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Abstract
We consider the nonlinear Dirac equation in 1  +  1 dimension with scalar–scalar 
self-interaction in the presence of external forces as well as damping of the 
form ( )γ µγ− Ψf x t, i0 0 , where both { }=f f r, ej j

K xi j  and Ψ are two-component 
spinors. We develop an approximate variational approach using collective 
coordinates for studying the time dependent response of the solitary waves to 
these external forces. In our previous paper we assumed Kj  =  K, j  =  1, 2 which 
allowed a transformation to a simplifying coordinate system, and we also assumed 
the ‘small’ component of the external force was zero. Here we include the effects 
of the small component and also the case ≠K K1 2 which dramatically modifies 
the behavior of the solitary wave in the presence of these external forces.

Keywords: variational approach, two-component spinors, collective 
coordinates, external force with damping, relativistic generalization
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1. Introduction

Ever since the nonlinear generalization of the Dirac equation [1], the nonlinear Dirac (NLD) 
equation has found many applications as a practical model in numerous physical systems, 
e.g. extended particles [2–4], nonlinear optics [5], waveguide arrays as well as experimental 
optical realization of relativistic quantum mechanics [6–8], and honeycomb optical lattices 
harboring Bose–Einstein condensates [9]. The NLD equation  also arises in the context of 
phenomenological models of quantum chromodynamics [10] and the influence of matter on 
the evolution of the Universe in cosmology [11]. In order to keep the Lorentz invariance of the 
NLD equation, the self-interaction Lagrangian can be obtained from the bilinear covariants. 
Different NLD equations result from different self-interactions. A variety of models have been 
proposed and explored using the scalar bilinear covariant [12–15], the vector bilinear covari-
ant [16] and the axial vector bilinear covariant [17]. Moreover, models involving both scalar 
and pseudoscalar bilinear covariants [18] as well as both scalar and vector bilinear covariants 
[19, 20] were studied.

An important aspect of these NLD equations is that they allow solitary wave solutions or 
particle-like solutions: localized solutions with finite energy and charge [21]. In other words, 
the particles appear as intense localized regions of field which can be identified as the basic 
ingredient in the description of extended objects in quantum field theory [22]. For the (1  +  1) 
dimensional NLD equation (i.e. one time dimension plus one space dimension), several ana-
lytical solitary wave solutions were derived for the quadratic nonlinearity [23, 24], for frac-
tional nonlinearity [25] as well as for general nonlinearity [19, 26, 27] by invoking explicitly 
the constraints arising from energy-momentum conservation; which is well summarized by 
Mathieu [28]. Using the analytical expressions of the NLD solitary wave solutions, the inter-
action dynamics among them has been investigated and rich nonlinear phenomena have been 
brought out in a series of works [29–34].

The stability of the NLD equation solitary waves is an important topic, which has been 
studied for several decades. There are serious difficulties with the analytical studies of the 
NLD solitary wave stability [35–37]. On the other hand, simulations results seem to lead to 
contradictory results [17, 38–40]. From the numerical results it follows that both the multi-
hump profile and high-order nonlinearity could affect the stability during the scattering of the 
NLD solitary waves [30, 33]. In the case of NLD equation with scalar–scalar interactions (the 
Soler model) the solitary wave solutions can have either one hump or two humps.

Recently, for the Soler model, we found that all stable NLD solitary waves have a one-hump 
profile, but not all one-hump waves are stable, while all waves with two humps are unstable [41].  
This result is consistent with the rigorous analysis in the nonrelativistic limit [42].  
The spectral analysis of the NLD equation was also recently studied [43]. For a better under-
standing of the behavior and the stability of NLD solitary waves, the NLD equation in the 
presence of external potentials was also investigated [44–47] and a sufficient dynamical 
 condition for instability was postulated through a collective coordinates (CC) theory [47]. 
In this work, we will continue to study the NLD solitary waves in 1  +  1 dimensions under 
external forces. Recently it has been found that the evolution of Bloch mode envelopes in two 
dimensional generalized honeycomb lattices in the continuum limit can be approximated by a 
2  +  1 dimensional nonlinear Dirac equation [48]. For the nonlinear Schrödinger (NLS) equa-
tion with arbitrary nonlinearity and arbitrary dimension d it was found that a Post-Gaussian 
collective coordinates method was useful in understanding the stability of solitary wave solu-
tions found numerically [49]. One expects that once the profile of a numerical solution of 
the NLD equation in higher dimensions has been obtained, a suitable approximate collective 
coordinates ansatz can be found to study the stability of such solutions.
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For the forced NLS equation  when subject to an external force of the form ( ) =f x  
−r Kxexp i( ), the authors found [50–52] that intrinsic soliton oscillations are excited, i.e. the 

soliton amplitude, width, phase, momentum, and velocity all oscillate with the same fre-
quency. This behavior was predicted by a collective coordinates theory and was confirmed by 
numerical simulations. Moreover, one specific plane wave phonon (short for a linear excita-
tion) with wavenumber k  =  −K is also excited such that the total momentum in a transformed 
NLS equation is conserved. This phonon mode was not included in the CC theory and had to 
be calculated separately [53].

In the present paper we consider the relativistic generalization of our previous work on 
the forced NLS equation, namely the behavior of solitary wave solutions to the NLD equa-
tion when subjected to an external force which is now a two-component spinor. In section 2 
we review exact analytical solutions for the unperturbed NLD equation. In section 3 we pre-
sent the NLD equation  with external force ( ) [ ( )]ν= −f x t r t K x, exp ij j j j , j  =  1, 2, and the 
corre sponding Lagrangian density. Using the energy-momentum tensor we show that the total 
energy is conserved if the force is time independent (ν = 0j ).

For the case = =K K K1 2 , ν = 0j  and zero dissipation it was possible to perform a transfor-
mation such that the transformed NLD equation is invariant under space translations and thus 
the momentum was also conserved. In that case, when we set r2  =  0 also we showed in our 
previous paper [54] that the collective coordinates approach for studying the behavior of the 
solitary waves under the influence of these external forces agreed well with numerical solu-
tions of the exact equations. Here we loosen the restriction on the Kj and also allow ≠r 02  with 
the caveat | | < | |r r2 1 . In section 4 we make a variational ansatz with three collective coordi-
nates. All integrals that appear in the Lagrangian can be performed exactly and we finally have 
a set of two first-order ordinary differential equations (ODEs) and one second-order ODE as 
our CC equations. This is to be contrasted with the special case =K K1 2 considered in our pre-
vious paper [54] where the CC equations consisted of two first order ODEs and one constraint 
equation. In section 5 we consider the spectrum of the linear excitations. In section 6 we com-
pare the results of our collective coordinates approximation with direct numerical simulations 
of the NLD equation. We present our conclusions in section 7.

2. Review of exact solutions to the NLD equation

We first review the known exact solitary wave solutions to the NLD equation,

( ) ( ¯ )γ ∂ − Ψ+ ΨΨ Ψ =µ
µ

κm gi 0,2 (2.1)

where we use the representation for the 1  +  1 dimensional Dirac Gamma matrices: γ σ=0
3; 

γ σ= i ,1
2  which we also used previously [47]. In the rest frame the solitary wave solution is 

represented by

( )
( )

( )

( )
  ( )

( )⎜ ⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛
⎝
⎜

⎞
⎠
⎟ ⎛

⎝
⎞
⎠
θ
θ

Ψ =
Ψ

Ψ
= =ω ω− −x t

x t

x t

A x
B x

R x,
,

,
e

i
e cos

i sin
,t t1

0

2
0

i i (2.2)

where A and B satisfy

( ) ( )

( ) ( )

ω

ω

+ + − − =

+ − − − =

κ

κ

A

x
m B g A B B

B

x
m A g A B A

d

d
0,

d

d
0.

2 2 2

2 2 2 (2.3)
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In terms of θR,  we find that θ obeys the equation:

       θ
ω θ ω κ ω κ= − + ≡ =κ κ κ κ

x
m m m

d

d
cos 2 ; ; . (2.4)

This has solutions for both ω<m and for ω>m [27]. The solution for ω< <m0  is (in this 
section and what follows we will choose the position of the solitary wave to be initially at 
x0  =  0.)

( ) ( )θ α β= κ
−x xtan tanh ,1 (2.5)

where

  ( )
/ /

/⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟α

ω
ω

ω
ω

β ω=
−
+

=
−
+

= −κ κ

κ κ
κ κ κ

m

m

m

m
m, .

1 2 1 2
2 2 1 2 (2.6)

When ω> >m 0 the solution instead is

( ) ( ( ))θ α κβ= −−x xtan tan1
2 2 (2.7)

where

⎜ ⎟
⎛
⎝

⎞
⎠α

ω
ω

β ω=
−
+

= −
m

m
m .2

1 2

2
2 2 1 2( )

/
/ (2.8)

One finds from the Dirac Equation

( )( )
( )

/⎡
⎣⎢

⎤
⎦⎥

κ θ ω
θ

=
+ −

κ

κ

+R
m

g

1 cos 2

cos 2
.2

2 1

1

 (2.9)

The charge density †ψ ψ = R2 and for the solution with ω>m the charge density does not 
vanish at →±∞x , so that these solutions correspond to infinite charge and are not physical.

The solutions of these equations that have finite charge density correspond to ω<m and in 
terms of A and B are given by

( ) ( )
( )

( )
( ( ))

( ) ( )
( )

( )
( ( ))

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ω κβ
ω κβ

κ β
ω κβ

ω κβ
ω κβ

κ β
ω κβ

=
+
+

+
+

=
−
+

+
+

κ

κ

A
m x

m x g m x

B
m x

m x g m x

cosh

cosh 2

1

cosh 2
,

sinh

cosh 2

1

cosh 2
,

2 2

2

1
2

2 2

2

1
2

 (2.10)

where β ω= −m2 2.
When κ = 1, the charge of the solitary wave is given by (see equation (A.1) in the appendix)

∫
β
ω

= + =
−∞

∞
Q x A B

g
d

2
,2 2

2
( ) (2.11)

so that

/
ω =

+

m

Q g1 4
.

2 4 (2.12)

The mass of the solitary wave is the rest frame energy of the solitary wave. For κ = 1 one has
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( ¯ )∫ ψψ=M m xd .sol (2.13)

The explicit expression for Msol is given in equation (A.3).
Invoking Lorentz invariance we can obtain the solution in a frame moving with velocity v 

with respect to the rest frame. The Lorentz boost is given in terms of the rapidity variable η as 
follows (setting c  =  1):

   η γ η η= =
−

= =
−

v
v

v

v
tanh ;

1

1
cosh ; sinh

1
.

2 2 (2.14)

In the moving frame, the transformation law for spinors implies that:

( )
( / ) ( / )
( / ) ( / )

[ ( ) ( )]
[ ( ) ( )]

⎛
⎝
⎜

⎞
⎠
⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

η η
η η

γ γ

γ γ
Ψ =

Ψ − −

Ψ − −
x t

x vt t vx

x vt t vx
,

cosh 2 sinh 2
sinh 2 cosh 2

,

,
,1

0

2
0 (2.15)

since

( / ) ( )/   ( / ) ( )/η γ η γ= + = −cosh 2 1 2 ; sinh 2 1 2 . (2.16)

In component form this reads:

( ) ( ( / ) ( ) ( / ) ( ))
( ) ( ( / ) ( ) ( / ) ( ))

η η

η η

Ψ = +

Ψ = +

′ ′

′ ′

ω

ω

−

−

′

′

x t A x B x

x t A x B x

, cosh 2 i sinh 2 e ,

, sinh 2 i cosh 2 e ,

t

t

1
i

2
i (2.17)

where

( )   ( )γ γ= − = −′ ′x x vt t t vx; . (2.18)

Note that ( / ) ( / )η η η γ+ = =cosh 2 sinh 2 cosh2 2 .

3. Externally driven NLD equation

In previous papers [50, 52] we investigated the externally driven NLS equation

( )�ψ ψ ψ ψ ψ δψ µψ
∂
∂
+
∂
∂

+ + = −κ −

t x
g ri e i ,Kx

2

2
2 i (3.1)

where μ is the dissipation coefficient, and r and K are constants. This equation can be derived 
by means of a generalization of the Euler–Lagrange equation

L L L F

ψ ψ ψ ψ
∂
∂
+

∂
∂

−
∂
∂

=
∂
∂∗ ∗ ∗ ∗t x

d

d

d

d
,

t x t
 (3.2)

where the Lagrangian density reads

( ) ( )L �ψ ψ ψ ψ ψ
κ

ψ ψ δ ψ ψ ψ= − −| | +
+

+ | | − −κ∗ ∗ + − ∗g
r r

i

2 1
e e ,t t x

Kx Kx2
2

1 2 i i

 

(3.3)

and the dissipation function density is given by

( )F µ ψ ψ ψ ψ= − −∗ ∗i .t t (3.4)

For the NLD case we instead consider a two-component spinor forcing term
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( )
( )

⎛
⎝
⎜

⎞
⎠
⎟=f

f x t

f x t

,
,

1

2
 (3.5)

with the NLD equation

( ) ( ¯ ) ( )γ γ µγ∂ − Ψ+ ΨΨ Ψ = − Ψµ
µ

κm g f x ti , i .2 0 0 (3.6)

In what follows we will generalize our choice for the NLS equation by choosing

( ) ( )= =ν −f x t r j, e , 1, 2,j j
t K xi j j (3.7)

with real parameters rj, νj and Kj. Note that the phase of f is invariant under Lorentz transfor-
mations. As the second component of the spinor Ψ is the so-called ‘small component’, which 
is smaller than the first component by the factor ( )/( )α ω ω= − +m m , we will only con-
sider cases with ε=r r2 1, where ( )ε α= O  or smaller.

Equation (3.6) can be derived in a standard fashion from the Lagrangian density

[ ¯ ¯ ] ¯ ( ¯ ) ¯ ¯ ( )L L⎜ ⎟
⎛
⎝

⎞
⎠ γ γ

κ
= Ψ ∂ Ψ− ∂ Ψ Ψ − ΨΨ+

+
ΨΨ − Ψ − Ψ+µ

µ µ
µ κ+m

g
f f b

i

2 1
,

2
1

0

 

(3.8)

where ( )L b0  is determined later on and ( )→= Ψ±∞b x tlim ,x . The term in the Lagrangian den-
sity which pertains to forcing can be written as

(¯ )L = − Ψf2Re ,3 (3.9)

and the full interaction part of the Lagrangian density is now

( ¯ ) ¯ ¯  L
κ

=
+
ΨΨ − Ψ − Ψκ+g

f f
1

.I

2
1 (3.10)

The generalized Euler–Lagrange equation can be written as

( ¯ ) ¯ ( ¯ )
L L F

∂
∂
∂ ∂ Ψ

−
∂
∂Ψ
=
∂
∂ ∂Ψ

µ
µ

,
t

 (3.11)

where the dissipation function density is now

( ¯ ¯ )F µ γ γ= − Ψ ∂Ψ− ∂Ψ Ψi .t t
0 0 (3.12)

The adjoint equation comes from the Euler–Lagrange equation:

( ) ( )
L L F

∂
∂
∂ ∂ Ψ

−
∂
∂Ψ
=
∂
∂ ∂Ψ

µ
µ

,
t

 (3.13)

from this we get the adjoint driven NLD equation

¯ ¯ ( ¯ ) ¯ ¯ ¯γ γ µ γ− ∂ Ψ − Ψ+ ΨΨ Ψ = + Ψµ
µ κm g fi i .2 0 0 (3.14)

To generalize our discussion of external forces from the NLS equation  to the NLD equa-
tion we have included a dissipation term in our general formulation. However, in most sec-
tions  that follow we will concentrate on the case where the dissipation coefficient µ = 0, 
so that the energy is conserved. In our previous paper, [54] we restricted our discussion to 
= =K K K1 2  which led to conservation of momentum in a particular frame. In this paper we 

lift this restriction.
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3.1. Energy flow equations and the conservation of energy

From the NLD equation with external sources and the definition of the energy-momentum 
tensor:

[ ¯ ¯ ] Lγ γ= Ψ ∂ Ψ− ∂ Ψ Ψ −µν µ ν ν µ µνT g
i

2
, (3.15)

we have that

∂ =µ
µν νT F , (3.16)

where

¯ ( ) ( ¯ )= Ψ ∂ + ∂ Ψν ν νF f f . (3.17)

The energy density is given by

[ ¯ ¯ ] ¯ L Lγ γ= − Ψ ∂ Ψ− ∂ Ψ Ψ + ΨΨ− −T m
i

2
,x x I

00 1 1
0 (3.18)

where now

( ¯ ) ¯ ¯  L
κ

=
+
ΨΨ − Ψ− Ψκ+g

f f
1

,I

2
1 (3.19)

and L0 is chosen so that T00 vanishes at =±x L, when →∞L . Therefore, from equations (3.8) 
and (3.18) we obtain

κ
κ
κ

= −
+

+ + = − +
+
+

κ κ+ +L mbb
g

bb br rb mbb
g

bb
1

2 1

1
.0

2
1

2
1¯ ( ¯ ) ¯ ¯ ¯ ( ) ( ¯ ) (3.20)

Now we will assume that in the lab frame f(x,t) is independent of t and of the form:

( ) = =−f x r je , 1, 2,j j
K xi j (3.21)

with real parameters rj and Kj. In that case from equation (3.17), we have that F0  =  0 and

∂ + ∂ =T T 0,t x
00 10 (3.22)

where T00 is given in equation (3.18), and

[ ¯ ¯ ]γ γ= − Ψ Ψ− Ψ ΨT
i

2
.t t

10 1 1 (3.23)

Integrating equation (3.22), and under the assumption that ( ) ( )+∞ − −∞ =T t T t, , 010 10 , 
then the energy of the driven NLD equation,

∫= −∞

+∞
E x Td ,total 00 (3.24)

is conserved.

4. Variational (collective coordinates) Ansatz for the NLD equation with  
external driving forces

Our ansatz for the trial variational wave function is to assume that because of the smallness 
of the perturbation the main modification to our exact solutions to the NLD equation (without 
driving forces) is that the parameters describing the position q(t), inverse width ( )β t  and phase 
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( )φ t  become time dependent functions. We assume that the driving term is specified in the lab 
frame, and that the initial condition on the solitary wave is that it is a Lorentz boosted exact 
solution moving with velocity v. To describe the position of the solitary wave we introduce 
the parameter q(t) which replaces vt for the unforced case. We then let the width parameter 

β and thus ω β= −m2 2 become functions of time. We next rewrite the phase of the exact 
solution as

( ) → ( ) ( )( ( ))ω γω φ= − − −′t t vx t p t x q t (4.1)

to mimic our parametrization of the collective coordinates in the nonlinear Schrödinger equa-
tion. Next, we let ( ) ( ) ( )ω γ≡p t t q q˙ ˙ be determined from ( )ω t  and q(t) and let the phase ( )φ t  be 
an independent collective variable. That is, in equations (2.17) and (2.18), we replace

→ ( )   → ( )    ( ) → ( ) ( )( ( ))β β ω γω φ= − − −′vt q t t t t vx t p t x q t; ; , (4.2)

where ( ) ( ) ( ) ( )γ ω=p t t t q t˙ .
Thus our trial wave function in component form is given by:

( ) ( ) ( )

( ) ( ) ( )

( )

( )

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

η η

η η

Ψ = +

Ψ = +

φ

φ

− + −

− + −

x t A z B z

x t A z B z

, cosh
2

i sinh
2

e ,

, sinh
2

i cosh
2

e ,

p x q

p x q

1
i i

2
i i

 (4.3)

where  ( ( ))η= −z x q tcosh . Using the trial wave function equation (4.3) we can determine 
the effective Lagrangian for the variational parameters. Writing the Lagrangian density as

L L L L= + + ,1 2 3 (4.4)

where

γ γ

κ

= Ψ ∂ Ψ− ∂ Ψ Ψ

= − ΨΨ+
+
ΨΨ = −Ψ − Ψ

µ
µ µ

µ

κ+

L

L Lm
g

f f

i

2
,

1
; .

1

2

2
1

3

( )¯ ¯

¯ ( ¯ ) ¯ ¯
 (4.5)

Integrating over x and changing integration variable to z one obtains

( )L∫ φ η η η= = + − − −
−∞

∞
L x Q pq p I Jd ˙ ˙ tanh cosh tanh ,1 1 0 0 (4.6)

where the charge is defined in equation (2.11) and the rest frame kinetic energy

( )∫= − =′ ′I z B A A B Hd ,0 1 (4.7)

is given by equation (A.2) in the appendix. Here ( ) ( )=′ ′ ′
′

B x B x

x

d

d
, and

( )∫= −J z BA ABd ˙ ˙ ,0 (4.8)

and

= =A
A

t

A

z

z

t
˙ d

d

d

d

d

d
, (4.9)

with a similar relation holding for Ḃ. Since ( ( )) η= −z x q t cosh , we have
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η ηη= − −
z

t
q z

d

d
˙ cosh tanh ˙ (4.10)

and

  ( )∫η η η= − − −′ ′J qI z z AB BAcosh ˙ ˙ tanh d .0 0 (4.11)

The integrand in the second term is odd in z, so the integral vanishes and we are left with

( ) ( )L∫ φ η η η= = + − − −L x Q pq p I qd ˙ ˙ tanh cosh ˙ sinh ,1 1 0 (4.12)

( )
L∫ η κ η

= = − +
+

L x
m

I
g

Id
cosh 1 cosh

,2 2 1

2

2 (4.13)

where

( ( ) ( )) ( ( ) ( ))∫ ∫
κ κ

κ
= − = = − =

+
=

+κ+I z A z B z
H

m
I z A z B z

g
H

g
Hd ; d

1 1
.1

2 2 2
2

2 2 1
2 3 2 1

 (4.14)
For L3 we have

[ ] L� �∫ ∫γ= − Ψ − Ψ =L x f f z2 d Re
1

d .3 1 1 2 2 3

 

(4.15)

In what follows we make the simplification ν = 0j  in equation (3.7) and obtain for the integrand

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

φ
η

γ
η

γ

φ
η

γ
η

γ

= − −
+

−
+

+ −
+

−
+

L r K q A z
p K

z B z
p K

z

r K q A z
p K

z B z
p K

z

2 cos cosh
2

cos sinh
2

sin

2 cos sinh
2

cos cosh
2

sin ,

3 1 1
1 1

2 2
2 2

( ) ( ) ( )

( ) ( ) ( )

 

(4.16)

where we have not included terms that are odd in z. Performing the integration for κ = 1, we 
get

( ) ( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠γ

φ
η η

γ
φ

η η
= − − − + − −L

r
K q J N

r
K q J N2 cos cosh

2
sinh

2
2 cos sinh

2
cosh

2
,3

1
1 1 1

2
2 2 2

 (4.17)

( ) ( ) /∫ω
γ

π
ω π βγ

ω=
+

= =
+

= −J q zA z
p K

z
b

g a
a

p K
b a m, ˙ d cos

cos

cosh
,

2
, cosh ,j

j j

j
j

j
j j

1

 (4.18)

( ) ( )∫ω
γ

π
ω π

=
+

=N q zB z
p K

z
b

g a
, ˙ d sin

sin

cosh
.j

j j

j
 (4.19)

The integrals I1, I2, Jj and Nj are done exactly in the appendix for κ = 1. Putting all terms 
together and using the fact that η= =q v˙ tanh  we obtain:
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( ) ( )⎧
⎨
⎩

⎫
⎬
⎭

φ η η
κ

η

π
γ ω

φ
π

φ
π

η η η η

= − − +
+

+

= −
−

−
−

= − = − =

L Q I mI
g

I L

L
g

r K q

a
C

r K q

a
S

C b b S b b j

˙ sech sech
1

sech ,

2 cos

cosh

cos

cosh
,

cosh
2

cos sinh
2

sin , sinh
2

cos cosh
2

sin , 1, 2.j j j j j j

0 1

2

2 3

3
1 1

1
1

2 2

2
2

 (4.20)
Since we are using the exact solutions of the NLD equation as our trial wave functions for the 
forced problem, the integrals I I,0 1 and I2 are related since for the NLD equation without the 
presence of external forces, the solitary wave with v  =  0 obeys the relationship [23]

¯ ( ¯ )†ωψ ψ ψψ
κ

ψψ− +
+

=κ+m
g

1
0.

2
1 (4.21)

For our problem this converts into

( ) ( ) ( )ω
κ

+ − − +
+

− =κ+A B m A B
g

A B
1

0.2 2 2 2
2

2 2 1 (4.22)

Integrating this relationship we obtain:

κ
ω

κ
ω−

+
− = − − =mI

g
I Q H

H
Q

1
0.1

2

2 2
1 (4.23)

Using this relation to replace I1 and I2 in L we have

( ) ( ) ( )  φ
γ

ω β φ φ
γ

β φ= − + − = − −L Q I Q U q q Q
M

U q q˙ 1
, ˙, , ˙ , ˙, , ,0

0
 (4.24)

where U  =  −L3, and ω= +M I Q0 0  is the rest frame energy of the solitary wave for κ = 1.
From equation (3.12) we can calculate the dissipation function F for the CC equations. We 

find

( )

[ ( ) ( )( )]

†∫

∫

µ

µ
η

η η φ

= Ψ ∂Ψ

= − − + +

−∞

+∞

−∞

+∞

F x

z
AB BA pq A B

2 d Im

2
d

cosh
sinh ˙ ˙ cosh ˙ ˙ .

t

2 2

 

(4.25)

We recognize the integrals as being related to η= −J qIcosh ˙0 0 and Q, so we obtain

[ ( )]µ η φ= − + +F I q Q pq2 sinh ˙ ˙ ˙ .0 (4.26)

We can simplify this by introducing the boosted rest frame mass:

( )γ γ ω= ≡ +M M I Q0 0 (4.27)

and use the definition of ( ) γω=p t q̇ so that

( )µ φ= − +F Mq Q2 ˙ ˙ .2 (4.28)

This is the relativistic generalization of our expression that we found for the forced NLS 
equation [52]. Now we are ready to derive Lagrange’s equations for the collective coordinates 
using equation (4.24) and equation (4.28). From
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∂
∂
−
∂
∂
=
∂
∂t

L

q

L

q

F

q

d

d ˙ ˙
, (4.29)

we obtain

( ) =
t

Mq F
d

d
˙ ,eff (4.30)

where

=
∂
∂
−
∂
∂
+
∂
∂

F
t

U

q

U

q

F

q

d

d ˙ ˙
.eff (4.31)

We also have a contribution from dissipation from the equation

φ φ φ
∂
∂
−
∂
∂
=
∂
∂t

L L Fd

d ˙ ˙
, (4.32)

which gives us a first-order differential equation for ω

( )ω ω µ
φ

= = − −
∂
∂

′Q Q Q
U˙ ˙ 2 , (4.33)

where the prime denotes the derivative with respect to ω.
As L does not depend on β̇, the final Lagrange equation is / β∂ ∂ =L 0. After changing to 

the variable ω β= −m2 2 we have

ω
∂
∂
=

L
0. (4.34)

This leads to a first-order differential equation for φ

( ) ( )ω φ
γ

ω
ω

= +
∂
∂

′ ′Q M
U˙ 1

.0 (4.35)

Here U  =  −L3, and L3 is given by equation (4.20). The second-order ODE equation (4.30) and 
the first-order ODEs equations (4.33) and (4.35) will be solved numerically in section 6 and 
compared with our simulations.

5. Spectrum of the linear excitations (phonons)

Similar to the case of the forced NLS equation [53] the spinor force equation (3.21) excites 
not only soliton excitations, but also plane wave phonons. (We will use the word phonons for 
the linear excitations).

The general solution of the linearized NLD, equation (3.6) without damping (µ = 0), reads

( )Ψ = + +ω− − −a b ce e e ,kx t K x K x
ph

i i iph 1 2 (5.1)

with arbitrary, but small a, and the phonon dispersion curve

ω = +k m .ph
2 2 (5.2)

The first term in equation (5.1) is the solution of the homogeneous equation, while the second 
and third terms represent a particular solution with b and c corresponding to the spinors:
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( ) ( )     =
Ω

−
=
Ω

b
r m

K c
r K

m
;1

1
2 1

2

2
2

2 (5.3)

and the frequencies

 Ω = + Ω = +K m K m, .1 1
2 2

2 2
2 2 (5.4)

These predicted frequencies are clearly identified in the spectrum of the charge Q(t), which is 
obtained in our simulations (section 6).

The phonon modes are also seen indirectly in the spectrum of the maximum of the charge 
density ( )ρ x t, . This is a local quantity which is used for the computation of the soliton position 
q(t), in contrast to the global quantity Q(t) which is obtained by integration over the whole 
system. The phonon frequencies are observed in the differences ωΩ − s1,2 , where ωs is the fre-
quency of the intrinsic soliton oscillation found in section 6. Note that ωs is also observed in 
the discrete Fourier transform (DFT) of Q(t), together with Ω1 and Ω2.

6. Comparison of collective coordinates results with simulations

We have the four parameters r r K K, , ,1 2 1 2 in the forces, and four initial conditions (ICs) 
( )   ( )   ( )ω ω= = =q q q v0 , ˙ 0 , 00 0 0 and ( )φ φ=0 0 for the second-order ODE equation  (4.30) 

and the first-order ODE equations (4.33) and (4.35). In our simulations we use the exact mov-
ing solitary wave solution equation (2.17) of the unperturbed NLD equation, with the replace-
ments in equation (4.2) and the same ICs as for the ODEs. As the space of the param eters and 
ICs is 8-dimensional, we must find out which regions in this space are relevant for us. For this 
reason we impose the following restrictions:

 1. The forces must be sufficiently small. This concerns the amplitudes r1 and r2 of the 
components of the spinor force. The simulations reveal that when ⩾r 0.03i  a background 
appears on both sides of the soliton. However, when r1  =  0.01 and <r r2 1 no background 
appears (see figure 1). This characteristic is maintained even for very long integration 
times tf  =  3000.

 2. | |r2  should be smaller than | |r1  because the second component of a spinor is the so-called 
‘small component’. As we have chosen r1  =  0.01 to satisfy our first restriction, we will 
use in our simulations =± ± ±r 0.001, 0.005, 0.0092 .

 3. K1 and K2 must be sufficiently small. The length scales /π= | |l K21 1  and /π= | |l K22 2  on 
which the force components vary, must be much larger than the soliton width b. Otherwise 
the soliton will not behave like a particle. We choose K1  =  0.5, i.e.  ≈ > ≈l b12 51  (when 

)ω = 0.90 , and K2  =  −0.1, i.e. �≈l b602 . Larger values, for example = = −K K1.0, 0.11 2 , 
yield qualitatively different results, since ≈l 6.21  is of the same order as b  =  5.

 4. K1 and K2 should have opposite signs. If this is not the case (e.g. K1  =  0.6, K2  =  0.1) and 
if v0  =  0, then there are very slow oscillations of the soliton position whose period Tq is 
larger than the maximum integration time which is tf  =  3000, so these cannot be captured 
in the numerical analysis. For the choice K1  =  0.5, K2  =  −0.1 the period of this slow 
oscillation is about the same as tf, so it can be captured by our numerical study.

 5. | |K1  and | |K2  must differ strongly in order to see the phonon peaks in the numerical study. 
The phonon peaks can be seen in the spectrum of the charge Q(t) which is a global quanti ty 
(see section 5). When =K K1 2 there is only one peak (see [54]). However for ≠K K1 2 

two peaks are expected (here we choose m  =  1) at Ω = +m K1
2

1
2 and Ω = +m K2

2
2
2. 

In order to have well separated peaks. | |K1  and | |K2  must differ sufficiently. We take for 
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example K1  =  0.5 and K2  =  −0.1 which yields Ω = 1.11801  and Ω = 1.00492 . The fre-
quency difference is ∆Ω = 0.1131 which is visible. Note that we cannot take a larger 
value for K1 because of point 3.

 6. The initial velocity v0 must be small or zero. If v0 is not much smaller than one, the soliton 
soon reaches one of the boundaries of our numerical simulation. Therefore we choose 
v0  =  0.1. For this choice the soliton covers 80 space units in the integration time tf  =  800 
and does not yet reach the boundary at x  =  100. For our simulations we choose the system 
to be in the interval [ ]−100, 100 . For v  =  0, the soliton travels only a short distance, there-
fore a final integration time of tf  =  3000 can be taken, which is technically the maximum 
time in our simulation program. The computational cost taking the maximum time is 
huge because our fourth-order operator splitting method that we have used earlier [41, 54] 

requires that the spatial spacing = τh
12

, where we choose the time step τ = 0.025. This 
implies that the number of grid points is 96 000 for the above system size.

As parameters of the NLD equation (3.6) we choose κ= = =m g1, 1, 1 and 
µ = 0. For the spinor force equation  (3.7) we take into account the above six points 
and choose = =± =r r K0.01, 0.005, 0.51 2 1  and K2  =  −0.1. Moreover, we restrict 
ourselves to time independent forces and set ν ν= = 0.1 2  As ICs we first take 
( ) ( ) ( )ω ω= = = = = =q q q v0 0, ˙ 0 0, 0 0.90 0 0 , and ( ) /φ φ π= =0 20 . Other ICs will be 

considered below. Figures 2(a) and (b) show simulation results for the charge Q(t) and its 
Discrete Fourier Transform (DFT). The highest peak is situated at ω = 0.9006s . This can be 
identified as the frequency of the intrinsic soliton oscillations, because our CC theory yields 
ω = 0.8985s

cc  for the oscillations of all collective variables.
The two peaks at Ω = 1.12681  and Ω = 1.00322  agree well with the predicted phonon 

peaks at Ω = 1.11801  and Ω = 1.00492 , see equation (5.4) and the above point 5. The fourth 
peak at 0.002 0944 is identical to the smallest frequency /π t2 f  that appears in the DFT, where 
tf  =  3000 is the integration time.

Next we discuss the translational motion of the soliton. Our CC theory predicts two 
scenarios:

 1. The soliton is trapped and oscillates very slowly around a mean value. In figure 3(a) the 
oscillation amplitude aq

cc is about 0.7, the period is ≈T 1000q
cc  and the mean value of 
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Figure 1. Snapshots of the soliton profile at different times. Left panel: charge 
density ( )ρ =x t, 0 . Right panel: charge density ( )ρ =x t, 3000 . Parameters: =r 0.01,1  
= = = −r K K0.005, 0.5, 0.1.2 1 2  Initial conditions: /φ π ω= = = =q v0, 0, 2, 0.90 0 0 0 .
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Figure 2. Simulation results: oscillations of a trapped soliton. Same parameters and 
initial conditions as in figure 1 except r2  =  −0.005. Left upper panel: charge Q(t). Right 
upper panel: spectrum of Q(t) with peaks at the frequencies 0.9006,1.1268,1.0032 and 
0.002 0944. Left middle panel: position q(t). Right middle panel: spectrum of q(t) with 
peaks at the frequencies 0.002 0944, 0.2262, 0.9006 and 1.7991. Left lower panel: 

( )ρ x tmax ,x . Right lower panel: spectrum of ( )ρ x tmax ,x  with peaks at 0.9006 and 0.2262.
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the position is equal to the initial value q0  =  0. Comparing with the simulation results in 
 figures 2(c) and (d), we see only a qualitative agreement. However, the rapid oscillations, 
which are superimposed on the slow ones, agree quite well: ω = 0.8985s

cc  compared to 
ω = 0.9006s  from the DFT of q(t) shown in figure 2(d). The amplitudes of these oscillations 
are about 0.14. There is another peak in the spectrum of q(t) at 0.2262, which is exactly 
equal to the difference between the upper phonon peak at Ω = 1.12681  and the soliton peak 
at ω = 0.9006s . Via this difference the phonon frequency is observed indirectly. This is 
because the soliton position q(t) is a local quantity, in contrast to the global quantity Q(t) in 
which the phonons are observed directly, see above. The lower phonon peak at Ω = 1.00322  
is weaker (see figure 2(b)) and therefore it is not visible in the above difference. Figure 2(e) 
exhibits the maximum of the charge density ( )ρ x t,  as a function of time. This is what we 
call the amplitude of the soliton in the CC language which is ( ( ))/ω= −a m t g2 2 and is a 
local quantity. Consequently its spectrum in figure 2(f ) also has a peak at the difference 
between the phonon and the soliton peak. The amplitude of the oscillations in figure 2(e) is 
roughly 0.012 which agrees rather well with the CC result 0.0092.

 2. The second scenario which the CC theory predicts for the translational motion of the soliton 
consists of the following: the soliton performs oscillations around a mean path given by 
v̄ tcc , in figure 3(c), ¯ = −v 0.0131.cc  In figure 3(d), in order to better see these oscillations, we 
plot ( ) ¯−q t v tcc . The oscillations consist of very slow ones with frequency ω ≈ 0.007 85q

cc  
and amplitude =a 1.07q

cc , and rapid ones with the intrinsic soliton frequency ω = 0.9048s
cc  

and amplitude ≈a 0.2s
cc  (figure 3(d)). When compared with the simulation results there is 

only a qualitative agreement concerning the very slow oscillations (figures 4(c) and (d)). 

Figure 3. Results of Collective Coordinates Theory: oscillations of a trapped or a 
traveling soliton. Panel (a): same parameters and initial conditions as in figure 1 except 
r2  =  −0.005. Panel (b): same parameters and initial conditions as in figure 1 except 
=q l0.750 1 and φ = 00 . Panels (c) and (d): same parameters and ICs as in figure 1.
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Figure 4. Simulation results: oscillations of a traveling soliton. Same parameters and 
initial conditions as in figure 1. Left upper panel: charge Q(t). Right upper panel spectrum 
of Q(t) with peaks at the frequencies 0.9027,1.1268,1.0032 and 0.002 0944. Left middle 
panel: position q(t). Right middle panel: −q t vt( ) ¯ . Left lower panel: ( )ρ x tmax ,x . Right 
lower panel: spectrum of ( )ρ x tmax ,x  with peaks at 0.9027,0.2241, and 0.002 0946.
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However the rapid oscillations again agree well: ω = 0.9027s  and as  =  0.15. Moreover, 
the frequency and amplitude of the soliton amplitude oscillations as defined by the charge 
density (figures 4(e) and (f)) agree well with the CC results.

Because of the space dependent spinor forces

( )  = − =f r K x jexp i ; 1, 2j j j

the system is not homogeneous. Therefore the time evolution of the coordinates depends on 
the initial soliton position q0. In table 1 we show how the characteristics of both the trans-
lational and the intrinsic dynamics of the soliton depend on q0 which is given in units of 

/π=l K21 1. For broad intervals of q0 the soliton travels in one direction. These intervals alter-
nate with other broad intervals where the soliton travels in the opposite direction. However, 
in between there are narrow intervals in which the soliton is trapped. Here both the period 
T q

cc and the amplitude aq
cc of the oscillations are considerably larger than they are in the travel 

intervals (table 1).
This pattern of alternating intervals depends on the initial phase φ0, but is always very 

similar. As to the IC ω0, we restrict ourselves to the non-relativistic regime and take ω = 0.90  
which is close to m  =  1. Here we expect stable solitons because in the non-relativistic limit we 
approach the Nonlinear Schrödinger (NLS) Equation. In a future work we plan to consider the 
fully relativistic regime (e.g. ω = 0.50 ) and the ultrarelativistic regime (e.g. ω = 0.10 ).

Figure 3 shows the results of the collective coordinates theory for two initial conditions. 
Figures 3(c) and (d) pertain to a traveling wave case discussed in figure 1.

7. Summary

We investigated the nonlinear Dirac (NLD) equation with an external spinor force with the 
components ( )= − =f r exp K x ji , 1, 2j j j . In a previous paper [54] we restricted ourselves to 
the case =K K ,1 2  because in this case we could make a transformation on the wave func-
tion such that the Lagrangian was invariant under spatial translations, leading to a conserved 

Table 1. Variation of q0 for ICs φ ω= = =v 0, 0, 0.90 0 0 . Parameters: = =r r0.01,1 2  
= = − =K K t0.005, 0.5, 0.1, 3000f1 2 .

/q l0 1 Type of motion v̄cc Tq
cc aq

cc ωs
cc

0 Travel +0.061 48 167 0.10 0.8650
0.05 Travel +0.058 43 176 0.12 0.8650
0.1 Travel +0.049 53 214 0.14 0.8713
0.2 Travel +0.015 03 750 0.85 0.8922
0.25 Trapped — 1100 3.65 0.8943
0.3 Travel −0.015 79 600 0.75 0.9090
0.4 Travel −0.051 69 200 0.155 0.9278
0.5 Travel −0.065 14 158 0.135 0.9341
0.6 Travel −0.054 62 188 0.14 0.9278
0.7 Travel −0.026 01 428 0.4 0.9131
0.75 Trapped — 1800 4.7 0.9027
0.8 Travel +0.020 36 500 0.50 0.8880
0.9 Travel +0.048 35 214 0.135 0.8712
1.0 Travel +0.058 86 176 0.12 0.8650
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momentum. Without this conservation law our collective coordinates (CC) theory became 
considerably more complicated: we had to solve a second-order ODE and two first-order 
ODEs, whereas in [54] we only had to solve two first-order ODEs and an algebraic equation. 
As an ansatz for our CC theory we took the exact Lorentz boosted solitary wave solution of 
the unperturbed NLD equation. The collective variables we chose are the soliton position q(t), 

inverse width ( )β t  and phase ( )φ t . The variable β is related to the frequency ( )ω β= −t m2 2 

that appears in the solitary wave solution and lies in the range ω< <m0 . We restricted our-
selves to the non-relativistic regime where ω is close to the mass m. Our ODEs for the CCs 
were solved numerically by a MATHEMATICA program.

The solutions for all CCs are periodic in time, which means that the solitary waves exhibit 
intrinsic oscillations with a frequency ωs

cc. The translational motion of the soliton is also 
affected, but much stronger than in [54] . There are two scenarios: in the first one the soliton is 
trapped and performs oscillations with a very low frequency ωq

cc, which is two orders of mag-
nitude smaller than ωs

cc. The amplitude of these oscillations is much larger than the amplitude 
of the intrinsic oscillations. In the second scenario the soliton travels and performs very slow 
oscillations around a mean trajectory, again the amplitude is relatively large. We compared 
our CC predictions with numerical simulations of the forced NLD equation. The solitary wave 
solutions are in fact stable, even for very long integration times. The observed frequency ωs in 
the spectra of the charge, the amplitude, and the position is nearly identical with ωs

cc. Close to 
ωs there are two additional peaks in the spectrum of the charge which can be identified with 
two specific plane wave phonon modes which are excited together with the intrinsic oscilla-
tions. Moreover, the predicted scenarios of trapped and traveling solitons are observed and 
exhibit indeed very slow oscillations. However, their frequencies are considerably lower than 
ωq

cc, so there is only a qualitative agreement. For the future we plan to work in the relativistic 
regime, i.e. ω0 not close to the mass m. Moreover, we want to consider the influence of time 
dependent external forces, i.e. non-vanishing νj.
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Appendix. Relevant integrals

For our ansatz in the rest frame, we have that for κ = 1 the charge Q is

( )
( ) ( )

†∫ ∫ ∫
β
ω

α β
α β

β
β
ω

= Ψ Ψ = + =
+
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−
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∞
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For section  5 we need explicit expressions for the following integrals (in what follows, 
β=y xtanh ):

[ ¯ ¯ ] ( ) ( )
( )

⎛

⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞

⎠
⎟

∫ ∫ ∫γ γ
ω
α

α

ω
ω

β

= − Ψ ∂ Ψ− ∂ Ψ Ψ = − =
− −

−

=
−
+

− =

′ ′
−

−

H x x B A A B
m

g
y

y

y

g

m

m
I

i

2
d d

2
d

1

1

2
2 tanh ,

x x1
1 1

2 1

1 2

2 2 2

2
1

0

 

(A.2)
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where M0 is the mass in the rest frame. Note that M0 has the property of vanishing as →ω 1.
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To calculate the integral Jj defined in (4.17), first we rewrite it as

( ) ( ) ( )
( ) ( ) ( )
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Now using expression (6) on page 357 of [55], after some straightforward calculations we 
obtain

( )ω
π
ω π

=J q
b

g a
, ˙

cos

cosh
,j

j

j
 (A.6)

where aj and bj are defined in equation (4.17). The integral Nj can be calculated in a similar way.
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