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Abstract. The dynamics of non-autonomous bright matter-wave solitons in Rabi

coupled binary Bose-Einstein condensates is explored. By performing a unitary and

similarity/lens-type transformation, we reduce the non-autonomous Gross-Pitaevskii

equation into the celebrated Manakov model. Then, we construct the exact bright

solitons of the non-autonomous Gross-Pitaevskii system in the presence of time

dependent nonlinearities for two specific forms, namely hyperbolic nonlinearities, which

are of physical interest. The experimental possibilities of realizing the forms of

temporally modulated potentials corresponding to these time dependent nonlinearities

and supporting such localized structures are explored. Our study on the propagation

of one soliton shows that the amplitude, velocity and shape of the bright soliton are

altered by the time-dependent scattering length. We also analyse the non-trivial

energy sharing collision of Manakov solitons in the presence of Rabi coupling and

aforementioned nonlinearities. We find that breathers arise in two-soliton collisions

and the nature of energy sharing collisions is altered from that of Manakov system

due to Rabi coupling only. Further in the presence of time-dependent nonlinearities

the collision scenario is again altered significantly. Finally, the stability of these

localized structures is examined using a recently developed powerful analytic method

by Quintero et. al., [Phys. Rev. E 91, 012905 (2015)] and it is shown that the non-

autonomous bright solitons are indeed stable. The evolution of position and velocity

is also studied.

PACS numbers: 05.45.Yv, 02.30.IK, 03.75.Lm, 03.75.-b

http://arxiv.org/abs/1705.02829v1


Non-autonomous bright solitons and their stability in Rabi coupled binary BECs 2

1. Introduction

Bose-Einstein condensates (BECs) have become an important ground for the study

of macroscopic quantum phenomena [1]. Since the first realization of BECs with

alkali atoms, various nonlinear structures have been experimentally observed and/or

theoretically investigated, such as bright solitons [2], dark solitons [3], dark-bright

solitons [4], vortices [5], Faraday waves [6], skyrmions [7], etc. BECs with tunable

interatomic interactions have been the subject of intense theoretical and experimental

interest in recent years [8]. In the vicinity of a Feshbach-resonance (FR), the atomic

scattering length depends sensitively on the applied external magnetic field (see

refs. [9, 10] and references therein), allowing the magnitude and sign of the atomic

interactions to be tuned to any value. These techniques offer some opportunities

to achieve a nonlinearity management through the use of time-dependent and/or

nonuniform fields. Utilizing this nonlinearity management concept, several nonlinear

wave patterns and effects, such as, non-autonomous bright solitons [11] as well as dark-

bright solitons [12], Bloch oscillations [13], and rogue waves [14] have been observed in

BECs.

Multicomponent BECs are a mixture of different atomic species (heteronulcear

BEC mixtures) or a mixture of same species at different hyperfine states (homonuclear

BEC mixtures). Of the multi-component BECs, the simplest form is the two-component

BEC. In homonuclear BECs, in addition to the inter species interaction the two different

hyperfine states can be coupled by “Rabi coupling”. This is a linear coupling between

separate wave functions say |1〉 and |2〉 induced by radio-frequencies. When the coupling

drive is turned on, suddenly, it will induce an extended series of oscillations of the total

population from the |1〉 to the |2〉 state, so called “Rabi oscillations” [15]. Under

the application of Rabi coupling between the components of a weakly interacting

multicomponent BECs, one component of BECs can be transferred to another [16, 17].

Experiments have been performed for two-component 87Rb condensate with atomic

states customarily denoted by |1〉 and |2〉; in particular, these states can be either

|F = 2, mF = 1〉 and |2, 2〉 [18], or |1,−1〉 and |2, 1〉 [15]. In a recent experimental work

[19], solitons have been observed in a binary Gross-Pitaevskii (GP) system with Rabi

coupling. Several other studies on Rabi coupled binary GP systems, namely magnetic

solitons [20], dark soliton [21], domain walls [22], vortex pairs [23], countersuperflow [24],

and topological defects [25], have also been investigated.

Motivated by these works, here we study theoretically the non-autonomous bright

solitons and their stability in a Rabi-coupled quasi-one-dimensional GP system. In our

earlier work, two of the authors (T.K. and R.B.) and co-workers considered the repulsive

condensates and studied the dark-bright solitons dynamics. Now our attention is on

attractive condensates and their soliton patterns, which are distinctly different from

those observed in Ref. [12].

On the other hand, stability of nonlinear waves in multi-component BECs is another

critical issue in (1+1)- dimension as well as in higher dimensions. To the best of
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our knowledge so far no analytical tool has been developed to study the stability of

multi-component non-autonomous soliton like structures appearing in integrable non-

autonomous nonlinear evolution equations. Recently, Quintero et al., [26] proposed an

efficient method to determine the stability of bright solitons in both autonomous and

non-autonomous settings of the nonlinear Schrödinger (NLS) equation. In this work,

we apply that method to the obtained bright soliton solutions of the non-autonomous

GP system (2) given below. The rest of the paper is organized as follows:

In section II, we describe the model equation for quasi one-dimensional Rabi-

coupled BEC. In section III, we show that under a suitable unitary and similarity

type transformation, the Rabi-coupled non-autonomous GP system can be converted

into the famous integrable Manakov system along with a constraint condition. In

section IV, we will study the evolution of one- and two-solitons in autonomous and non-

autonomous Rabi-coupled GP systems and discuss their dynamical behavior for two

particular physically interesting forms of the time-dependent nonlinearity coefficient.

Following this, we address the stability of the obtained non-autonomous bright one-

soliton by an analytical procedure developed recently by Quintero et al., [26] and show

that the non-autonomous soliton structures reported here are indeed stable. Section VI

contains the concluding remarks.

2. Description of the Model

We consider a two-component BEC that is condensed into two different hyperfine states

|1〉 and |2〉 such as those of 87Rb atoms [15]. The two component BEC is assumed

to be trapped in a simple harmonic potential with the trapping in the transverse

directions being stronger. Then the BEC is cigar-shaped and is governed by the following

dimensionless one-dimensional (1D) GP equation [1]:

i
∂ψ1

∂t
=

[

−1

2

∂2

∂x2
+ Vext(x, t)

]

ψ1 + (g11|ψ1|2 + g12|ψ2|2)ψ1 + χψ2, (1a)

i
∂ψ2

∂t
=

[

−1

2

∂2

∂x2
+ Vext(x, t)

]

ψ2 + (g12|ψ1|2 + g22|ψ2|2)ψ2 + χψ1. (1b)

Here ψj(x, t)(j = 1, 2) are the condensate wave functions in the two hyperfine states,

spatial coordinate x and time t are respectively measured in units of a0 and ω
−1
⊥ , where

a0 =
√

~/mω⊥(m denotes atomic mass) is the transverse harmonic oscillator length.

The coupling constants gii = 2aii/aB for i = 1, 2 and g12 = 2a12/aB are the intra-species

and inter-species interaction strengths respectively, where aB is the Bohr radius and aij
are the s-wave scattering lengths of the species i and j respectively, and can be tuned

with the aid of magnetic-field induced FR mechanism [27, 28]; Vext(x, t) = 1
2
Ω2(t)x2

(where Ω2(t)= ω2
x(t)/2ω

2
⊥, in which ωx and ω⊥ are the temporally modulated axial trap

frequency and radial frequency) is the time-dependent harmonic trap potential. The

cross coupling term χ is the Rabi coupling parameter and is assumed to be real and

positive.
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Based on experimental results pertaining to two-component 87Rb BECs [29], we

can assume that the scattering lengths to be equal, and also they can be tuned through

FR [30]. Hence, we consider the GP system (1) with equal interaction strengths, i.e.,

g11 = g12 = g22 = −β(t), where β(t) is a positive function. The resulting equations can

be expressed as

i
∂ψ1

∂t
=

[

−1

2

∂2

∂x2
+ Vext(x, t)

]

ψ1 − β(t)(|ψ1|2 + |ψ2|2)ψ1 + χψ2, (2a)

i
∂ψ2

∂t
=

[

−1

2

∂2

∂x2
+ Vext(x, t)

]

ψ2 − β(t)(|ψ1|2 + |ψ2|2)ψ2 + χψ1. (2b)

Next, we derive the continuity equation from the time-dependent GP equation (2).

For this purpose, the coupled GP system (2a) and (2b) is multiplied by ψ∗
1 and ψ∗

2

respectively, and the complex conjugate equations of the coupled GP system (2a) and

(2b) are multiplied respectively by ψ1 and ψ2. Combining the resulting equations

suitably, we get

∂ρ

∂t
+
∂j

∂x
= 0 (3)

where norm density ρ = (|ψ1|2 + ψ2|2), and momentum current density j =

(i/2) [(ψ∗
1ψ1,x − c.c) + (ψ∗

2ψ2,x − c.c)]. Here c.c denotes complex conjugation. The norm

(N) of Eq. (2) is given by

Norm : N =

∫ ∞

−∞

ρ dx. (4a)

We also require the following physical quantities, namely field momentum and

normalized momentum for the stability analysis of the non-autonomous solitons.

Field Momentum : p =

∫ ∞

−∞

j(x, t) dx, (4b)

Normalized Momentum : P =
p

N
. (4c)

3. Transforming Rabi coupled non-autonomous GP system to the Manakov

system

In a recent work [12], two of the authors (T.K. and R.B.) along with their co-workers have

converted Eq. (2) with repulsive nonlinearity to the defocusing coupled NLS system, a

known integrable system by employing two successive transformations. Here we consider

Eq. (2) with focusing nonlinearity, i.e., β(t) > 0. First, we utilize the following unitary

transformation [31]
(

ψ1

ψ2

)

=

(

cos(χt) −i sin(χt)
−i sin(χt) cos(χt)

)(

Φ1

Φ2

)

, (5)

in Eq. (2). This special rotational transformation was first used in Ref. [31] to convert

autonomous Rabi coupled GP system to standard coupled GP system. Following this in

Ref. [12] we have applied this to transform non-autonomous Rabi coupled GP system to
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defocusing GP system. Here the linearly (Rabi) coupled non-autonomous GP system (2)

is transformed into a coupled non-autonomous GP system of defocusing type (β(t) > 0)

without linear coupling [12]

i
∂Φj

∂t
= −1

2

∂2Φj

∂x2
− β(t)

2
∑

l=1

(|Φl|2)Φj + Vext(x, t)Φj , j = 1, 2. (6)

Next a proper similarity transformation is chosen in order to map the above

non-autonomous GP system (6) to the celebrated Manakov system. The similarity

transformation is given by

Φj(x, t) = ε(t) Qj(X(x, t), T (t)) exp(iφ(x, t)), j = 1, 2. (7)

Here, the co-ordinates X(x, t) =
√
2σ1

(

β(t)x− 2σ2σ
2
1

∫

β2(t)dt
)

, T (t) = σ2
1

∫

β2(t)dt,

ε(t) = σ1
√

2β(t), and φ(x, t) = −x2

2

(

β̇(t)
β(t)

)

+ 2σ2
1σ2
(

β(t)x− σ2σ
2
1

∫

β2(t)dt
)

. The

parameters σ1 and σ2 are arbitrary real constants. Inserting (7) into (6), we obtain

iQ1,T +Q1,XX + 2(|Q1|2 + |Q2|2)Q1 = 0, (8a)

iQ2,T +Q2,XX + 2(|Q1|2 + |Q2|2)Q2 = 0, (8b)

with the condition

(β̈/β)− 2(β̇/β)2 − Ω2(t) = 0. (9)

The existence of such type of similarity transformation realting non-autonomous system

to an integrable autonomous system was first proposed by Serkin [32] for the NLS

system. Following this a flurry of activities [33] have been carried out along this

direction. However the study of present system (2) with focusing nonlinearity is still

left unexplored.

The similarity transformation between the linearly coupled non-autonomous GP

system and the autonomous Manakov equation provides us an efficient way to construct

the solutions of the Rabi coupled non-autonomous GP system from the known solutions

of the Manakov system [34]. The bright one- and two- soliton solutions of the Manakov

system (8) are obtained in Refs. [34, 35] are given in the appendix. In our earlier

published work [12], we have investigated the dynamics of non-autonomous dark-bright

one- and two- soliton solutions under Rabi coupling in the framework of a defocusing

coupled NLS system. In the following section, with the knowledge of the bright one-

and two-soliton solutions of the Manakov system (8) the non-autonomous bright soliton

solutions of system (2) are obtained and their dynamical properties as well as their

stability are discussed in detail. We would like to emphasize that the bright solitons

of the Manakov system admit novel energy sharing collisions that have applications

in optical computing [36, 37], matter wave interferometer [38], and partially coherent

solitons [39, 40] of variable shape. Here we investigate these intriguing collisions in the

presence of time dependent nonlinearity and Rabi coupling.



Non-autonomous bright solitons and their stability in Rabi coupled binary BECs 6

4. Forms of the time-dependent nonlinearity coefficients and their

corresponding modulated trap frequencies

(a) First we choose a kink-like form of the nonlinearity coefficient, enabling the transition

between two distinct (constant) values of β, namely,

β(t) = a0 + tanh(ρt+ δ), (10a)

where a0, ρ, and δ are arbitrary real constants. The associated form of strength of trap

frequency Ω2(t) is determined from Eq. (9)

Ω2(t) = −2ρ2sech2(ρt + δ)(1 + a0 tanh(ρt+ δ))

a21
, (10b)

where a1 = a0 + tanh(ρt+ δ).
The graphical structures of β(t) and Ω2(t) are shown in Fig. 1. It shows that the

temporal modulation of the nonlinearity coefficient β(t) (blue solid line) smoothly varies
from one value (lower) to another value (higher) as time t → 0 to 4., e.g., in atomic
condensates such variations can be realized by tunning the magnetic field [41]. We depict
the nature of the corresponding temporal modulation of the potential Ω2(t) in the same
figure as red solid lines. The form of Ω2(t) agrees very well with the Hermite-Gaussian
pulse γ(t) = [c0H0(σ) + c3H3(σ)]exp(−σ2/2w2), where σ = 1.2t− 2.25, w is the width
of the Gaussian pulse, c0 and c3 are the coefficients of the zeroth order(H0) and third
order(H3) Hermite polynomials, respectively. This is clearly shown in Fig. 1(b).

0 1 2 3 4
t

1

1.5

2

2.5

3

(t
)

-4

-2

0

2

2
(t

)

(a)

0 1 2 3 4

t

-4

-3

-2

-1

0

1

2

(t
)

(b)

Figure 1. Panel (a): Profiles of nonlinearity β(t) (a0 = 2, ρ = 0.5 and δ = −5) and

trap frequency Ω2(t) given by Eqs. (10a) and (10b), respectively. Panel (b): Typical

plot of γ(t) for w =
√
0.17, c0 = −1.2, and c3 = 1.

(b) We also choose another following form of variable nonlinearity coefficient to

examines

β(t) = a0 + cosh(ρt + δ), (11a)
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where a0, δ and ρ are, again, real arbitrary constants, while the associated form of the

trap frequency is found from Eq. (9) as

Ω2(t) =
ρ2[3 + 2a0 cosh(ρt+ δ)− cosh(2(ρt+ δ))]

2a21
, (11b)

where a1 = a0 + cosh(ρt + δ).
The graphical structures of β(t) and Ω2(t) are sketched in Fig. 2. The nature of

time-dependent function β(t) (blue solid line) admits a flat bottom parabolic profile (at
t = 0 and 4 it reaches its maximum value, while t = 2 approaches its minimum value).
Indeed it changes its value from negative to positive which can be very well achieved
through FR mechanism. Next, the temporal modulation of the trap potential Ω2(t) is
found to be localized pulse, which can be experimentally realized. It is interesting
to note that the nature of the above function Ω2(t) well agrees with the function
γ(t) = aH2(σ)exp(−σ2/2w2), where σ = t− 2, a and w are the amplitude and width of
the Gaussian pulse/beam, H2(σ) is the second order Hermite polynomial (see Fig. 2(b)).
We believe that this resemblance of Ω2(t) with Hermite-Gaussian (HG) pulse (second
order) pointed out here, will pave way to realize non-autonomous solitons experimentally
in multiple species condensates as these HG pulses can be formed by suitable laser
sources.

0 1 2 3 4
t

0

20

40

60

80

(t
)

-6

-4

-2

0

2

4

2
(t

)

(a)

0 1 2 3 4
t

-6

-4

-2

0

2

4

(t
)

(b)

Figure 2. Panel (a): Profile of nonlinearity β(t)(a0 = 2, ρ = 2.5, and δ = −5) and

trap frequency Ω2(t) given by Eqs. (11a) and (11b). Panel (b): Typical plot of γ(t) for

w =
√
2.3 and a = −1.

5. Explicit soliton solutions of non-autonomous coupled GP system

Here we write down the one- and two-soliton solutions of system (2) for constant as

well as time-dependent nonlinearity coefficients. This will enable us to compare the

dynamics of the bright solitons in the presence and absence of the time dependence of

the nonlinearity coefficient β.
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5.1. Bright one- soliton solution

(i) The bright one-soliton solution of system (2) for constant nonlinearity coefficient

β = 1 and in the absence of an external potential Vext(x, t) is given by [35]

ψ1(x, t) = (A1 cos(χt)Q1 − iA2 sin(χt)Q2) , (12a)

ψ2(x, t) = (−iA1 sin(χt)Q1 + A2 cos(χt)Q2) , (12b)

where the functions Q1 and Q2 are given in Eq. (A.1) in the appendix. Here the variables

ω and η1I are redefined as ω = x− k1It and η1I = k1Ix+ (k21R − k21I)(t/2).
For constant nonlinearity coefficient (i.e., β(t) = const.) and in the absence of

external potential (Vext = 0, corresponding to homogeneous condensate), the soliton
profiles in both the components ψ1(x, t) and ψ2(x, t) exhibit breathing (or) oscillating
behavior due to the Rabi coupling parameter χ.

(a) (b)

0 5 10 15
t

0

0.1

0.2

0.3

|
1|2

0

0.1

0.2

0.3

0.4

|
2|2

(c)

Figure 3. Oscillating soliton for constant nonlinearity coefficient β(t) and in the

absence of external potential. Panels (a) and (b) show contour plots of density profiles

of |ψ1|2 and |ψ2|2. Panel (c) shows density profiles of |ψ1|2 and |ψ2|2. Here k1R = 1,

k1I = 0, α
(1)
1 = 0.5, β = 1, α

(2)
1 = 0.2i, and χ = 1.2.
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Figs. 3(a)-3(c) show a train of identical breathing solitons/breathers. To facili-

tate the understanding of such oscillations we explicitly present the expressions for the

condensate densities |ψ1|2 = k21Rsech
2(k1Rω + R/2)(|A1|2 cos2(χt) + |A2|2 sin2(χt)) +

ik21R cos(χt) sin(χt)sech2(k1Rω + R/2)(A1A
∗
2 − A∗

1A2) and |ψ2|2 = k21Rsech
2(k1Rω +

R/2)(|A2|2 cos2(χt) + |A1|2 sin2(χt)) + ik21R cos(χt) sin(χt)sech2(k1Rω + R/2)(A∗
1A2 −

A1A
∗
2). From this expression we find that the oscillations originate from the trigonomet-

ric functions (cosine and sine) appearing in the cross (interference) terms. The matter

wave oscillation between the components becomes larger for large values of the Rabi

coupling χ as expected.

(ii) The non-autonomous bright one-soliton solution of system (2) for time-

dependent nonlinearity coefficient β(t) and in the presence of external potential

Vext(x, t) obtained by using the transformations mentioned in the previous section and

the solution given in the appendix, is given below

ψ1(x, t) = [A1 cos(χt)− iA2 sin(χt)] ε(t)k1R sech(k1Rω̃ +R/2)ei(η̃1I+φ(x,t)),(13a)

ψ2(x, t) = [−iA1 sin(χt) + A2 cos(χt)] ε(t)k1R sech(k1Rω̃ +R/2)ei(η̃1I+φ(x,t)),(13b)

where

ω̃ = X − 2k1IT (13c)

ω̃ =
√
2σ1β(t)x− 2

√
2σ3

1σ2

∫

β2(t)dt− 2k1Iσ
2
1

∫

β2(t)dt, (13d)

η̃1I =
√
2σ1k1Iβ(t)x− 2

√
2k1Iσ

3
1σ2

∫

β2(t)dt + (k21R − k21I)σ
2
1

∫

β2(t)dt, (13e)

and

φ(x, t) =

(

− β̇(t)

2β(t)
x2 + 2σ2

1σ2(β(t)x− σ2σ
2
1

∫

β2(t)dt)

)

, (13f)

where the overdot denotes d/dt. All other parameters are given below Eq. (A.1) in the

appendix. The mesh plot of evolution of a single oscillating non-autonomous bright

soliton is shown in Fig. 4.
In this case, we consider the nonlinearity coefficient to be time-dependent and

include the external potential for studying the soliton dynamics. For this purpose,
we choose two types of time-dependent nonlinearity coefficients in terms of hyperbolic
functions discussed in the previous section. Figs. 4(a)-4(b) show the matter wave soliton
compression for the choice β(t) = a0 + tanh(ρt+ δ). At time t→ 0, the amplitude and
width of the soliton is lower and wider. As time goes on, the amplitude is gradually
increased and the pulse width is narrowed down (see time t → 15). Note that the
velocity of the oscillating soliton is strongly affected by the nature of the time-dependent
nonlinearity.
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(a) (b)

(c) (d)

Figure 4. Time-dependent nonlinearity coefficient β(t) and presence of external

potential (top and bottom row panels). Panels (a) and (b) correspond to values

of parameters of β = a0 + tanh(ρt + δ), k1I = 0.2, ρ = 0.4, σ1 = 0.8, δ = −3,

χ = 1.2, a0 = 2, and σ2 = 0, whereas (c) and (d) correspond to values of parameters

β = a0 + cosh(ρt + δ), k1I = 0.5, ρ = 0.45, δ = −3, σ1 = 0.2, χ = 2, a0 = 2, and

σ2 = 0. All other values of soliton parameters are same as given in Figs. 3(a)-3(c).

Next, we consider the form of time-dependent nonlinearity coefficient as β(t) =

a0 + cosh(ρt + δ). In this case the soliton is oscillating and the amplitude is higher at

t = 0 and at t = 15. But in between the amplitude is lower. Note that the central

position of the soliton also oscillates periodically. We view this as an oscillating soliton

cradle. This is clearly sketched in Figs. 4(c)-4(d).

5.2. Bright two-soliton solution and soliton collision

(i) Brief revisit of collision in the Manakov system:
The soliton solution of Manakov system (8) is described by the two-soliton solution

given in appendix (see Eq. (A.2)). The nature of the two soliton collision is shown in
Figs. 5(a)-5(b). It shows the shape changing (energy sharing) collision of solitons of
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system (8) [35]. Here, S1 and S2 denote the first and second soliton, respectively. In the
Q1(X, T ) component the condensate density of soliton S1 gets suppressed after collision
while there is an enhancement in that of second soliton S2. The reverse scenario takes
place in the Q2(X, T ) component. See Ref. [42] for a review of this energy sharing
collision.

(a) (b)

Figure 5. Panels (a)-(b): Shape changing/energy sharing collision of Manakov system

(8) with parameters α
(1)
1 = α

(2)
1 = α

(1)
2 = 0.002, α

(2)
2 = 0.01+0.025i, k1 = −1.2+0.5i,

and k2 = 1.3− 0.5i.

(ii) Breather production in soliton collision

In this case, the two-soliton solution for constant nonlinearity parameter (β(t) = 1)

and in the absence of external potential (Vext(x, t) = 0) corresponding to a homogeneous

condensate is given by

ψ1(x, t) =
1

D

(

cos(χt)G1 − i sin(χt)G2

)

, (14a)

ψ2(x, t) =
1

D

(

− i sin(χt)G1 + cos(χt)G2

)

, (14b)

where G1, G2, and D are defined in Eqs. (A.3 and A.4) in the appendix. Here, the
form of ηi, i = 1, 2, as given in appendix is redefined as ηi = ki(x + iki(t/2)). The
top and middle row panels of Fig. 6 show elastic and energy sharing/shape changing
collision of breathing solitons behaviour of system (2), respectively. These figures show
that the Rabi coupling induces soliton oscillations which are spatially localized. Such
breathing solitons can also be viewed as Ma-breathers. Particularly, panels 6(a)-6(b)
show elastic collision of oscillating solitons for the Rabi coupling parameter χ = 2.
Figs. 6(c)-6(d) show the shape changing collision of bright solitons in the presence of
Rabi coupling. This Rabi coupling affects the switching dynamics significantly. We note
that due to the Rabi effect the oscillation in soliton S1 is completely suppressed before
interaction while it reappears after interaction whereas soliton S2 exhibits oscillation
before and after interaction. Another important effect one can notice is that in both
the components the switching nature is same. That is, soliton S1 gets enhanced after
interaction. Meanwhile, the soliton S2 which is completely suppressed before soliton
collision in the Manakov case now reappears with significant amplitude and executes
periodic oscillations in the ψ1 component.
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(a) (b)

(c) (d)

(e)

Figure 6. Panels (a)-(b): Elastic collision of oscillating solitons with α
(1)
1 = α

(1)
2 =

0.002, α
(2)
2 = α

(2)
1 = 0.005i, k1 = −1.4 + 0.5i, and k2 = 1.6 − 0.5i, β = 1, and χ = 2.

Shape changing collision of oscillating solitons (c)-(d) with χ = 2 and other parameters

are same as given in Fig. 5. Panel (e) shows the conservation of energy during shape

changing soliton collision.

This is contrary to the collision scenario depicted in Fig. 5 where the Rabi coupling
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is absent. However, the total energy is conserved during shape changing collision as

depicted in Fig. 6(e) even in the presence of Rabi coupling.

(iii) Collision scenario in the presence of time-dependent nonlinearity

coefficient β(t) and external potential Vext(x, t):

Next, we focus our study on soliton dynamics in the presence of the two time-

varying nonlinearities discussed in Sec. IV and in the presence of an external potential.

The general two-soliton solution of the non-autonomous coupled GP system (2) can be

written as
(

ψ1

ψ2

)

=
1

D

(

cos(χt) −i sin(χt)
−i sin(χt) cos(χt)

)(

G1

G2

)

ε(t)eiφ(x,t). (15)

Here, the co-ordinates X and T appear in the expressions of G1 and D (see appendix)
and are redefined as follows: X =

√
2σ1

(

β(t)x− 2σ2σ
2
1

∫

β2(t)dt
)

, T = σ2
1

∫

β2(t)dt.
Figs. 7(a)-7(b) show the shape changing collision of two breathing solitons for β(t)=a0+
tanh(ρt + δ). The density of the breathing soliton S1 gets enhanced and S2 is also
enhanced after the collision in the ψ1 component due to the form of the kink nonlinearity.
A similar behavior also takes place in the ψ2 component. Thus, the switching nature of
energy sharing collision in the autonomous system with Rabi coupling is affected by the
presence of the time dependent nonlinearity in the non-autonomous GP system (2) for
this choice of time-dependent nonlinearity and external potential. This clearly indicates
that such type of kink-like nonlinearity can be profitably used for soliton amplification
by collision. One can note that the separation distance between the solitons before and
after interaction is also increased as compared with Fig. 5.
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(a) (b)

(c) (d)

Figure 7. Panels (a)-(b): Shape changing collision of oscillating solitons correspond

to values of parameters of β(t) = a0 + tanh(ρt + δ), χ = 2, ρ = 1.2, σ1 = 0.6,

σ2 = 0, a0 = 2, and δ = −4. Panels (c)-(d): Shape changing collision with

β(t) = a0 + cosh(ρt + δ) with parameters ρ = 0.35, σ1 = 0.4, δ = −1, χ = 2,

a0 = 2, and σ2 = 0. All other values are same as given in Fig. 5.

Finally, energy sharing collision of oscillating solitons in non-autonomous GP

system (2) with β(t)=a0 + cosh(ρt + δ) is shown in Figs. 7(c)-7(d). We observe that

in this case also the energy sharing collision for the non-autonomous GP system (2)

with Rabi coupling is altered due to the nature of the nonlinearity coefficient. This

nonlinearity can also be used advantageously for soliton amplification purpose. This

collision can be viewed as interacting soliton cradles. Here there is a bending in the

path of the colliding solitons. However suppression of oscillation in soliton S1 is still

preserved before interaction. The separation distance is left unaffected before and after

collision as compared with Figs. 6(c) and 6(d).
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6. Stability of non-autonomous bright solitons

Though the autonomous Manakov solitons are found to be stable [40, 43], it is not

apparent that the obtained non-autonomous solutions are stable. So our next aim is

to investigate the stability of the above discussed non-autonomous solitons. In a recent

interesting paper it has been shown that the sufficient and necessary condition for soliton

instability and stability is dP (υ)/dυ < 0 and dP (υ)/dυ > 0, respectively [26]. Here,

P and υ are the normalised momentum and the soliton velocity. In connection with

the studies on soliton stability we need the explicit expressions for the norm, soliton

position and velocity and normalized momentum. For this purpose, here we calculate

the following conserved quantities of non-autonomous system (2). Using the expression

(4a) and making use of (13) we find the norm of the soliton is

N =

∫ ∞

−∞

ρ dx,

= 2σ2
1

∫ ∞

−∞

k21Rβ(t)sech
2(k1Rω̃ +R/2)dx,

= 2
√
2σ1k1R (16)

which is time-independent. By requiring the maximum of the condensate density

|ψj |2, j = 1, 2, occurs at the soliton position x = q, from (13), we get

√
2σ1

(

β(t)q − 2σ2σ
2
1

∫

β2(t)dt

)

= 2k1Iσ
2
1

∫

β2(t)dt− (R/2). (17a)

The resulting soliton position at which maximum condensate occurs is given by

q(t) =
ζ√

2σ1β(t)
. (17b)

By differentiating the above expression with respect to time ‘t’ one can obtain the

velocity of non-autonomous soliton as

q̇(t) =
−β̇ζ√
2β2σ1

+
√
2σ1β(t)k1I + 2σ2

1σ2β(t), (17c)

where

ζ =

(

2k1Iσ
2
1

∫

β2(t)dt− R

2k1R
+ 2

√
2σ3

1σ2

∫

β2(t)dt

)

. (17d)

The top panels [see Fig. 8(a)-8(b)] of Fig. 8 show the evolution of position and
velocity of the non-autonomous bright soliton for the nonlinearity parameter β(t) =
a0 + tanh(ρt + δ). In this case, the soliton position increases linearly with respect to
time except in the jump region of the kink-nonlinearity and in this region it remains
almost constant. For this kink nonlinearity, the soliton velocity reaches a negative
minimum and attains a constant maximum gradually. The bottom row panels [see
Fig. 8(c)-8(d)] of Fig. 8 show the position and velocity of the soliton for the nonlinearity
β(t) = a0 + cosh(ρt + δ). In this scenario, there is a shift in the soliton position from
negative to positive value as time evolves, whereas the soliton velocity initially takes a
smaller value and becomes zero for a significant time period followed by a steep increase.
Thus from Figs. 8, it is quite clear that one can engineer the central position and velocity
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of the non-autonomous soliton by suitably choosing the temporal modulations of the
nonlinearity. This arbitrariness of tuning the soliton position and velocity is not at all
possible in its autonomous counterpart.
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Figure 8. Panels (a)-(d) shows the position and velocity of the bright one soliton

solution of system (2) with β(t) = 2 + tanh(ρt + δ) and β(t) = 2 + cosh(ρt + δ),

respectively. The parameters are k1R = 1, k1I = 0.2, α
(1)
1 = 0.5, α

(2)
1 = 0.2i, σ1 = 0.8,

σ2 = 0, δ = −5, a0 = 2, and ρ = 0.8.

The field momentum of soliton p is obtained after substituting the one soliton

solution (13) in the following expression:

p =

∫ ∞

−∞

j(x, t) dx, (18a)

where the current density

j(x, t) = 2[−xβ̇ +
√
2σ1k1Iβ

2(t) + 2σ2
1σ2β

2(t)]k21Rσ
2
1sech

2(k1Rω̃ +R/2). (18b)

We get the final expression for the momentum current density after substituting j(x, t)
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in Eq. (18a) as

p = 4k1Ik1Rβ(t)σ
2
1 + 4

√
2k1Rσ

3
1σ2β(t)−

β̇

β2

(

4σ2
1k1Ik1R

∫

β2(t)dt

+4
√
2k1Rσ

3
1σ2

∫

β2(t)dt− R
)

. (19a)

So the normalized momentum is given by

P =
p

N
=

−β̇√
2β2(t)σ1

(

2k1Iσ
2
1

∫

β2(t)dt+ 2
√
2σ3

1σ2

∫

β2(t)dt− R

2k1R

)

+βσ1

(√
2k1I + 2σ1σ2

)

, (19b)

P = q̇(t). (19c)

From (19c) we find P (υ) = υ, where velocity υ = q̇(t). Then we get

dP (v)

dv
= 1. (20)

Hence the necessary condition dP (υ)/dυ > 0 for the stability of the soliton is fulfilled.

Let us compare the above expressions for position, velocity, and momentum to the scalar

NLS system. Here, in vector NLS system the parameters α
(1)
1 and α

(2)
1 resulting due to

the vector nature of the system (2) influence the position q(t), velocity q̇(t) and hence

the momentum P (t) nontrivially.

7. Conclusion

We have studied the dynamics of bright one- and two-solitons in 1D Rabi-coupled BEC

with constant and time-dependent nonlinearity coefficients. With the aid of unitary

and similarity/lens-type transformations, the 1D non-autonomous GP system (2) is

reduced to the standard integrable Manakov system. We present the bright one- and

two-soliton solutions of the Manakov system in the appendix. Then by making use

of these soliton solutions, the explicit soliton solutions of the non-autonomous GP

system (2) are constructed. The dynamics of bright solitons in the non-autonomous

GP system is explored for two forms of physically interesting nonlinearity coefficients,

namely hyperbolic nonlinearities. From an application point of view, the temporal

modulations of the external potentials corresponding to these two choices of time

dependent nonlinearities are identified to have a close, rather almost same, resemblance

with the superposed Hermite-Gaussian pulses which can be experimentally realized with

modern day lasers. This will open up a way in performing experiments on binary

condensates to tune the potential to a desirable form. Specifically, we show that in two-

soliton case, the Rabi coupling produces breathers during two-soliton interaction. We

also point out the interesting fact that due to the Rabi coupling the energy switching

scenario in the Manakov system is altered preserving the total energy. The effect of kink-

like nonlinearity is to result in a growth in the amplitude of the two colliding solitons

after interaction with significant condensate compression. Also, the separation distance
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between the solitons, before interaction is increased as compared with the Manakov

soliton interaction. Next, the effect of “cosh” type nonlinearity results in a oscillating

soliton collision with a complete suppression of oscillation in soliton S1 before collision

in both the components. The central position of the soliton also oscillates periodically

during the collision. One can observe for this case, the separation distance between the

solitons, before interaction remains the same as that of the Manakov solitons. Finally,

for the first time to the best of our knowledge we have addressed analytically the stability

of multicomponent non-autonomous bright solitons. Particulary, we have shown that

the non-autonomous bright solitons are indeed stable as the rate of change of normalized

momentum with respect to velocity is positive (i.e., dP (v)/dv > 0). We hope that the

results of our study will be of use in the experimental realization of such solitons in

binary BECs and will facilitate the understanding of the collisional properties of non-

autonomous solitons in the Bose condensate mixtures.
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Appendix A. One- and two- soliton solutions of the integrable Manakov

system (8)

Appendix A.1. Bright one-soliton solution

The bright one-soliton solution of equation (8) reads as [34, 35]

Qj(X, T ) = Ajk1R sech
(

k1Rω +
R

2

)

eiη1I , j = 1, 2, (A.1)

where ω = X − 2k1IT , η1I = k1IX + (k21R − k21I)T , k1 = k1R + ik1I , R=

log
[

(|α(1)
1 |2 + |α(2)

1 |2)/(k1 + k∗1)
2
]

, A1 =
α
(1)
1

√

|α
(1)
1 |2+|α

(2)
1 |2

, A2 =
α
(2)
1

√

|α
(1)
1 |2+|α

(2)
1 |2

with |A1|2 +

|A2|2 = 1. Here, suffices R and I denote the real and imaginary parts.

Appendix A.2. Bright two-soliton solution

The bright two-soliton solution of equation (8) is given by [34, 35]

Qj(X, T ) =
Gj

D
, j = 1, 2, (A.2)

where

Gj = α
(j)
1 eη1 + α

(j)
2 eη2 + eη1+η2+η∗1+δ1j + eη1+η2+η∗2+δ2j , j = 1, 2, (A.3)

D = 1 + eη1+η∗1+R1 + eη1+η∗2+δ0 + eη2+η∗1+δ∗0 + eη2+η∗2+R2 + eη1+η∗1+η2+η∗2+R3 , (A.4)
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where, ηi = ki(X + ikiT ), e
δ0 = κ12/(k1 + k∗2), e

R1 = κ11/(k1 + k∗1), e
R2 = κ22/(k2 + k∗2),

eR3 = |k1 − k2|2/(k1 + k∗1)(k2 + k∗2)|k1 + k∗2|2, eδ1j = (k1 − k2)(α
(j)
1 κ21 − α

(j)
2 κ11)/(k1 +

k∗1)(k
∗
1+k2), e

δ2j = (k2−k1)(α(j)
2 κ12−α(j)

1 κ22)/(k2+k
∗
2)(k1+k

∗
2), e

δ2j = |k1−k2|2(κ11κ22−
κ12κ21)/(k2 + k∗2)(k1 + k∗1)|k1 + k∗2|2, and κil =

∑2
n=1 α

(n)
i α

(n)∗

l /(ki + k∗l ), i, l = 1, 2.
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