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Migration reversal of soft particles in vertical flows
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Abstract – Non-neutrally buoyant soft particles in vertical microflows are investigated. We find,
soft particles lighter than the liquid migrate to off-center streamlines in a downward Poiseuille
flow (buoyancy-force antiparallel to flow). In contrast, heavy soft particles migrate to the center
of the downward (and vanishing) Poiseuille flow. A reversal of the flow direction causes in both
cases a reversal of the migration direction, i. e. heavier (lighter) particles migrate away from (to)
the center of a parabolic flow profile. Non-neutrally buoyant particles migrate also in a linear
shear flow across the parallel streamlines: heavy (light) particles migrate along (antiparallel to)
the local shear gradient. This surprising, flow-dependent migration is characterized by simulations
and analytical calculations for small particle deformations, confirming our plausible explanation
of the effect. This density dependent migration reversal may be useful for separating particles.

Introduction. – Microfluidics is a rapidly evolving
cross-disciplinary field, ranging from basic physics to a
great variety of applications in life science and technol-
ogy [1–9]. The blooming subfield of the dynamics of neu-
trally buoyant soft particles in suspension and their cross-
streamline migration (CSM) in rectilinear shear flows,
plays a central role for cell and DNA sorting, blood flow,
polymer processing and so on [6, 10–13]. In contrast, lit-
tle is known about the dynamics of non-neutrally buoyant
soft particles in rectilinear flows, but we show in this work
for such particles a novel migration reversal.

Segre and Silberberg reported in 1961 about CSM of
neutrally buoyant rigid particles at finite Reynolds num-
bers in flows through pipes [14]. When particles and
channels approach the micrometer scale, fluid inertia does
not matter and particles follow the Stokesian dynamics.
In this limit CSM occurs only for soft particles but in
curvilinear [15–17] as well as in rectilinear flows [18–20],
whereby in rectilinear flows, the flows fore-aft symme-
try is broken, requiring intra-particle hydrodynamic in-
teraction [18, 19]. Such symmetry breaking occurs also
near boundaries via wall-induced lift forces [20–24] or by
space-dependent shear rates, so that dumbbells [18, 19],
droplets [25,26], vesicles and capsules [27–29] exhibit CSM
even in unbounded flow. Such parity breaking mechanisms
may be also accompanied by a viscosity contrast [30] or
chirality [31]. Recently was found, that CSM takes place
also for asymmetric soft particles in time-dependent linear

shear flow [32] and that soft particles are actuated even in
a homogeneous but time-dependent flow by taking particle
inertia into account [33].
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Fig. 1: The left part shows in red the center of mass trajectory,
(xc(t), yc(t)), of a heavy and soft tank-treadin capsule in a
downward Poiseuille flow, u0(x), parallel to the gravitational
force F g: u0 ↓↓ F g. The right part shows a trajectory (red)
of a heavy capsule in an upward Poiseuille flow, i. e. u0 ↑↓
F g, where the capsule migrates away from the center of the
Poiseuille flow. The two confining walls are at a distance 2d.

Heavy rigid particles in a finite Reynolds number flow
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downward in a gravitational field migrate away from the
tube center and for an upward flow to the tube center,
as experimentally observed [34]. Effects of axial forces
on rigid particles along the tube axis in finite Reynolds
number flows where also studied in Refs. [35,36] and effects
of axial (electrical) forces on (charged) polymers in in pipe
flows in Refs. [37,38]. Little is known about CSM of non-
neutrally buoyant soft particles in vertical Stokes flows.

Here we show that a soft heavy particle migrates to
the center of a tube in the limit of a vanishing Reynolds
number, while rigid particles don’t [39]. Furthermore is
shown, that heavy (light) soft particles migrate in vertical
rectilinear Stokes flows antiparallel (parallel) to the shear
gradient. This dependence of the CSM direction on the
shear gradient is shown by approximate analytical calcu-
lations and by numerical simulations for soft capsules and
ring polymers. Also a plausible qualitative explanation of
the origin migration of non-neutral particles is provided:
It is based on the interplay between the orientation of the
shear induced elliptical shaped soft capsule (ring) together
with the related anisotropic friction, a non-buoyant parti-
cle experiences.

Modeling soft particles in Stokes flow. – The dy-
namical equations of two non-neutrally buoyant particles,
bead-spring models for ring polymers and elastic capsules
in rectilinear flows is described in this section. The unper-
turbed linear shear flow is given by u0(x) = γ̇xey and the
Poiseuille flow between the two confining plane boundaries
at xd = ±d by

u0(x) = û0

(
1− x2

d2

)
ey . (1)

The maximal velocity û0 at the center y = 0 and the shear
rate γ̇ can be either positive or negative.

The migration of the soft particles is obtained by their
non-Brownian trajectories. The trajectories of the bead-
spring ring-polymer and the capsule in an unperturbed
u0(x) are determined by solving the standard Stokesian
dynamics for bead-spring models with the position ri of
the i-th bead:

ṙi = u0(ri) +

N∑
j=1

HijF j . (2)

F j describes the force acting on the j−th bead and Hij

is the mobility matrix described in the following.
The harmonic spring potential for a ring polymer with

a finite mean distance b between next-neighbor beads and
spring constant k is given by:

Vspr =
k

2

N∑
i=1

(b− rij)2 . (3)

Due to the bending potential

Vb = −κ
2

N∑
i=1

ln (1 + cosβi) , (4)

with the bending constant κ the closed polymer has in
the undeformed state the shape of a ring. The angle βi is
given by cos (βi) = r̂(i−1)i · r̂i(i+1) and the distance vector
between the beads by ri,j = ri−rj = ri,j r̂i,j . Unit vectors
are denoted by a hat. The forces F j in Eq. (2) are given
by F j = −∇j [Vspr + Vb] + F g, with F g = Fgey.

Hij is the mobility matrix describing the hydrodynamic
interactions between beads in the presence of a single
wall parallel to yz-plane with no-slip boundary condition,
which is of the following form [40]:

Hij(ri, rj) = SHij − SHij(ri, r
′
j)

+ DHij(ri, r
′
j)−

SDHij(ri, r
′
j) . (5)

Herein r′j = (xj + 2hj , yj , zj) is the position of a mirror-
particle to the j-th bead with distance hj to the wall. The
first term contains the hydrodynamic interaction (HI) in
the bulk regime, represented by the Oseen tensor [41]

S
Hαβ
ij (ri, rj) =

 1
8πηrij

(
δαβ +

rαijr
β
ij

r2ij

)
i 6= j

1
6πηaδαβ

, (6)

where α, β ∈ {x, y, z} and 6πηa is the Stokes friction with
the bulk viscosity η and bead radius a. The second term
in Eq. (5) is the HI generated by the mirror image

S
Hαβ
ij (ri, r

′
j) =

1

8πηr̃ij

(
δαβ +

r̃αij r̃
β
ij

r̃2ij

)
, (7)

with r̃ij = ri − r′j = r̃ij ˆ̃rij is the distance to the mirror
bead image j. The last two terms in (5) contain the Stokes
doublet (D) part

D
Hαβ
ij (ri, r

′
j) =

h2j (1− 2δβy)

4πηr̃3ij

(
δαβ − 3

r̃αij r̃
β
ij

r̃2ij

)
, (8)

and the source doublet (SD) part

SD
Hαβ
ij (ri, r

′
j) =

1

4πηr̃3ij
hj (1− 2δβy)(

δαβ r̃
y
ij − δαy r̃

β
ij + δβy r̃

α
ij − 3

r̃αij r̃
β
ij r̃

y
ij

r̃2ij

)
(9)

of the HI. To take account of the effects of the second wall,
a superposition of two single walls is used. This approx-
imation generates according to [42] reasonable results, if
the particle size to channel-width ratio is less than 5. In
simulations without walls only SHij is used.

In case of the capsule we use the same equations of
motion, but different potential forces. The elastic forces
of the capsule are described by the Neo-Hookean Law with
Potential VNH . The Neo-Hookean Law describes a rubber
like material with a constant surface shear elastic modulus
G [43, 44].
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Furthermore we use a bending-potential [45]

Vh = −κ
2

∑
i,j

(1− cosβi,j) , (10)

where βi,j is the angle between two normal vectors of
neighboring triangles of beads, and a potential to conserve
the volume of the capsule [45]

VV = −kv
V0

(V (t)− V0)2. (11)

V (t) means the Volume at a given time t and V0 = 4
3πR

3

the desired Volume of the capsule (with the Radius R of
the not deformed spherical capsule). The force in case of
the capsule is given by F i = −∇i [Vh + VV + VNH ]

If not stated otherwise we use the following parameters.
For the flow, u0 = 0.5, d = 60, η = 1.0; the ring, a = 0.5,
k = 0.175, κ = 6.0, N = 16, b = 2.5 (which gives a
ring radius of R = 6.36); the capsule: G = 0.1, κ = 0.1,
kv = 3.0, a = 0.4, N = 642, b = 1.0 (which gives a
capsule’s radius R = 6.6); vertical force F g = −0.01êy.

Qualitative explanation of cross-stream migra-
tion in vertical flows. – A capsule or a ring-polymer
model exposed to a linear shear or a Poiseuille flow is
deformed by the local shear gradient, as shown in Fig.
2, but the capsule’s (ring’s) shape is not identical in a
linear shear and a Poiseuille flow (here demonstrated for
moderate local shear rates). However, for flows the cap-
sule (ring) may be described in a first approximation by a
rotational symmetric ellipsoid (elliptical polymer) with a
Stokes drag-coefficient ζ⊥ (ζ‖) in the direction perpendic-
ular (parallel) to the major axis and ζ⊥ > ζ‖ [44].

The major axis of a tank-treading capsule (ring) in-
cludes with the straight flow lines of both flows an angle,
whereby the sign and the magnitude of this angle are de-
termined by the sign and the magnitude of the local shear
rate [44]. The buoyancy force acting on a particle points
upward for a light and downward for a heavy particle, i.
e. it is either parallel or antiparallel to the flow lines. Ac-
cording to different drag coefficients, ζ⊥ > ζ‖, an external
force on an inclined capsule (ring) in shear flow causes an
oblique migration velocity vm, as shown in Fig. 2. The
inclination angle of the ellipsoid (ring) and therefore the
inclination angle α of vm depend on the sign of the local
shear rate (see also analytical results below). For both
flows a reversal of the flow direction leads to a reversal of
the local shear gradient and simultaneously to a reversal of
the horizontal component (x component) of the migration
velocity vm: I. e. a reversal of the flow direction causes a
reversal of the cross-streamline migration of non-neutrally
buoyant soft particles. Furthermore, if the buoyancy force
is downward (upward) then the shear gradient and the
horizontal migration direction are antiparallel (parallel).

Small capsule-deformations. – The shape of a
Neo-Hookean capsule, its anisotropic drag and its cross-
streamline drift in a linear shear flow u0 = γ̇xêy can be
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Fig. 2: Soft capsules and rings are deformed by shear flows
as indicated in (a)-(d) for moderate local shear rates. The
particle’s deformation in a linear shear and a Poiseuille flow
is slightly different as indicated by the differences between the
shapes in (a) and (b) for the capsule in (c) and (d) for the
ring. The particle’s major axis in shear flow is inclined with
respect to the flow lines and the particles has different Stokes
drag coefficients ζ‖ parallel and ζ⊥ perpendicular to the ma-
jor axis. Therefore, if an external force F g acts on the par-
ticle (parallel or antiparallel to the flow direction) the result-
ing particle migration velocity vm encloses an angle α with
the straight flow lines and leads to cross-stream line migration
(CSM). If F g points downward (upward) then the horizon-
tal (cross-streamline) component of vm and the shear gradient
have opposite (equal) sign. Accordingly, for a given force F g

a reversal of the flow direction leads to a reversal of the shear
gradient and therefore of the particle’s (horizontal) CSM di-
rection.

determined analytically in the range of a small capillary
number Ca = γ̇ ηRG [43,44]. In this limit, the capsule shape
is given by the equation

r2 = x2 + y2 + z2 = R2 +
5

3

Ca

γ̇
rT · J · r +O(Ca2) ,

J =
1

2

[
(∇⊗ u0) + (∇⊗ u0)T

]
,

r = (x, y, z)T , (12)

which describes an ellipsoid with three different axes. The
major axis forms with the undisturbed straight stream
lines an angle of about π

4 . The length of the three axes
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are

d1,3 =

√
2√

2∓ 25
3 Ca

R , (major/minor axis)

d2 =R . (13)

In order to proceed with analytical calculations we make a
common approximation and assume rotational symmetry
with respect to the major axis. Then the length of the
major/minor axis are given by

a =
d2 + d3

2
, (two minor axes) (14)

b =d1 . (major axis) (15)

The drag coefficients of a rotational symmetric ellipsoid
parallel and perpendicular to the major axis are given by
Perrin’s formulas (see e.g. [46] and references therein)

ζ⊥ =
8

3

1

β
β2−1 +

(2β2−3) ln
(
β+
√
β2−1

)
(β2−1)

3
2

, (16)

ζ‖ =
8

3

1

2β
1−β2 +

(2β2−1) ln
(
β+
√
β2−1

β−
√
β2−1

)
(β2−1)

3
2

(17)

with β = b
a . The migration velocity of the ellipsoid per-

pendicular and parallel to the stream lines is obtained by
decomposing the buoyancy fore F g = Fgêy into its com-
ponent along the major axis, Fg,‖, and perpendicular to
it, Fg,⊥. The migration velocity across the streamlines is
then given by

vm =

(
F g,⊥

ζ⊥
+

F g,‖

ζ‖

)
· êx . (18)

A Taylor expansion with respect to Ca gives at leading
order

vm =
5

96

Fg
πηR

Ca +O(Ca2) . (19)

The capsule’s shape in a Poiseuille flow at an off-center
position has the shape of a slightly deformed ellipsoid, as
indicated also in Fig. 2. The deformation of a spherical
shape is determined by the local shear rate in Poiseuille
flow at the capsule’s center (xc, yc): γ̇ = − 2u0xc

d2 . With

the local capillary number Ca = γ̇ ηRG = − 2u0xcηR
d2G one

obtains within this approximation the position dependent
cross-streamline migration velocity in Poiseuille flow

vm ≈ −
5

48

Fgu0xc
πGd2

. (20)

The force induced velocity vy = (vm)y relative to the un-
perturbed flow can be calculated analogous as in a linear
shear, which includes besides result from the Stokes drag
a deformation dependent correction proportional to Ca:

vy =
Fg

6πηR
+

5

288

Fg
πηR

Ca +O(Ca2) . (21)

Its explicit form for Poiseuille flow is then

vy ≈
Fg

6πηR
− 5

144

Fgu0xc
πd2G

. (22)

If the external force is antiparallel to the flow and if it is
large enough, the capsule moves against the flow direction.
This is approximately the case if vy is larger then the
velocity of the Poiseuille flow at the capsule center

vy >u0(xx, yc) (23)

Fg
6πηR

− 5

144

Fgu0xc
πd2G

>u0

(
1− x2

d2

)
(24)

Fg >
144πηRd2Gu0

24d2G− 5Rηu0xc

(
1− x2c

d2

)
(25)

Numerical results on CSM in unbounded flows.
– To verify our approximate analytical predictions and
qualitative descriptions of the migration of non-neutrally
buoyant soft particles in unbounded flows, we simulate the
Stokesian dynamics of capsules and a rings.

This ensures that the occurred migration is no inertial
effect or imposed by wall interactions. Since the migration
reversal does only depend on the local shear rate, we con-
fine the numerical investigation, without loss of generality,
to that of the Poiseuille flow.

The setup for all simulations can be seen in Fig. 1. The
imposed flow is a Poiseuille flow applied in y-direction with
−d < x < d. The deformable particles are placed with
center of mass positions xc. As consequence, particles with
negative migration velocity (vm < 0) will migration to the
wall and positive migration means center migration.

As reference, we first discuss the case without external
force, which is shown as red curve in Fig. 3. For this
case we observe the already known center migration for
both, the capsule and the ring [zitat: zentrumsmigration
fr soft-particle low Re].

If we now apply a gravitational force parallel to the
stream lines (u0 ↓↓ F g), we see an increase of the center
migration (Fig. 3 (a) and (c)). This additional center-
migration is enlarged for higher external forces. During
the migration to the center, the migration speed decreases,
which is a result of the position dependent shear-rate of
the Poiseuille flow. When the particles reach the center
line, vm vanishes and the particle follows the stream lines.

For the case of antiparallel force and flow-direction
(u0 ↑↓ F g), we find the opposite behavior (Fig. 3 (b)
and (d)). The migration direction is reversed and the par-
ticles experience a positive migration-velocity. This effect
is also correlated to the force strength and position of the
particle. The migration in this case does not vanish on
its way remote from the center, since there is no repul-
sive interaction with the walls. This migration reversal is
observed for both, the capsule and the ring. Both migra-
tion curves look similar, which means the reversal effect
does not depend on the detail of the particle but is a more
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generic feature of the interplay between deformation and
external forces. This is consistent with the results from
[37], where they could measure this behavior for bundled
DNA-molecules, which have no impenetrable surface.
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Fig. 3: Cross-streamline migration-velocity vm of deformable
capsules [a) and b)] and rings [c) and d)] in unbounded vertical
Poiseuille flows as function of the capillary number Ca and for
different values of the vertical force Fg. For parallel flow and
force directions, u0 ↓↓ Fg, the particles migrate to the center
of the Poiseuille flow, i. e. vm < 0 (vm > 0) in range xc > 0
(xc < 0), only faster than in the case of neutral particles with
Fg. For an antiparallel configuration, u0 ↑↓ Fg, the migration
is reversed and away from the center of Poiseuille flow. These
results show, that force induced relative velocity vm in Fig. 2
increases with the magnitude of Fg.

Cross-stream drift between walls. –

Migration of a sedimenting capsule. The influence of
the flat walls of the channel should also be studied. At
first we investigate the interaction between a sedimenting
capsule and the walls of the channel without a flow. We
observe a repulsion of the capsule from the wall which
depends on the stiffness of the capsule, see Fig. 4. The
softer the capsule is the stronger is the repulsion. This is
consistent with the fact that a solid particle sinks parallel
to the wall (see zitat).

The reason of the repulsion is the deformability of the
capsule. The part of the capsule closer to the wall is sub-
jected to a friction with the wall (transmitted via the fluid)
and lags behind. The other part of the capsule more away

from the wall moves therefore faster. This stretches the
capsule and lasts until a steady state is reached which has
a shorter and a longer axis. The longer axis points away
from the wall if seen from the center of the capsule in
direction of the external force. This leads, as described
above, to an asymmetric drag and the capsule moves not
completely in direction of the force but a bit shifted to-
wards the major axis. This means it drifts away from the
wall. This mechanism is different from the wall repulsion
of capsules in a shear flow without a external force where
a lift force due to the tank treading leads to the wall re-
pulsion.

-10
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 0.5  0.6  0.7  0.8

G = 
0.1

G 
= 

0.
5

G
 =

 1
.0

Fg↓

y c
 / 

d

xc / d

Fig. 4: Trajectories of a deformable capsule sedimenting be-
tween two walls in the absence of flow (u0 = 0) for three dif-
ferent values of the Neo-Hookean stiffness G. Softer particles
move faster away from the wall (at x

d
= 1.0) and rigid particles

don’t.

Dynamics of rings and capsules in Poiseuille flows.
The contribution of the wall interaction to the migration
of capsules in a Poiseuille flow is examined here. The Fig.
3 and 5 show the migration velocity vm of a ring and a
capsule as function of the capillary number Ca for differ-
ent values of the force Fg in case of an unbounded or an
bounded flow. A comparison of both Fig. shows that far
away from the walls the migration is similar in case with
and without walls but is changed close to the walls where
the repelling lift force becomes important. In case of a
parallel external force and flow the lift force enhances the
migration to the center. In case of an antiparallel external
force and flow the bulk migration to the wall is hindered
or surpassed by the lift force. The capsule and the ring
migrates away from the wall if it is close to it. This leads
to stable lateral position xeq outside the channel center
where the migration due to the external force and due to
the the lift force are equal.

The drift towards such a stable wall distance at xeq ≈
0.85d and the dependence of xeq on u0 and Fg is shown
in Fig. 6 . If the flow is parallel to the force u0 < 0 the
stable position is the channel center because the external
force, the center migration occurring also without an ex-
ternal force and the wall repulsion lead to a migration to
the center. If the flow is reversed (meaning now antipar-
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allel to the force) the migration due to the force leads
to a wall migration and stable, lateral off-center positions
occur. They are at approximately u0 = 0.05 the closest
to the wall depending on the external force. Beyond this
maximal off-center position xeq becomes closer to the cen-
ter the higher u0 is because the increasing tank-treading
motion and xeq is the closer to the wall the larger the ex-
ternal force is. With a weak force and a strong flow e.g.
Fg = −10−3 and u0 > 0.7 the stable position is again the
center of the channel despite they are antiparallel.
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Fig. 5: Migration velocity of soft particles analogous to Fig.
2. with additional wall interaction. The migration towards the
center (vm < 0), observed in the parallel case (u0 ↓↓ F , upper
picture) is increased near the wall. For the antiparallel case
(u0 ↑↓ F , lower pictures), the repulsive wall interaction leads
to stable positions (vm = 0) between the center and the wall.
This effects are again stable for different types of particles and
can be seen for both capsules and ring polymers.

Comparison of simulation methods and analytical ap-
proximation. We used in our simulations with the Os-
een and Blake tensor the assumption that the external
force acts on the surface of the capsule. In our analytical
approximation we approximate the shape of the capsule
as an rotational ellipsoid to calculate the drag. To jus-
tify these approximations we compare the results with an
Lattice Boltzmann method (LBM) with the BGK collision
operator and a singe relaxation time. Flow and particle
are coupled by the immersed boundary method. With lat-
tice Boltzmann, it is possible to simulate an external force
that acts on the interior of the capsule or on the surface.
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Fig. 6: (Color online) (a) Trajectory of a deformable capsule
immersed in a plane Poiseuille flow u0(r) between two parallel
walls (see also Fig. 1). The flow is antiparallel to the negative
buoyancy force F g. Without the wall interaction (red) the cap-
sule migrates towards the walls due to F g until it collides with
the wall. With wall interaction (green) the migration stops
close to the walls at xc

d
≈ 0.85 because the wall is repulsive

(see Fig. 4). This means the capsule reaches a stable equilib-
rium distance to the wall xeq. (b) Equilibrium position xeq
for a capsule as function of the flow velocity for three differ-
ent values of the negative buoyancy forces. Negative values of
u0 correspond to a flow parallel to the force thus the center
of the flow is the stable position. Positive values of u0 mean
flow and negative buoyancy force are antiparallel which allows
stable off center positions. This leads to a transition of xeq
from zero to non-zero values at u0 = 0. Beyond a maximum at
approximately u0 ≈ 0.05 the stable position xeq is the closer
to the center the faster the flow is because of the tank-treading
motion. The tank-treading motion which leads to a center mi-
gration without F g becomes stronger with higher u0. At the
values Fg = −10−3 and u0 > 0.5 the tank-treading dominates
and the capsule migrates to the center, as in the case without
F g. Furthermore a higher force F g means a stable position
closer to wall

With the LBM we can compare the analytical approx-
imation, the Oseen and Blake tensor simulation, a LBM
simulation with an external force acting on the surface and
a second LBM simulation with an external force acting on
the interior of the capsule. We determine the migration
velocity of a capsule with an external force in an antipar-
allel directed, bounded Poiseuille flow as function of the
lateral position, see Fig. ??. All simulations show that the
capsule migrates towards the walls and stops at a certain
distance to the wall due to the wall repulsion. Furthermore
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they all display zero migration in the center, a maximum
of the migration in the middle between center and wall and
a stable, stationary position at approximately xc ≈ 0.85d.
So the simulations agree qualitatively. Quantitatively the
simulations differ at the maximum of the migration veloc-
ity (approximately a factor of two) but agree well at low
capillary numbers close to the center of the channel. This
means the Oseen and Blake tensor describes the capsule
qualitatively correct.

The analytical approximation agrees well at low capil-
lary numbers at the center of the channel. This is due
to the fact that small deformations are assumed. Also the
analytical approximation can not reproduce the stationary
position because the wall repulsion is not included here.
This means the analytical approximations is justified as
long as the assumptions of a small capillary number and
a position far away from the wall are given.
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Fig. 7: The migration velocity vm of a capsule as function of
the lateral position xc. We compare four different methods:
Simulations with the Oseen and Blake-Tensor (purple) where
F g acts on the beads (surface of capsule), Lattice-Boltzmann
simulations with F g acts on the surface of capsule (red) or on
the interior volume (green) and an analytical approximation
(blue, see eq. 20). All the simulations show the same quali-
tative behavior. The approximation of the Oseen-Tensor and
the force F g acting on the beads does not change the qualita-
tive behavior of the capsule, just the quantitative values. Also
the calculation fits the simulations as long as the assumption
of small Ca and a position far away from the wall (negligible
wall interaction) is valid. We used the parameters d = 60,
u0 = 0.01, τ = 1.0, Density of the Fluid ρ = 1.0, η = 1.0/6.0,
Channel size in flow direction Nx = 100, Channel size in z-
direction Nz = 100, κ = 0.001, G = 0.001, kv = 0.01, b = 1,
F g = −10−4êx, a = 0.2.

Summary and conclusions. – The migration of
the sinking (elevating) soft particles away from the walls
has a similar origin as the lift force observed in linear
shear flow [21–23].

Migration during sedimentation

This cross-streamline migration is more efficient than
bulk migration.

By this method we can separate particles with respect
to their density and stiffness.

Shear flow

∗ ∗ ∗
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