend on
u� and the spatial derivatives of u and u�. For sufficiently small
perturbations it is usually assumed that the dynamics of a single
soliton can be approximately described by an ansatz in the form
of the 1-soliton solution of the unperturbed NLS equation,
where the parameters of that solution become time-dependent
unknown variables, the so-called collective coordinates (CCs).
This ansatz is given by [9]

u(x,t) = 2 i η

√
2σ

γ0
sech[2η(x − ζ )] exp(−i�),

(2)
� = 2ξx + φ,

with the four CCs: η(t), ζ (t), ξ (t), and φ(t). By specifying
perturbation R = a exp[iK(t)x] without dissipation, and us-
ing the Lagrangian approach, a set of ordinary differential
equations (ODEs) for the four CCs was developed [15]. This
driving term was already used in the discrete form to model
an array of coupled nonlinear optical wave guides, in which
discrete cavity solitons can be excited [16]. Although in the
case of this external driving force, the numerical solution of the
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CC equations predicted soliton dynamics that was confirmed
by simulations of the perturbed NLS equation [15], the ansatz
Eq. (2), from the physical point of view, presents certain
disadvantages: First, when the ansatz Eq. (2) is inserted into
the Lagrangian density and an integration over x is performed,
the Lagrangian (L) is obtained as a function of the CCs
and the time derivatives φ̇ and ξ̇ . The canonical momentum
dL/dφ̇ can be identified with the norm N = ∫

dx|u|2.
However, the canonical momentum dL/dξ̇ does not have any
obvious physical interpretation. Second, the Hamiltonian as a
function of canonically conjugated variables can be obtained
only after a complicated transformation. Finally, when the
forcing is time-independent, that is, K(t) = constant, then
the CCs η(t) and ξ (t) perform periodic oscillations, and ζ (t)
has a linear term and oscillations around it. However, φ(t)
exhibits oscillations with a growing amplitude around a linear
term.

The above disadvantages can be avoided through the use
of a slightly different ansatz [17]: � in Eq. (2) is replaced by
� = 2ξ (x − ζ ) + �. By using this modified ansatz, the new
Lagrangian depends on �̇ and ζ̇ . The canonical momentum
dL/d�̇ can again be identified with the norm. The second
canonical momentum dL/dζ̇ now has a physical interpreta-
tion: namely, it can be identified with the field momentum. The
Hamiltonian is obtained by a simple Legendre transformation
and �(t) performs oscillations with constant amplitude, as
do the other CCs. Remarkably, this new ansatz allows one
to calculate a so-called “phase portrait” in which the soliton
dynamics is described by a point moving on a curve in the
complex plane. The “phase portrait” makes sense only when
this curve is closed, then the point moves on the same orbit
in each period. Interestingly, the shape of the orbit allows a
prediction about the stability of the soliton, which is indeed
confirmed by simulations [17].

One of the main goals of our paper is to show that similar
disadvantages to those mentioned above appear in collective-
coordinate theories for optical solitons and can also be avoided
in a similar way as above. Indeed, in the literature on optical
solitons the following ansatz with five CCs has been widely
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used [12–14]:

w(z,T ) =
√

Ep

2Tp

sech
T − qp

Tp

exp

{
− i

[
φp + �p(T − qp)

+Cp

(T − qp)2

2T 2
p

]}
. (3)

Here we use the notation of Refs. [12,14], where the propaga-
tion distance z corresponds to the time t in our NLS equation,
and the time T corresponds to our spatial variable x. The
phase φp is assumed to be constant. The CCs depend on z and
are the energy Ep, the temporal shift qp, the frequency shift
from the original carrier frequency, �p, the soliton duration
Tp, and the time-domain chirp Cp . The chirp term is introduced
as a second-order perturbation to the phase of the soliton.

We show that the ansatz Eq. (3) also produces problems with
the definition of canonical momenta. In particular, dL/dṪp

yields an expression that contains Tp, which means that
dL/dṪp cannot be a canonical momentum. In contrast to
this, an improved new ansatz with a new chirp term and
the phase as a sixth CC produces three pairs of canonically
conjugated variables. As the Lagrange formalism generally
works only for systems without dissipation, and as a dissipative
optical fiber is considered, we present the so-called generalized
traveling wave method (GTWM), which works for arbitrary
perturbations R. The method was introduced in a general way
in Ref. [18]: only the Hamilton equations of the unperturbed
system must be known and the unperturbed system need
not be integrable. The method was already applied to the
zero-temperature dynamics [18] and thermal diffusion [19,20]
of magnetic vortices in the two-dimensional anisotropic
Heisenberg model, and to the dynamics of topological solitons
in nonlinear Klein-Gordon equations [21].

In particular for four CCs [see Eq. (2)], in Ref. [22] it is
shown that the GTWM is equivalent to the time variation: of the
norm, of the first moment of the norm, of the momentum, and
of the energy. This approach has successfully been applied to
the nonlinear Schrödinger equation in higher spatial dimension
[23]. In the optical interpretation, this technique is known
as the method of moments (MoM), also termed as modified
conservation laws, which also work for arbitrary perturbations
R. This is the method that is mostly used in the literature
on optical solitons with five collective variables [12–14,24].
Therefore, in order to obtain the equations of motion, five
moments (the norm N , its first moment N1, its second moment
N2, the momentum P , and its first moment P1) are used
[12–14]. Notice that a direct comparison between the ansatz
Eqs. (2) and (3) shows three major differences. First, in the
ansatz Eq. (3) with five CCs, the amplitude and the width of
the soliton are two independent variables. Second, in the ansatz
Eq. (3), the phase is no longer an independent variable. Finally,
the chirp term is introduced in Eq. (3) as the fifth collective
coordinate.

In the current work, we use six independent CCs, namely
the soliton position, the amplitude, the inverse of the soliton
width, the velocity, the chirp, and the phase. It can be shown
that the MoM yields six CC equations, identical to those from
GTWM, if the phase in Eq. (3) is introduced as a sixth variable
and the energy as the sixth moment. In Ref. [25], a different

identity instead of a sixth moment was used. However, the
resulting CC equations differ from the CC equations obtained
by the GTWM.

The presentation of the above results is organized as
follows: In the following section, the physical interpretation of
canonical momenta is given using an ansatz with six CCs. It is
also shown that an inconsistency is obtained when, instead of
six CCs, five CCs are used. In Sec. III, the GTWM is developed
for a general perturbation and its equivalence with the modified
method of moments is shown. In Sec. IV, we apply the above
methods to soliton dynamics in a dispersion-shifted fiber. The
dynamics is modeled by a perturbed NLS equation, where the
perturbation R consists of several terms [12–14], which ac-
count for dissipation, higher-order dispersion, delayed Raman
response, energy loss through intrapulse Raman scattering,
and self-steepening. We express R in our notation, calculate
the relevant integrals, and obtain six CC equations. The sixth
ODE is an equation for �(t). The soliton dynamics is studied
through the numerical solutions of the equations of motion for
the collective coordinates. To conclude the paper, in Sec. V
our main findings are summarized.

II. PHYSICAL INTERPRETATION OF CANONICAL
MOMENTA: ANSATZ WITH SIX COLLECTIVE

VARIABLES

In this section it is shown that the ansatz that is used in
the following sections possesses certain advantages compared
to the ansatz that has been widely used in the literature
[12–14]. This concerns the form of the chirp term and the
introduction of a phase as a sixth collective coordinate (in
the above literature only five collective coordinates were
used). It is shown that our ansatz allows the definition of
three canonical momenta, thereby providing three pairs of
canonically conjugated variables.

In order to achieve our goal, we focus on the perturbed NLS
Eq. (1) with the driving term R = a exp[iK(t)x] [15], which
is obtained from the Euler-Lagrange equation

d

dt

∂Ltot

∂u�
t

+ d

dx

∂Ltot

∂u�
x

− ∂Ltot

∂u�
= 0,

with the Lagrangian density Ltot = Lkin − Lpot + Lpert,

Lkin = i

2
(utu

� − u�
t u), Lpot = σ |ux |2 − γ0

2
|u|4,

Lpert = −a{exp[iK(t)x]u� + exp[−iK(t)x]u}.
Our ansatz,

u(x,t) = 2iA sech[2η(x − ζ )] exp(−i�),
(4)

� = � + 2ξ (x − ζ ) + C(x − ζ )2,

contains six collective variables: soliton position ζ (t), ampli-
tude A(t), inverse width 2η(t), velocity ξ (t), chirp C(t), and
phase �(t) [25].

By inserting the ansatz into Lkin and integrating over x, the
kinetic part of the Lagrangian is obtained

Lkin = 4
A2

η
�̇ − 8

A2

η
ξ ζ̇ + π2

12

A2

η3
Ċ. (5)
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From this, we obtain

∂Lkin

∂�̇
= 4

A2

η
= N,

where the canonical momentum N is conjugated to the phase
� and is identified as the norm N = ∫

dx |u|2. Furthermore,

∂Lkin

∂ζ̇
= −8

A2

η
ξ = P,

where the canonical momentum P (field momentum),

P = i

2

∫ +∞

−∞
dx (uu�

x − u�ux), (6)

is conjugated to the soliton position ζ . Moreover, P = MV ,
where M = N/2 is the mass and V = −4ξ is the soliton
velocity. Finally, we obtain

∂Lkin

∂Ċ
= π2

12

A2

η3
= D,

where the canonical momentum D is conjugated to the chirp
C and can be written in the form D = π2NB2/12, with B =
1/(2η) as the soliton width.

Now we want to show that the ansatz Eq. (3) that has often
been used in the literature on optical solitons [12–14] does not
allow the definition of three canonical momenta.

The CCs in Eq. (3) for ω(z,T ) have the following relations
to the CCs in Eq. (4),

qp ≡ ζ,
1

Tp

≡ 2η,

√
Ep

2Tp

≡ 2A,

�p ≡ 2ξ,
Cp

2T 2
p

≡ C, (7)

and constant phase φp. The factor i in our ansatz is equivalent
to a constant phase φ0 = π/2, because i = exp(−iφ0).

Using the above variables, we obtain

Lkin = −Ep�pq̇p + π2

24
EpĊp − π2

12

EpCp

Tp

Ṫp.

For the first canonical momentum we get

∂Lkin

∂Ċp

= π2

24
Ep,

where the energy Ep = ∫
dτ |w|2 is conjugated to the chirp.

For the second canonical momentum, we obtain

∂Lkin

∂q̇p

= −Ep�p, (8)

and this is conjugated to the temporal shift qp, where �p =
(i/2Ep)

∫
dτ (ww�

T − w�wT ) is identified as the frequency
shift. The righthand side of Eq. (8) is equivalent to the
canonical momentum P in Eq. (6). Finally, we obtain

∂Lkin

∂Ṫp

= −π2

12

EpCp

Tp

. (9)

Here the chirp should be conjugated to the soliton duration
Tp. However, Tp also appears on the righthand side of Eq. (9),

which must not be the case. Thus the righthand side of Eq. (9)
cannot be interpreted as a canonical momentum.

Going back to our ansatz Eq. (4), Lpot is integrated over x

and we obtain for the potential part of the Lagrangian,

Lpot = 16σ

3
A2η + 16σ

A2ξ 2

η
+ π2σ

3

A2C2

η3
− 16γ0

3

A4

η
,

and for the perturbative part Lpert = ∫
dx Lpert. By denoting

the nonperturbative part as L = Lkin − Lpot, the six Lagrange
equations become

d

dt

∂L

∂ψt

− ∂L

∂ψ
= ∂Lpert

∂ψ
,

where ψ stands for the six CCs: �(t), ζ (t), η(t), ξ (t), A(t),
and C(t).

However, the Lagrange formalism only works for Hamil-
tonian systems, that is, the perturbation R does not con-
tain dissipative terms. If the damping is very simple,
for example, R = −iβu(x,t) with β > 0, then the Euler-
Lagrange equation can be generalized through the introduc-
tion of a dissipation function; for the above example, see
Refs. [15,17].

For this reason, in the next section two methods are
used which both work for arbitrary perturbation R: For the
generalized traveling wave method only the Hamiltonian of
the unperturbed system must be known. Using our ansatz
Eq. (4), six equations of motion are obtained. The same CC
equations are derived by using the method of moments, if a
sixth moment is introduced.

III. GENERALIZED TRAVELING WAVE METHOD
AND METHOD OF MOMENTS WITH SIX

COLLECTIVE COORDINATES

The perturbed NLS Eq. (1) actually consists of two
equations for the real and imaginary parts, for u(x,t) and
u∗(x,t). For our purpose, these equations can be rewritten as

i ut = δH0

δu∗ + R[u(x,t); x,t], (10)

− i u∗
t = δH0

δu
+ R∗[u(x,t); x,t], (11)

where

H0 =
∫ +∞

−∞
dx H0 =

∫ +∞

−∞
dx

(
σuxu

∗
x − γ0

2
u2u∗2

)
. (12)

For the following, only this Hamiltonian of the unperturbed
system must be known. We now assume that the time
dependence of u(x,t) and u∗(x,t) in Eqs. (10) and (11)
only appears via a set of m real collective coordinates
{Y1(t),Y2(t), . . . Ym(t)} := �Y (t), that is, u(x,t) = u(x, �Y (t))
and u∗(x,t) = u∗(x, �Y (t)). It is then necessary to multiply
Eq. (10) by ∂u∗/∂Yn, and Eq. (11) by ∂u/∂Yn, add the
resulting equations and integrate over the system, which
yields

m∑
j=1

IYnYj
Ẏj = Fn( �Y ) + Rn( �Y ), n = 1,2, . . . m, (13)
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with

IYnYj
=

∫ +∞

−∞
dx i

[
∂u

∂Yn

∂u∗

∂Yj

− ∂u∗

∂Yn

∂u

∂Yj

]
, (14)

Fn( �Y ) = −
∫ +∞

−∞
dx

[
δH0

δu∗
∂u∗

∂Yn

+ δH0

δu

∂u

∂Yn

]

= −
∫ +∞

−∞
dx

∂H0

∂Yn

= −∂H0

∂Yn

, (15)

RYn
( �Y ) = −

∫ +∞

−∞
dx

(
R

∂u∗

∂Yn

+ R∗ ∂u

∂Yn

)
, (16)

where the overdot in Eq. (13) denotes the derivative with
respect to time. Equations (13)–(16) represent a set of m

first-order ODEs for our m CCs.
In order to evaluate the integrals, Eq. (14), which appear

in the ODEs, Eq. (13), we now take the one-soliton solution
of the unperturbed NLS equation [9] and make the specific
ansatz Eq. (4) for u(x, �Y (t)) [25]. The soliton energy Eq. (12)
is obtained:

H0 = 16σ

3
A2η + 16σ

A2ξ 2

η
+ π2σ

3

A2C2

η3
− 16γ0

3

A4

η
. (17)

Setting Y1 = ζ , Y2 = �, Y3 = η, Y4 = ξ , Y5 = A, and Y6 = C,
in Eqs. (13)–(16), we obtain for n = 1, . . . ,6,

8
A2ξ

η2
η̇ − 8

A2

η
ξ̇ − 16

Aξ

η
Ȧ = −Rζ , (18)

−4
A2

η2
η̇ + 8

A

η
Ȧ = −R�, (19)

−8
A2ξ

η2
ζ̇ + 4

A2

η2
�̇ + π2

4

A2

η4
Ċ

= −16σ

3
A2 + 16σ

A2ξ 2

η2
+ π2σ

A2C2

η4
− 16γ0

3

A4

η2
− Rη,

(20)

8
A2

η
ζ̇ = −32σ

A2

η
ξ − Rξ , (21)

16
Aξ

η
ζ̇ − 8

A

η
�̇ − π2

6

A

η3
Ċ

= −32σ

3
Aη − 32σ

Aξ 2

η
− 2π2σ

3

AC2

η3
+ 64σ

3

A3

η
− RA,

(22)

− π2

4

A2

η4
η̇ + π2

6

A

η3
Ȧ = −2π2σ

3

A2C

η3
− RC, (23)

respectively. By setting A = η and C = 0, Eqs. (18)–(23)
reduce to the equations of motions for ζ , �, η, and ξ obtained
in Ref. [22] for a four-CC ansatz (see Eqs. (11)–(14) of
Ref. [22]).

A very particular property of GTWM is related to its
relationship with the so-called modified conservation laws,
also called method of moments (the time evolution of the
quantities which are conserved for the unperturbed system)
[25,26].

We define the following moments in a similar way to that
in Ref. [25]. For the ansatz Eq. (4) they read

N =
∫ +∞

−∞
dx |u|2 = 4A2

η
, (24)

N1 =
∫ +∞

−∞
dx x|u|2 = 4A2

η
ζ, (25)

N2 =
∫ +∞

−∞
dx (x − ζ )2|u|2 = π2

12

A2

η3
, (26)

P =
∫ +∞

−∞
dx

i

2
[uu∗

x − u∗ux] = −8
A2ξ

η
, (27)

P1 =
∫ +∞

−∞
dx

i

2
(x − ζ )[uu∗

x − u∗ux] = −π2

6

A2C

η3
, (28)

where N is the norm, N1 is the first moment of the norm, N2 is
the second moment of the norm, P is the momentum, and P1

is the first moment of the momentum. In addition, the energy
H0 is used as the sixth moment given by Eq. (12). Notice that
in Ref. [25] only five moments namely P , N , P1, N1, and N2

were defined. These moments yield five equations of motion
for five CCs. In order to obtain the sixth equation of motion,
Ref. [25] used a certain identity. However, we show that if
the ansatz Eq. (4) is used, then the correct sixth equation of
motion can be obtained from the time variation of the energy
H0 defined by Eq. (12) and given by Eq. (17).

From Eqs. (18) and (27), Eqs. (19) and (24), and Eqs. (23)
and (26), it can be shown that Eqs. (18), (19), (21), and (23)
can be rewritten in the following way:

dP

dt
= −Rζ , (29)

dN

dt
= −R�, (30)

dÑ1

dt
= ζ̇ = −4σξ − η

8A2
Rξ , (31)

dN2

dt
= −2π2σ

3

A2C

η3
− RC, (32)

where Ñ1 = N1/N . In other words, four of the six equation
of motions are directly related with the time variation of the
momentum, the norm, and the first and second moments of the
norm. In Ref. [22] for an arbitrary number of CCs and arbitrary
ansatz it was shown that the time variation of the energy reads

dH0

dt
= −Rt . (33)

Finally, by multiplying Eq. (20) by −η, Eq. (22) by −A/2,
and Eq. (23) by −2C, and by adding the resulting equations,
we obtain

dP1

dt
= 32

3

A2

η

(
ση2 − γ0

2
A2

)
+ 2π2σ

3

A2C2

η3
+ A

2
RA

+ ηRη + 2CRC. (34)

Hence, it is shown that, for a general perturbation and assuming
the ansatz Eq. (4), the GTWM is equivalent to the time
variation of the norm, the momentum, the energy, the first
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and second moments of the norm, and the first moment of the
momentum.

Clearly, the equation of motion for ζ is precisely Eq. (31).
By multiplying Eq. (19) by 2ξ and adding it to Eq. (18),

ξ̇ = η

8A2
Rζ + ηξ

4A2
R�. (35)

By multiplying Eq. (23) by −48η2/π2 and adding it to Eq. (19),

η̇ = 4σηC + 6

π2

η4

A2
RC − η2

8A2
R�. (36)

Subsequent insertion of this expression for η̇ in Eq. (19) gives

Ȧ = 2σAC + 3

π2

η3

A
RC − 3η

16A
R�. (37)

Multiplying Eq. (22) by A/(2η) and adding Eq. (20), yields

Ċ =4σC2 − 64

π2
η2

(
ση2 − γ0

2
A2

)
− 3η3

π2A
RA − 6η4

π2A2
Rη.

(38)

Equations (32) and (35)–(38) agree with those obtained in
Ref. [25]. However, we now show that the equation for
the phase � can be directly obtained from the GTWM or
equivalently for the time derivative of the energy. From
Eq. (20) we obtain

�̇ = 2ξ ζ̇ − π2Ċ

16η2
− 4σ

3
η2 − 4γ0

3
A2 + 4σξ 2 + π2C2

4η2

− η2

4A2
Rη. (39)

It is interesting to note that this equation does not agree with
that obtained in Ref. [25]. Notice that, in Ref. [25], the equation
for � was obtained from a certain identity, which is not related
to the time variation of modified conserved quantities.

IV. PROPAGATION OF SOLITONS IN OPTICAL FIBERS

The nonlinear propagation of a Raman soliton in an optical
fiber can be modeled by using the generalized NLS [27]. Under
certain approximations this equation becomes the perturbed
NLS Eq. (1), with

R = −iβu + iβ1uxxx − iγ1
∂

∂x
(u|u|2) + γ0TRu

∂|u|2
∂x

+ iγ1TR

∂

∂x

(
u

∂|u|2
∂x

)
, (40)

where the first term on the righthand side is the dissipation, the
second term accounts for the third-order dispersion, and the
third describes the influence of self-steepening. Moreover,
the term proportional to γ0TR represents the intrapulse Raman
scattering, while the last term is related with the energy loss
through intrapulse Raman scattering [14]. By using the ansatz
Eq. (4) with six CCs, from Eqs. (31) and (35)–(39), and after
a number of straightforward calculations, we obtain

ζ̇ = −4σξ + 4β1η
2 + 12β1ξ

2 + π2

4
β1

C2

η2
+ 4γ1A

2, (41)

ξ̇ = −64

15
γ0TRA2η2 + 8

3
γ1A

2C − 128

15
γ1TRη2A2ξ, (42)

η̇ = 4σηC − 24β1ηξC − 128

π2
γ1TRA2η3, (43)

Ȧ = −8βA + 2σAC − 12β1ACξ

− γ1TRA3η2

(
64

π2
+ 64

15

)
, (44)

Ċ = 4C2(σ − 6β1ξ )

+ 64

π2
η2

(
γ0

2
A2 − ση2 + γ1A

2ξ + 6β1ξη2

)

+
(

64

π2
− 128

15

)
γ1TRA2η2C, (45)

�̇ = 2ξ ζ̇ + 4σξ 2 + 8σ

3
η2 − 10γ0

3
A2 − 8β1ξ

3 − 16β1η
2ξ

−20

3
γ1A

2ξ + γ1TRA2C

(
8π2

45
− 4

)
. (46)

It is interesting to note that an ansatz with five CCs [12] was
used in Ref. [14], which is essentially the ansatz Eq. (4)
with � = π/2. Using this five-CC ansatz, the chirp term
displays oscillations, which grow in amplitude. In contrast,
the ansatz with six collective coordinates, which includes the
new chirp term and the time-dependent phase, has, at least,
two advantages: first, the oscillations of the chirp do not grow
and second, the extra equation for the phase is obtained, which
is crucial for a correct physical interpretation of the canonical
momentum associated with certain problems.

We now define

σ = −β2/2, β = α/2, β1 = β3/6, (47)

using the parameters of the optical fiber α, β1, and β2.
The values for the required fiber parameters are given in
Table I. By using the initial conditions shown in Table II,
the equations of motion are numerically solved for the six
collective coordinates, Eqs. (41)–(45) and A(t), ζ (t), ξ (t),
η(t), C(t), and �(t) are obtained (see Fig. 1). In Fig. 1, the
soliton amplitude A(t) and the inverse of the soliton width
1/η(t) decay with a propagation distance while the soliton
is accelerated. The chirp C(t) oscillates with a spatial period
approximately equal to 0.09 m, which is much smaller than the
fiber length. Interestingly, the phase �(t) no longer has linear
behavior as a function of the propagation distance t and, due
to the perturbations, nonlinear terms appear in t .

TABLE I. Parameters of the optical fiber.

Parameter Values

Speed of light c = 2.99792458 × 108 m/s
Center wavelength λ0 = 1.55 × 10−6 m
Fiber length 200 m
Fiber linear loss α = 4.6 × 10−5 m−1

Group velocity dispersion (GVD) β2 = −5.1 × 10−27 s2/m
Third-order dispersion β3 = 10−40 s3/m
Nonlinearity γ0 = 2 × 10−3 W−1 m−1

Self-steepening γ1 = γ0λ0/(2πc) s/(m W)
Raman parameter TR = 2.5 × 10−15 s
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TABLE II. Initial conditions.

Collective coordinates at t = 0 Values

A(0) 15.97
√

J/s

ζ (0) 0 m
ξ (0) 0 s−1

η(0) 1013 s−1

C(0) 0 s−2

�(0) π/2

By using the change of variables given by Eqs. (7), the
energy Ep, the temporal shift qp, the frequency �p, the soliton

duration Tp, and the chirp Cp are obtained as functions of the
propagation distance t (see Fig. 2). As qp = ζ , qp is not plotted
in Fig. 2.

In Fig. 2, the dynamics of the soliton show the expected
behavior in energy Ep , frequency shift �p, and soliton duration
Tp as a function of propagation distance. In particular, the
energy is decreasing due to fiber loss and intrapulse Raman
scattering. The Raman scattering also leads to continuous
downshift in soliton center frequency. This effect is rather
strong for femtosecond solitons. As the soliton downshifts, it
experiences increasing dispersion, which leads to increasing
duration. In Fig. 2, the normalized new chirp C/N (black
curve) is shown together with the normalized old chirp Cp/Np
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FIG. 1. A, ζ , ξ , η, C, and � vs. propagation distance t for a large propagation distance.
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FIG. 2. Ep , �p , Tp , and the normalized chirp parameter vs. propagation distance t for a larger fiber length. For the normalized chirp (lower
right panel), an old definition Cp/Np (blue curve) displays growing oscillations, while the new definition C/N (black curve) results in more
subdued oscillations. Factors Np = 10−2 and N = 1024 s−2 are used to display the curves on comparable vertical scales.

(blue curve), where the factors N = 1024 s−2 and Np = 10−2

are used to display the curves on comparable vertical scales.
Clearly, the old chirp oscillations grow as a function of
propagation distance, whereas the new chirp term oscillates
with a decreasing amplitude.

V. CONCLUSIONS

For the description of NLS solitons, in particular in the
application to optical solitons, we have introduced a new
ansatz with six CCs, which avoids certain disadvantages of
the five-CC ansatz that is widely used in the literature. The six
independent CCs (the soliton position, the amplitude, the in-
verse of the soliton width, the velocity, the chirp, and the
phase) are unknown functions of time. In optical notation, these
collective coordinates correspond to the following magnitudes:
the temporal shift, the energy, the soliton duration, the carrier
frequency, the chirp, and phase. In contrast to a five-CC ansatz,
with six independent CCs we obtain three pairs of canonically
conjugated variables, and hence three canonical momenta
can be defined and have physical interpretations. To this end
we have given a new form to the chirp term in the six-CC
ansatz.

As the NLS equations that describe optical solitons have
several complicated perturbation terms, such as higher-order

dispersion, delayed Raman response, energy loss through
intra-pulse Raman scattering, and self-steepening, we apply
two methods which both work for arbitrary perturbations:
The GTWM and the MoM. Indeed, it is shown that in the
case of the perturbed NLS Eq. (1), the GTWM with the ansatz
Eq. (4) yields six modified conservation laws, namely the time
variation of the norm, the first and second moment of the
norm, the momentum, the first moment of the momentum,
and the energy. Therefore, both methods yield six identical
ODEs, which are the equations of motion for the collective
coordinates.

We numerically solve the resulting ODEs for the six CCs,
using the parameters for a femtosecond soliton propagating
in a typical dispersion-shifted fiber. We also show that the
six-CC ansatz results in a better-behaved chirp with reduced
oscillations.
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