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Effective viscosity of active suspensions: Three-dimensional numerical modeling
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A three-dimensional model is proposed for Chlamydomonas Reinhardtii swimming with a
breaststroke-like beating of its two flagella. The model reveals unusual angular orbits of the active
swimmer under a linear shear flow. Namely, the swimmer sustains orientation transiently across the
flow when flagella plane is perpendicular to the shear plane, and amplify the shear-induced rotation
along the flow. Such behavior is a result of the interplay between shear-induced deformation and
swimmer’s periodic beating motion that exerts internal torques on the torque-free swimmer. This
particular behavior has some significant consequences on the rheological properties of the suspension
that tends to confirm previous experimental results [Phys. Rev. Lett. 104, 098102 (2010)]. We cal-
culated the intrinsic viscosity of the suspension with such isolated modeled microswimmers (dilute
case) in shear flow using numerical simulations based on Rotne-Prager approximation. The results
show an increased intrinsic viscosity for active swimmer suspensions in comparison to non-active
ones in accordance with previous experimental measurements. A major enhancement of the active
swimmer viscosity occurs due to the effectively extended shape of the deformable swimming cells.
We also recover the experimentally observed shear thinning behavior.

PACS numbers: 47.50.Cd, 47.57.-s, 47.63.Gd, 47.63.ml

I. INTRODUCTION

Self-propelled systems swimming on a microscopic
scale have attracted growing interest over the last few
years [1]. Typical examples of microswimmers include bi-
ological organisms: microalgae, bacteria, and sperm cells
as well as artificial swimmers [2–4]. Usually, microswim-
mers are divided into two wide categories: ”pullers” and
”pushers.” Pullers (e.g. Chlamydomonas Reinhardtii

(CR)) pull the fluid toward them along their swimming
direction while pushers (e.g. Escherichia coli) push the
fluid back opposite to the swimming direction [1]. De-
signing controllable microswimmers, capable of detection
in vivo and carrying a drug to treat and target certain
localized diseases, is one of the most desired objectives
in biophysics. Such a microswimmer should employ spe-
cial tactics to overcome low Reynolds number constraints
for locomotion [5] as well as control their swimming di-
rection or cross-streamline migration [6] in the flow (e.g.
Poiseuille flow in bloodstreams).

Another important field of growing interest involv-
ing microswimmers is the physics of active soft mat-
ter. Active fluids are suspensions of particles (or micro-
organisms) that transform the chemical energy of sur-
rounding fluid or their stored energy into mechanical
work by moving through a fluid, spinning or deforming
and, as a result, significantly alter the macroscopic prop-
erties of the ambient fluid [7]. In this work, we concen-
trate on the study of such a property of complex active
fluids. Namely, the rheological characteristics of Chlamy-

domonas Reinhardtii dilute suspension.
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Despite recent keen interest, there are only a few ex-
perimental measurements of the effective viscosity of ac-
tive suspensions. Sokolov and Aranson [8] measured the
viscosity of pusher type bacterial suspension. They re-
port strong decrease of the effective viscosity (up to a
factor of 7). In a preceding study [9], some of the au-
thors measured the viscosity of puller type unicellular
motile microalgae (Chlamydomonas Reinhardtii) suspen-
sions and found it significantly increased compared to
suspensions containing the same volume fraction of dead
cells. Suspensions of live microalgae also show a shear
thinning behavior. In another experiment, Mussler et

al. [10] confirmed the previous results using two differ-
ent (Taylor-Couette and cone-plate) geometries and show
that gravity does not play a role in the enhancement of
the viscosity unlike of bottom-heavy Chlamydomonas ni-

valis suspension [11, 12].

Several theoretical works and numerical simulations
have been done to predict the rheological behavior of
active suspensions [13–16]. Saintillan used kinetic mod-
els for the extensional rheology of dilute active swimmer
suspensions and predicted an enhancement of the viscos-
ity for a puller type microswimmer suspension and re-
duction of the viscosity for a pusher type microswimmer
suspension [13]. This prediction was confirmed recently
by Gachelin et al. [12]. Similar behavior was predicted in
the theoretical work of Hatwalne et al. [7], Haines et al.

[17] and Heidenreich et al. [15] for swimmer suspensions.
The models that unify both effects (enhancement of the
viscosity for pullers and reduction for pushers) rely on an
anisotropic orientation distribution of swimmers with a
force dipole in the flow [13, 17]. Such an assumption is
natural for the suspensions of pusher type bacteria that
have a rod-like shape. However, it is not applicable for
the non-gravitactic suspension of CR with nearly spher-
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FIG. 1. The model swimmer consists of three beads connected
by a set of Hookean springs. The unit vector ~n defines the
swimming direction. The unit vector ~m, together with ~n, sets
the flagellar beating plane. L and R respectively refer to the
left and right flagella modeled as tiny spheres. The ratio of
the radius between large and small beads is R/r = 3.

FIG. 2. The velocity field and streamlines around the model
swimmer in fluid at rest averaged over one period of flagellar
beating. The dashed close curves represent the orbits of each
satellite beads with respect to the central bead. The swimmer
moves back and forth during the period but moves forward
with an average velocity v = 53.76µm/s.

ical body of ∼ 10µm diameter. Therefore, the origin
of the viscosity enhancement in CR suspensions remains
an open question. In this work, we address these ques-
tions, using the model that takes into account the flagella
movement.

In many theoretical and numerical works, microswim-
mers are modeled as a permanent force dipole (or
stresslet) [7, 13, 14, 18, 19]. Mehandia and Nott proposed
a force triplet model for a biflagellate micro-organism
[20]. Drescher et al. used a set of three Stokeslets to
describe the time-averaged flow field of swimming CR

[21]. The use a permanent force dipole to describe the
swimmer activity is reasonable on long time scales. How-
ever, taking into account swimmer dynamics on short
time scales (like periodic motion of flagella) appears to
be crucial, when there is another time scale in the system
(e.g. the shear rate).

In this paper, we proposed a three-beads model for
CR swimming in three dimensions, involving the peri-

TABLE I. Model parameters
R

r

ks

km

ℓm0

R

ℓs0

R

Am

R

As

R

ω

2π
δϕ

active 3 4/7 1.93 1.77 1.26 0.795 π/3 50Hz
inactive 3 0 1.93 - - - - -

odic breaststroke-like motion of flagella, and use it to
study the microswimmer rheology and dynamics under
the shear flow. Our model shares similarities with the
three-sphere models for Chlamydomonas, recently devel-
oped in two dimensions by Bennett and Golestanian [22]
and Friedrich and Jülicher [23]. In both works, authors
used three equal-sized spheres, connected by a friction-
less scaffold. Where, two spheres representing flagella
are moving on the circular orbits. Here, we propose to
elucidate the effect of motility on the rheology of quasi-
spherical active particles, and we show that the three-
dimensional treatment is crucial to identify the origin of
it.

II. THREE-BEADS MODEL FOR THE

BIFLAGELLATE GREEN ALGAE

We propose a simple three-dimensional model for bi-
flagellate algae Chlamydomonas Reinhardtii, which re-
tains most of the swimming characteristics of the pro-
totype swimmer cell. The model swimmer consists of
three beads: one central bead with radius R representing
the body of the swimmer linked to two satellite smaller
beads with radius r representing the flagella of CR. The
radius ratio of the central and the satellite beads is cho-
sen as R/r = 3. Each of the two satellite beads is con-
nected to the central bead with three Hookean springs
[Fig. 1]. The main springs (SL

m and SR
m), together with

the small beads, mimic the flagella. While the support-
ing springs (SL

sa, SL
sb, SR

sa and SR
sb) are used to hold

small beads in three dimensions, and for assisting to
make breaststroke-like circular motion. Two supporting
springs together with the main spring are necessary to
keep the small beads in stable mechanical equilibrium in
three-dimensional space. In the case of single support-
ing spring, the small beads would move freely along the
direction perpendicular of two acting spring forces. The
two perpendicular unit vectors, ~n and ~m, determine the
orientation and the swimming direction of the swimmer.
More precisely, the vector ~n is used to determine the fas-
tening point, where main springs are attach to the cen-
tral bead. Meantime, ~n indicate the swimming direction
of isolated swimmer during the synchronized beating mo-
tion of small beads. The vector ~m (perpendicular of ~n) is
used to determine the rest of the fastening points, where
supporting springs are attach to the central bead. Then
~n × ~m is a normal vector of the “flagella plane” where
small beads are orbiting. The supporting springs fas-
tening points to the central bead create a square on the
central bead’s equatorial plane (with diagonals of length
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FIG. 3. Orientation angles of swimmers in the shear flow.
(a) ~n (swimming direction) and ~m (~n× ~m is a normal of the
flagella plane) both are in the shear plane xy. (b) ~n is in
the shear plane while ~m is parallel to z (perpendicular to the
shear plane). (c) ~m is in the shear plane while ~n is parallel
to z-axis. For (a) and (b) θ is the angle between ~n and x-
axis, while for (c) θ is the angle between ~m and x-axis. On
the abscissa, T is the swimmer’s tumbling period in the shear
flow, and it differs for each curve [see Table III]. Solid curves
correspond to the inactive swimmer, dashed curves refers to
the active swimmer.

2R). The vector ~n is normal to that square, and two
sides are parallel to ~m). In order to achieve swimming,
each spring represents the time-dependent harmonic os-
cillators with given frequency ω. Namely, equilibrium
lengths of each Hookean springs are time-dependent har-

monic functions: ℓL,R
m (t) = ℓL,R

m0
+ AL,R

m cos(ωt + ϕL,R
m ),

ℓL,R
sa (t) = ℓL,R

sa0 + AL,R
sa cos(ωt + ϕL,R

sa ) and ℓL,R
sb (t) =

ℓL,R
sb0 + AL,R

sb cos(ωt + ϕL,R
sb ). Each spring applies equal

and opposite forces on corresponding small bead and the
central bead. Springs also exert torque on the central
bead since the fastening points are on the surface of the
central bead. However, total force and torque exerted by
the model swimmer on the fluid are identically zero at
every instant.

Total of 25 general spring parameters defines the swim-
ming characteristics. Those parameters are: the sta-

tionary parts of equilibrium lengths (ℓL,R
m0

, ℓL,R
sa0 , ℓL,R

sb0 ),

the amplitudes (AL,R
m , AL,R

sa , AL,R
sb ), the phases (ϕL,R

m ,

ϕL,R
sa , ϕL,R

sb ) of equilibrium lengths oscillation, the oscil-
lation frequency ω and the spring constants (kL,R

m , kL,R
sa ,

kL,R
sb ). This number can be considerably reduced by using

symmetry arguments. If we consider a mirror-symmetric
swimmer then parameters for the left and the right beads
must be identical. If the swimmer is not spinning around

its swimming direction (~n), the supporting springs pa-
rameters for [a] and [b] springs are equal. If we take into
account that only the phase shift between the main and
the supporting springs (δϕ = ϕs − ϕm) are important
rather than the phases itself, this leaves only eight inde-
pendent parameters (ℓm0, ℓs0, Am, As, δϕ, ω, km and
ks). When both the left and the right beads are acti-
vated by symmetric oscillators with the given parameters,
beads are orbiting on their ellipse-like path, similar to the
way a human swimmer uses his or her arms. The model
swimmer moves forward (along ~n) in a zigzagging man-
ner, similar to the puller CR [see supplementary mate-
rial]. We recover the experimentally observed zigzagging
swimming of CR that occurs at the beating frequency
[24]. Figure 2 shows the orbits of small beads with the
velocity field and the streamlines averaged over the pe-
riod of small beads rotation. The left bead is orbiting
counter-clockwise and the right bead is orbiting clock-
wise. Along the paper, the spring parameters for the
mirror-symmetric puller swimmer are chosen as follow:
ℓm0 = 1.93R; ℓs0 = 1.77R; Am = 1.26R; As = 0.795R;
δϕ = π/3; ω = 2π · 50Hz and km/ks = 7/4 [see Table
I]. Such a choice of the spring parameters is not unique.
Changing those parameters, one can adjust trajectories
of the small beads (shape, size, position with respect of
the central bead). We choose a set of spring parame-
ters that reproduce the swimming characteristics of the
CR more closely. The swimming velocity for the model
swimmer with the chosen parameters (averaged over the
period of small beads rotation Tb = 2π/ω = 1/50s) is
~v = 10.752Rs−1 · ~n = 53.76µm/s · ~n. Here, the radius of
swimmer body (central bead radius) is R = 5µm. Note
that if spring parameters are chosen in such way that
(km/ks < 1 and δϕ ∼ π), then small beads orbits are
reversed, and the swimmer moves backward (along −~n)
like a pusher. If there is any asymmetry between left
and right in the spring’s parameters, then swimming is
inefficient, swimmer is deviating along ~n and moves on a
curved trajectory. If an asymmetry is between the sup-
porting springs [a] and [b] of one of (or both) small beads,
the swimmer is spinning around its swimming direction.
In that way, our model can describe more complicated
behaviors sometimes found for CR [25]. However, here
we restrain ourselves to the most simple case. In order
to achieve a fast and efficient swimming for our model
swimmer, it appears that a symmetric and synchronous
beating is required, similar to the prototype swimmer
cell. Breaking the symmetry between left and right beads
orbiting results in swimmer rotation in the nm plane. If
needed, we use only the phase difference (∆ϕ = ϕL

m−ϕR
m)

between the oscillators of the left and right beads as a
mechanism of swimmer rotation. If ∆ϕ < 0 the swim-
mer rotates clockwise, or if ∆ϕ > 0 the swimmer rotates
counter-clockwise.
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FIG. 4. The relative effective viscosity of dilute microswim-
mer suspension for three different orientations of swimmer
flagella plane in the shear flow: (a) ~n and ~m both are in the
shear plane xy; (b) ~n is in the shear plane, ~m is parallel to
z; (c) ~m is in the shear plane, ~n is parallel to z. Solid lines
correspond to an inactive swimmer, dashed lines corresponds
to an active swimmer.

III. THE INTRINSIC VISCOSITY OF THE

MICROSWIMMER SUSPENSION

Now, we would like to understand how the swimming
activity of CR cells affects the macroscopic properties
of the suspension like its effective viscosity. We focus
on a single swimmer contribution to the effective vis-
cosity (i.e. in the dilute case) independently of hydro-
dynamic interactions among swimmers and consequently
we neglect collective effects. We consider a microswim-
mer CR, which is approximately spherical in shape with
10µm diameter, swimming in a fluid at very low Reynolds
number (Re = ρvR/η ∼ 2.5 × 10−4). Therefore, the in-
ertial forces as well as the Brownian noise can be ne-
glected. The Stokes equation governs hydrodynamics
[26]. We consider the swimmer in the simple shear flow:
~v = (γ̇y, 0, 0), where γ̇ is the shear rate.

In a dilute suspension of rigid particles, where aver-
age distances between particles are large enough to ne-
glect hydrodynamic interactions, the increase of effective
viscosity is proportional to the concentration of the sus-
pended particles,

ηeff = η(1 + αφ). (1)

Here η is the solvent viscosity, φ is the volume fraction
and α is a proportional coefficient known as intrinsic vis-
cosity. For rigid spherical particles, α = 5/2 is known as
Einstein’s intrinsic viscosity [27]. In general, the intrinsic

TABLE II. Intrinsic viscosity

α
inactive

α
active

~n∠ xy; ~m∠xy 3.0 5.7
~n∠ xy; ~m ‖ z 2.9 4.8
~m∠ xy; ~n ‖ z 2.5 3.5

all configurations 2.7 4.4
experimental [9, 10] 2.5± 0.1 4.5 ± 0.2

TABLE III. Period of tumbling

T/Tb

inactive
T/Tb

active

~n∠ xy; ~m∠xy 145.8 126.0
~n∠ xy; ~m ‖ z 144.9 166.3
~m∠ xy; ~n ‖ z 127.1 149.5

viscosity is defined as

α = lim
φ→0

ηeff − η

ηφ
. (2)

For the intrinsic viscosity of the modeled microswim-
mer suspension, the stress tensor (σik) is averaged in a
volume containing the single microswimmer submitted to
the shear flow (σik = 1/V

∫
σikdV ). The volume integral

is reduced to the surface integral that allows to avoid the
difficulty with the calculation of the stress tensor inside
the particle [28, 29]. Any simple closed surface can be se-
lected for integration while it contains the swimmer (or
passive particle). Then the intrinsic viscosity is estimated
as follows,

α =
1

2ηEikV0

∮
{σijxklj − η(vilk + vkli)} dA. (3)

Here V0 = 4/3π(R3+2r3) is the volume of the suspended

model swimmer, ~l is the unit outward normal vector of a
closed surface, ~x is the position vector from the center of
the swimmer, and Eik = 1

2
( ∂Ui

∂xk

+ ∂Uk

∂xi

) is the rate of strain

tensor, where ~U is the mean (bulk averaged) velocity. In
simple shear flow (~v = (γ̇y, 0, 0)) after averaging over all
possible orientations of the swimmer’s tumbling during a
full period, the only non-zero components of the strain
tensor are E12 = E21 = γ̇/2. In the case of a passive rigid
sphere (with a radius R and volume V0 = 4/3πR3) the
exact velocity and pressure fields are known analytically.
Moreover, the calculation of the surface integral [Eq. 3]
recovers Einstein’s intrinsic viscosity (α = 5/2).

In the experiments [9, 10], significant enhancement of
the effective viscosity was reported for the active cell sus-
pensions. The hydrodynamic interactions among swim-
mers, as well as interaction between swimmers and walls
[30], may play an important role for concentrated suspen-
sions. Our analysis based on the single swimmer does not
include those effects and is limited for very dilute sus-
pension (φ < 0.05). However, we compare numerically
calculated intrinsic viscosity (α) for dilute suspensions
to the experimental value αexp [9] estimated from a fit
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done with Krieger and Dougherty’s law [31] with different
concentrations. In the following, the model microswim-
mer with harmonic springs that imitates the swimming
CR will be referred as “active swimmer.” Meanwhile,
we consider a modified object “inactive swimmer” that
mimics the inactive or dead cell of CR. For the inactive
object the supporting springs (SL

sa, S
L
sb, S

R
sa and SR

sb) are
removed [Fig. 1] as well as the time-dependent parts of
the remained main springs (Am = 0). In such a flexible
object, the small beads connected to the central bead by
single springs are allowed to move freely in the vicinity
of the central bead due to an external flow. However,
small beads cannot separate much far (than ℓm0) from
the central bead, and also are restricted not to penetrate
it, similar to the flagella of dead CR cell.

An exact analytical calculation of the intrinsic viscosity
of the presented model microswimmer suspension (unlike
the passive sphere suspension) requires immense effort
and could be very complicated. We choose to perform
numerical simulations based on generalized Rotne-Prager
approximation [32, 33] to calculate the dynamics, as well
as the intrinsic viscosity of the corresponding suspension
submitted to an unbounded shear flow.

IV. RESULTS AND DISCUSSION

The intrinsic viscosity of the model microswimmer sus-
pension, calculated at a given instant, is independent of
the choice of a closed surface for integration in (3) (while
it encloses the swimmer). However, the intrinsic viscos-
ity strongly depends on the relative positions of small
beads on their orbits. It also depends on the orientation
of swimmer and swimmer’s flagella plane with respect
to the flow direction and the shear plane. The viscos-
ity averaged over the orbital period of small beads (Tb)
smoothly change during swimmer’s tumbling in a shear
flow. Hence, to estimate macroscopic quantity of suspen-
sion - the viscosity - we average it within the tumbling
period (T ) in a shear flow. The tumbling period differs
for swimmers of different initial orientation [see Table
III]. In dilute suspensions where one can neglect a collec-
tive behavior, we assume that any initial orientation of
swimmers is equally probable (this may not be true for
gravitactic microswimmers). Therefore, before compar-
ing our numerical results concerning intrinsic viscosity to
the experiments, we take the ensemble average of differ-
ent realization of swimmer’s orientation with respect to
the flow direction and the shear plane.

For the evaluation of the intrinsic viscosity, we choose
the shear rate γ̇ = 5s−1, corresponding to the value
used in the experiments [9, 10]. For the active swim-
mer suspension, we obtain the intrinsic viscosity α = 4.4
while for inactive swimmer suspension α = 2.7. The
intrinsic viscosity of the active swimmer suspension is
consistent with the experimentally measured viscosity
(αexp = 4.5 ± 0.2) [9] and (αexp = 4.5 ± 0.17) [10]. For
inactive swimmer suspension, the numerically calculated

intrinsic viscosity is slightly larger compared to the ex-
perimental value αexp = 2.5 ± 0.1 [9]. Nevertheless, the
agreement between numerical values of α and the exper-
iments is good given the fact that in the experiments, α
is indirectly extracted from a fit of the data by a semi-
empirical law.

It is useful to consider some particular orientations of
the swimmer with respect to the shear frame, to identify
the origin of the viscosity enhancement. In the first con-
figuration the swimmer is in the shear plane (xy, where
x is the flow direction and the flow changes along y). In
other words, ~n (swimming direction) and ~m both are in
the shear plane. In such a configuration, the swimmer is
tumbling along z, and both ~n and ~m remains in the shear
plane. In the case of active swimmers, intrinsic viscosity
is α = 5.3 [see Fig. 4(a)] while for inactive swimmers
α = 3.0. Besides that, the tumbling angular velocity
in the shear flow for an active swimmer is surprisingly
flat compared to the one of an elongated object [34] [see
Fig. 3(a)]. The tumbling periods of the swimmers differ
either it is active or inactive: for the inactive swimmer
T ≃ 146Tb and for the active swimmer T ≃ 126Tb.

Note that the tumbling period for a single sphere in
the same shear flow will be T = 2π/ |ω| = 4π/γ̇ ≃ 126Tb.

A more unexpected orbit has been found for the active
swimmer when ~n is in the shear plane and ~m is parallel to
z (perpendicular to the shear plane). The active swim-
mer rotates slower when ~n is aligned along ±y (θ ∼ π/2)
and rotates faster when ~n is parallel to the flow (θ ∼ 0 or
θ ∼ π), [see dashed curve on Fig. 3(b)]. Such behavior
is opposite to the one for an elongated object in a shear
flow. In a given configuration, the tumbling period for
the inactive swimmer is T ≃ 145Tb, and the active swim-
mer T ≃ 166Tb. Drastic change of the active swimmer’s
orbit contributes to the viscosity enhancement, compared
to the passive swimmer [see Fig. 4]. For the active swim-
mer suspension α = 4.8; while α = 2.9 for the inactive
swimmer suspension [see Table II].

In another configuration of the swimmer considered
here, ~m is in the shear plane and ~n is along z, the active
swimmer is tumbling on usual Jeffery’s-like orbit [see Fig.
3(c)]. The tumbling period for the inactive swimmer is
T ≃ 127Tb, while for the active swimmer T ≃ 150Tb.
For the active swimmer suspension α = 3.5, and for the
inactive swimmer suspension α = 2.5 [see Fig. 4(c)]. In
the case of any other arbitrary orientations of swimmer
with respect to the shear plane, the effective viscosity
smoothly changes between the corresponding configura-
tions discussed here.

The contribution of swimmer’s activity to the enhance-
ment of the suspension viscosity is important when the
swimming direction is in the shear plane, and the flagella
plane is perpendicular to the shear plane [Fig. 4(b)]. The
origin of the enhancement of the viscosity is the drastic
difference in angular velocity of the swimmer [Fig. 3(b)].
The springs with time-dependent equilibrium lengths, in
combination with the shear flow, exerts a torque on the
central bead which changes the angular orbit of active



6

FIG. 5. (a) Actual length of main springs (solid curve) and the
time-dependent equilibrium length of main springs (dashed
curve) during the orbital period of small beads (Tb). (b)
The contribution of main springs (dashed curve), supporting
springs (dotted curve) and all spring together (dashed-dotted
curve) to the relative angular velocity of the swimmer. Solid
curve (b) shows the total relative angular velocity of the swim-
mer. (c) Orientation angle of the swimmer in the shear flow.
The flagella plane (~n~m) is perpendicular to the shear plane
(xOy). I. Swimming direction is perpendicular to the flow
direction (~n ‖ y; ~m ‖ z). II. Swimming direction is parallel to
the flow direction (~n ‖ x; ~m ‖ z).

swimmer. Naturally, springs also exert an equal and op-
posite torque on the fluid, such that, the total torque
and force exerted by swimmer on the fluid is identically
zero. When a mirror-symmetric model swimmer swims
without an external flow, each spring exert a torque on
the central bead, but the sum of the torques exerted by
all springs is zero and swimmer moves without rotation.

Figure 5(b) shows the contribution separately of main
springs, supporting springs and all springs together to
the swimmer’s rotation during the orbital period of small
beads. Two configurations are considered when the flag-
ella plane is perpendicular to the shear plane, and the
swimming direction is perpendicular (I) or parallel (II)
to the flow. The vertical axis shows the angular velocity
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FIG. 6. The intrinsic viscosity as a function of the shear rate.
Solid lines with squares correspond to the inactive swimmer.
Dashed lines with circles correspond to the active swimmer.

of the swimmer (L/(8πηR3)) normalized by the angular
velocity of a sphere due to the shear flow (−γ̇/2). Here
L is the torque applied on the central bead by one of the
following: the main springs; the supporting springs; all
spring together or all springs and shear flow (the total
torque).

Figure 5(I) describes the configuration where the flag-
ella plane and the swimming direction are perpendicular
to the flow. Due to the shear flow, the body of the swim-
mer is rotating with an angular velocity −γ̇/2. If the

tangent velocity of small beads (along x) is v1 = −γ̇ℓ̃y/2

swimmer would rotate without deformation. Here ℓ̃y
is the distance between the central bead and the small
beads along y. However, the velocity gradient of the

shear flow between those beads is v2 = −γ̇ℓ̃y. The dif-
ference between those two velocities regularly deforms
swimmer clockwise in the shear plane. The main springs
of the freely moving swimmer without an external flow
does not apply a force on beads out of the shear plane.
In a shear flow, main springs of deformed swimmer apply
forces on central beads that have nonzero x components
[Fig. 5(I)] and therefore exerts a torque on the central
bead. Figure 5(a) shows the actual lengths of the main
springs (ℓ) and the time-dependent equilibrium length
of main springs (ℓm) during the orbital period of small
beads. When the main springs are compressed (ℓ < ℓm)
the torque exerted by the main springs to the central
bead is opposite of the torque applied by the shear flow.
Meanwhile, the supporting springs exerts a torque on the
central bead which have the same sign as the torque ap-
plied by the shear flow. However, the total torque ex-
erted by all springs on the central bead is opposite of the
one applied by the shear flow. Therefore, the rotation
of swimmer by the flow is reduced, and swimmer stays
longer in given configuration (perpendicular to the flow).
Such behavior is opposite of a passive elongated object
in a shear flow (Jeffrey’s Orbit) [34].

In contrast, when the flagella plane is perpendicular to
the flow and swimming direction is parallel to the flow
[see Fig. 5(II)] the swimmer deforms in the opposite way.
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The shear flow rotates the body of a swimmer with angu-
lar velocity −γ̇/2. The velocity needed for a small bead

without deforming swimmer is again v1 = −γ̇ℓ̃y/2. How-
ever, the velocity gradient of the shear flow between cen-
tral and small beads is zero (v2 = 0). Therefore, swimmer
deforms counter-clockwise. The total torque exerted by
all springs on the swimmer amplifies the rotation imposed
by the flow. The swimmer makes a rapid flip [compare
Fig. 5(I.c) and Fig. 5(II.c)]. for the changing the orien-
tation angle). Note that leading effect for exerting the
torque and changing of rotation speed comes from the
main springs (which together with the small beads imi-
tate flagella) and the supporting springs only reduce the
effect. Therefore, we expect a similar behavior for the
prototype CR swimmer. However, further experiments
are required to examine dynamics of the CR under the
flow.

When the flagella plane and the shear plane is common,
each spring exerts a torque on the swimmer such that it
equalizes the rotation velocity, and the angular orbit is
almost linear [see Fig. 3(a)].

We calculated the intrinsic viscosity for a wide range
of shear rates and found the shear thinning behavior also
reported in previous experiments [9] [see Fig. 6]. We
found shear thinning typical for the suspension of a de-
formable elastic object (e.g. the red blood cells [35]) for
the active swimmer suspension. Obtained complex shear
thinning profile of active swimmer suspension is related
to the existence of two timescales: small beads orbit-
ing period Tb and the tumbling period in the flow T . If
T/Tb > 100 the effect of the altering angular orbits is im-
portant and contributes to the viscosity enhancement for
the active swimmers, In higher shear rates the effect van-
ishes. However, if we consider even smaller shear rates
the effect does not increase significantly since the flow

becomes weaker to deform the swimmer.

V. CONCLUSION

A three-dimensional model has been developed for
Chlamydomonas Reinhardtii that takes into account flag-
ellar beating. The model correctly reproduces most of the
swimming characteristics of studying microswimmer. Us-
ing the model, we found a reversed Jeffrey’s like orbit for
the microswimmer in the shear flow. Such an altered or-
bit gives rise to the enhancement of suspension viscosity.
However, the main enhancement of the active swimmer
viscosity is related to the effectively enlarged shape of the
active swimmers due to the flagellar beating.

We estimate the intrinsic viscosity for the active swim-
mer suspension and the inactive swimmer suspension us-
ing numerical simulations within the generalized Rotne-
Prager approximation. The results for the intrinsic vis-
cosity are compared with our previous experimental mea-
surements [9], also confirmed by another experiment with
a different geometry by Mussler et al. [10] and we found
good agreement. We also found a shear thinning behav-
ior for the active swimmer suspensions.

The results suggest that significantly increased viscos-
ity for puller-type active microswimmer suspensions can
be explained by considering the activity of an individual
swimmer without a collective behavior. However, the in-
teraction between swimmers (i.e. collective effects) can
be significant in concentrated suspensions.

The complex angular orbits of the model swimmer and
its consequences to the suspension viscosity for differ-
ent orientations of the swimmer with respect of the flow
direction, emphasize the importance of using a three-
dimensional model for such a system.
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