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We model the post-buckling behavior of wrinkles in thin solid films supported by inhomogeneous
substrates under uniaxial deformation. On homogeneous substrates, the preferred wave vector of
the wrinkles points along the stretching direction, which represents an inherent anisotropy, and the
wavelength is determined by the elasticities of the film vs. the substrate. In turn, a spatial variation
of the substrate elasticity perpendicular to the anisotropy [as recently studied experimentally by
B. Glatz et al. Soft Matter 11, 3332 (2015)] triggers the formation of branched wrinkle patterns
with spatially varying wave numbers. By modeling wrinkling on substrates with either a step-like
or linearly ramped variation of stiffness (i.e. elastic modulus), we find in the post-buckling regime a
coexistence of many branched wrinkle patterns having different wave numbers and different densities
of branching points, and being stable at identical parameters: the selected pattern depends on the
initial conditions. The stability range of branched patterns is narrower for smooth compared to
steep stiffness changes, and the ordering of the branching points depends on the length scale of the
stiffness variation.

I. INTRODUCTION

There is an increasing interest in generating structured surfaces with patterns of sizes down to the nanoscale for
various tunable applications. A promising route is to exploit mechanical surface instabilities, leading to wrinkle
patterns on top of films supported by elastic substrates [1–5], as shown in Fig. 1. A common model system is obtained
as follows, cf. Fig. 1(a): an elastomeric substrate (e.g. PDMS) is stretched in one direction. A thin, stiffer surface
layer is then deposited or created (for instance, via oxidation, cf. e.g. Refs. [6, 7]), as marked in blue in Fig. 1(a).
Finally, after relaxation of the initial stretch, periodic wrinkles occur at the surface of the sandwiched system. They
are oriented perpendicular to the uniaxial stretch direction and their wavelength is determined by the ratio between
the bending rigidity of the thin film and the bulk elastic modulus of the substrate.

FIG. 1: Part (a) sketches the three steps of creating a thin stiff film (blue) on the top of a substrate and the formation of
wrinkles. The substrate may be homogeneous or inhomogeneous (composed of two materials A and B of different elasticities ),
as sketched. Parts (b), (c) and (d) are experimental micrographs showing wrinkle patterns in such composite systems: in (b)
the two parts have the same elastic moduli and wrinkles are straight, (c) and (d) show branched wrinkles, where the branching
points (defects) emerge at the border between the different substrates. Parts (b), (c) and (d) modified from [7] - Published by
The Royal Society of Chemistry.

The instability towards wrinkling is understood for several elastic systems [8–13]. The post-buckling behavior in
film on substrate systems has been in part explored for small system sizes [14–16] and recently secondary buckling
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transitions have attracted considerable attention [18, 19, 39]. Much less theoretical analysis is available for wrinkles
below these secondary transitions, but in large, spatially extended systems and concerning the possible coexistence of
different stable wrinkle states, as occurring in experiments [20]. Wrinkle patterns belong to the universality class of
stationary and spatially periodic patterns, being ubiquitous in nature and technology [21–23]. A central property of
nonlinear periodic patterns is that – at given parameters – not only a single wave number may be stable, but rather
many different wave numbers within the so-called (Eckhaus) stability bands [22–32]. For instance, for the periodic
buckling of plates – closely related to the wrinkle system – such bands of stable patterns with different wave numbers
have been found [27, 28]. Therefore, for the wrinkle system, as well, stable wave number bands are to be expected,
as suggested also from models accounting for hyperelasticity [31, 35]. But this property has not yet been explored
systematically for realistic elastic film-substrate models.

The interplay between the just discussed generic wave number variability within stability bands, on the one hand,
and spatial parameter variations that influence the wave number, on the other hand, opens many interesting options
for pattern competition and design. In fact, anisotropic pattern forming systems that experience slow parameter
variations perpendicular to the preferred direction have been recently identified as a new symmetry class in pattern
formation [35] that displays rich coexistence scenarios.

For wrinkles, different possibilities exist to modulate the wave number: for instance, spatial variations of the stiffness
of either the substrate [7, 35–38] or of the film [6], variations of the topography [39] as well as a non-uniform thickness
of the film [40, 41]. Anisotropic loads were also suggested [42]. In the present study, we focus on the case where the
substrate stiffness (i.e. the elastic modulus) varies along the direction perpendicular to the anisotropy (determined by
the initial stretch). One system considered here is a substrate composed of two parts having different elastic moduli, as
indicated in Fig. 1(a) by the orange- and yellow-colored blocks. Experimental micrographs of wrinkle patterns formed
on such an inhomogeneous setup are shown in Fig. 1 (b)-(d), cf. [7]: When both parts have the same modulus, this
corresponds to the homogeneous case and the wrinkles go straight over the line where the two substrates were glued
together, cf. Fig. 1(b). When the two elastic moduli in A and B are different, however, the adopted wavelengths in
each part differ as well. Consequently, defects emerge along the matching line between parts A and B to accommodate
the change in the wavelength. Increasing the difference in the elasticities [from Fig. 1(c) to (d)], leads to an increase
in the density of defects.

In such inhomogeneous anisotropic systems, the interplay of the wave number variability and the parameter varia-
tions orthogonal to the wave vector leads to rich coexistence scenarios of periodic patterns: namely, wrinkle patterns
of different wave numbers and displaying different numbers of branching points are stable at identical sets of pa-
rameters. At least, this was suggested in Ref. [35] for small and smooth harmonic parameter variations. Here, we
go beyond this perturbative approach by considering the step-like parameter change just discussed – and as realized
in the recent experiments [7] – in Sec. III and in addition linear ramps in the stiffness in Sec. IV, to address the
following questions: Will the coexistence scenario between branched and straight patterns, obtained in Ref. [35] for
small harmonic variations, prevail for step-like and ramped variations? Will the concept of Eckhaus stability bands
[22, 25, 31], established so far for homogeneous systems, be applicable in some generalized manner to inhomogeneous
systems? How do the branching points of the wrinkle patterns, cf. Fig. 1(c) and (d), order for step-like or linearly
ramped parameters?

II. MODEL FOR WRINKLES IN AN HYPERELASTIC SYSTEM

To describe the wrinkles in parameter modulated systems as shown in Fig. 1(a), we use a model that neglects
in-plane film-deformations (i.e. shearing and stretching/compression). The buckling deformation of the film, away
from the undeformed base state of the film given by the xy-plane, is described by the field u(x, y, t).

A. Homogeneous model

For a homogeneous substrate the model equation for u(x, y, t) has the form as follows [31, 35]:

ρ∂tu = −
[
κx∂

4
x + 2κxy∂

2
x∂

2
y + κy∂

4
y

]
u−

[
µx∂

2
x + µy∂

2
y

]
u− αu− γu3 . (1)

Here κx, κy and κxy are the three, in general different, bending moduli of the thin film. µx and µy are the axial
forces exerted along x and y directions, respectively. α is the linear elastic modulus of the supporting substrate and
γ describes either the nonlinear elastic modulus of the supporting substrate (as occurring for a hyperelastic material)
and/or mimics bulk deformations of the thin layer due to the bending. In case the axial forces are different, µx > µy,
the model is anisotropic and exhibits a preferred direction, here the x−direction.
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Onset of wrinkles: The onset of wrinkles can be determined by a linear stability analysis of the undeformed flat
film (i.e. of the base state u = 0) with respect to small perturbations that have their periodicity along the preferred
direction x. For small u the nonlinear term γu3 in Eq. (1) can be neglected and the remaining linear equation can be
solved by u ∝ exp(σt+ iqx). The condition for a vanishing growth rate (σ = 0) yields the equation

κxq
4 − µxq

2 + α = 0 , (2)

that allows to determine the load µx needed to destabilize the base state u = 0 by a perturbation of wave number q
as a function of the material parameters κx and α,

µx(q) =
κxq

4 + α

q2
. (3)

Minimizing this expression with respect to q yields the critical wave number qc, and the critical load µx,c at threshold:

q4c =
α

κx
and µx,c = 2

√
ακx . (4)

These are classical results and for the wrinkle wavelength at onset [33, 34] holds

λwrinkle =
2π

qc
∼
(κx
α

)1/4
. (5)

Anisotropic Swift-Hohenberg equation. Using the following rescaled parameters,

t′ =
µ2
x

4κxq4c
t , u′ =

2
√
κxγq

2
c

µx
u , (6a)

x′ =

√
µx

2κxq2c
x , y′ =

µx√
2κxµyq2c

y , (6b)

Eq. (1) can be mapped into a generalization of the Swift-Hohenberg (SH) equation to anisotropic systems, as intro-
duced in Ref. [31]:

∂tu =
[
ε−

(
q2c +∇2

)2]
u− u3 −

[
c∂4y +W∂2x∂

2
y

]
u . (7)

Herein the rescaled parameters are the relative distance from the onset of wrinkling,

ε =

(
1−

µ2
x,c

µ2
x

)
q4c , (8)

and two parameters describing the anisotropy

c =
κyµ

2
x

κxµ2
y

− 1 and W = 2

(
κxyµx

κxµy
− 1

)
. (9)

For equal loads µx = µy and equal bending moduli κx = κy = κxy = κ, the anisotropy parameters vanish, W = c = 0,
and thus Eq. (7) reduces to the original Swift-Hohenberg model for isotropic systems [43].

Performing again a linear stability analysis, now with respect to perturbations of wave numbers q along x and p
along y, the base state u = 0 becomes unstable beyond the so-called neutral surface εN (q, p), i.e. for

ε > εN (q, p) = (q2c − q2 − p2)2 + cp4 +Wq2p2 . (10)

For c > 0 and W > 0 the perturbations with respect to u = 0 have largest growth rate at the wave vector
q = (q, p) = (qc, 0), i.e. its preferred direction is the x-direction [31].
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B. Inhomogeneous model

Eq. (4) indicates that position-dependent elastic parameters may cause a position-dependent critical wave number
qc and critical load µx,c. Obviously, the position-dependent qc is responsible for the formation of branched wrinkle
patterns shown in Fig. 1. A position-dependent µx,c only implies that in different areas of the composite system
wrinkles form at different loads (namely, first in the regions where the substrate is softer). Although this obviously
does not impede the effects we aim at, cf. the experiments shown in Fig. 1, it makes the generic behavior we want to
address less transparent. Therefore, to highlight the emergence of multiple solutions (by wavelengths and number of
defects, i.e. branching points) and the interplay between the two parts composing the system, we focus on the simpler
following case: let us consider systems with steep variations in the material properties, as sketched in Fig. 1(a), and
denote the two parts by A and B. By appropriate choices of the bulk elasticities of the substrates, αA and αB , and the
isotropic bending moduli, κA and κB , of the two parts it is possible to obtain wrinkles that have different preferred
wave numbers in the two parts at the onset, but equal critical load (for instance, if one wants qc,A = 1 and qc,B = qB
and equal threshold, one can use κA = αA, κB = κAq

2
B and αB = αA/q

2
B). The fact that ε, c and W are different in

the two parts influence the effects only quantitatively (especially for the two latter: as long as c, W stay both larger
than zero, the anisotropy prevails and they otherwise do not change the behavior).

Having identified the position-dependent wave number as the main effect for the occurrence of branched wrinkle
patterns, we generalize the model equation (7) by keeping the control parameter ε uniform and by allowing a continuous
y-dependent wave number q0(y) as proposed in Ref. [35]:

∂tu =
[
ε−

(
q20(y) +∇2

)2]
u− u3 −

[
W∂2x∂

2
y + c∂4y

]
u− 2(∂yu)∂y

[
q20(y)]− u∂2y [q20(y)

]
. (11)

In the following, we choose fixed anisotropy parameters c = W = 0.5, that leads to the formation of straight wrinkles
oriented perpendicular to the x-direction [31]. We study this inhomogeneous system numerically using a pseudo-
spectral (Fourier-based) method in a two-dimensional domain of size Lx ×Ly with periodic boundary conditions. Lx

is chosen to be large to allow the emergence of wrinkles with a large variety of wave numbers. Ly also has to be
chosen sufficiently large to be able to observe branching, cf. the discussion in the next section. We consider both rapid
changes of q0(y) [44] as well as smooth linear ramps.

III. WRINKLES IN SYSTEMS WITH SHARP PARAMETER VARIATIONS

Branched wrinkles, as shown in Figs. 1(c) and 1(d), require sufficiently wide regions A and B. The related critical
width Ly,c is determined in Sec. III A. After briefly recalling the stability range of straight wrinkles (the Eckhaus
band) in a homogeneous anisotropic system in Sec. III B, the stability range of both straight and branched wrinkles
in the inhomogeneous composite A-B-system is studied in Sec. III C.

A. Minimal width needed for branched wrinkles

Branched wrinkle patterns can indeed be obtained from Eq. (11) for sufficiently different wave number values q0,A
and q0,B in the two parts A and B. Nevertheless, as the spatial extension of a branching defect is large at small values
of the control parameter ε, branching occurs in such composite systems only for a sufficiently large width in the lateral
(here y-)direction. The critical width Ly,c – scaled by the characteristic wrinkle wavelength λ0,A in the region A –
that is needed for the occurrence of branching points is shown as a function of ε in Fig. 2. In this example, we chose
the wave number combination q0,A = 1 and q0,B = 0.833 in A and B, respectively. The system’s length was chosen
to be Lx = 72λ0,A with λ0,A = 2π/q0,A = 2π. For Ly < Ly,c(ε) only transient defects may emerge immediately after
starting the simulation (as initial condition, small noise was added to a flat surface). These transient defects quickly
disappear in favor of finally perfectly straight unbranched wrinkles. However, by enlarging Ly > Ly,c(ε), branched
patterns with defects become stable. Ly,c is found to be a decreasing function of ε, because the extension of the
branching defect decreases with increasing ε. Accordingly, for a given width Ly one has to increase ε beyond a critical
value to obtain branched wrinkle patterns.

It should be noted that this result has been obtained using periodic boundary conditions in y, i.e. in fact we studied
an infinite periodic array of alternating A and B regions. The qualitative behavior of Ly,c(ε), however, will be the
same for a finite system.
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FIG. 2: The critical width Lyc/λ0,A above which stable branched wrinkles form as a function of the control parameter ε. The
wave number difference ∆q0 = q0,A − q0,B = 1 − 0.833 = 0.167 was used and a system size in x-direction of Lx = 96 × λ0,A.
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FIG. 3: (a) The neutral curve (dashed line) obtained by Eq. (12) and the Eckhaus stability curve (solid line) obtained by
Eq. (13) for a homogeneous system with q0 = 1. (b) The neutral and the Eckhaus curves for two homogeneous systems
with intrinsic wave numbers q0,A = 1 and q0,B = 0.8333 (uncoupled case). When Eq. (11) is studied numerically with the
critical wave number varying along the y-direction rapidly between q0,A and q0,B , one finds stable straight wrinkle patterns for
control parameters ε above the crosses. (c) The stability range of numerically obtained branched solutions, cf. those shown in
Fig. 4(b),(c). A wide range of stable wave numbers out of one of the two Eckhaus-bands (of the uncoupled system) coexist
with the wave number qA (qB) in the complimentary area: wave numbers between the empty triangles are all stable in region
B when q0,A = 1; and wave numbers between the filled triangles are stable in region A, when q0,B = 0.833. System size:
Lx = 72λ0,A and Ly = 20λ0,A.

B. Stability of straight wrinkles

Wrinkles in homogeneous systems orient themselves perpendicularly to the preferred direction of the uniaxial initial
stretch. By symmetry they belong to the class of stationary and spatially periodic patterns in two-dimensional
anisotropic systems, whereof an early and well explored representative of this class is electroconvection in nematic
liquid crystals [22, 48–50]. As has been established for this class [31], patterns can grow for wave vectors within finite
regions, centered around the critical wave vector: for the anisotropic model, Eq. (7), this happens beyond the neutral
surface, given by Eq. (10), around q = (q0, 0).

Restricting the neutral surface to the direction along the preferred axis, the neutral curve εN (q) follows,

εN (q) =
(
q20 − q2

)2
, (12)

which is traced as the dashed line in Fig. 3(a). Hence for a given control parameter value ε, all perturbations with
wave numbers fulfilling ε > εN (q) will grow exponentially.

Which wrinkle wave number q – out of the permitted range beyond the neutral curve εN (q) – will finally be
selected? This is determined by the prevailing nonlinearities, and also depends on the initial conditions. Importantly,
not necessarily the periodic state with the wave number q = q0 that initially grows fastest (and that also corresponds
to the minimum of the functional from which equation (7) can be derived, see [31, 35]) will be realized. In fact, it
is easy to show that any wrinkle pattern with wave number out of the grey range in Fig. 4(a) is itself linearly stable
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[22, 23, 31]. The solid curve in Fig. 4(a) bounding the stability region of the periodic states is the so-called Eckhaus
stability boundary [22, 24, 25] and is given for model Eq. (7) close to onset by

εE(q) = 3εN (q) = 3(q20 − q2)2 . (13)

Consequently, for each value of the control parameter ε, a multiplicity of stable coexisting periodic states is possible
in the weakly nonlinear regime beyond threshold. Similar finite width Eckhaus stability-bands for periodic nonlinear
states have been found in many systems, see e.g. [22, 25–32]. The full two dimensional stability areas in the (q, p)-plane
for the homogeneous model Eq. (7) can be found in Ref. [31].

C. Coexistence of straight and branched wrinkles

Considering the homogeneous model given by Eq. (7), but for two different preferred wave numbers q0,A = 1 and
q0,B = 0.833, one obtains close to threshold for each preferred wave number a neutral curve (cf. the dashed lines) and
an Eckhaus curve (solid lines): centered around q0,A and q0,B , respectively, as shown in Fig. 3(b). This corresponds
to the situation of an inhomogeneous system, where the two parts A and B are uncoupled. In this case, one expects
straight stripes spanning the whole system (i.e. both region A and B) to be stable, if their wave numbers lie in the
grey region, defined by the overlap of the Eckhaus stability regions.

A real A-B-system will be coupled – in case of wrinkles, elastically. If the inhomogeneous model given by Eq. (11)
is studied with the preferred wave number q0(y) changing rapidly from q0,A to q0,B , the range of stable straight stripes
becomes even larger than for the uncoupled case: they are stable beyond the crosses shown in Fig. 3(b). If the lateral
width of the system, Ly, is decreased, the stability range of straight stripes in the composed system becomes even
broader. In turn, upon increasing Ly, their stability range approaches the grey range obtained for the uncoupled
system. An example of a stable straight wrinkle pattern with a wave number q0,B < q < q0,A spanning the whole
system is given in Fig. 4(a).

In addition to straight wrinkles, the inhomogeneous coupled system displays branched wrinkles as shown in Fig. 4
(b) and (c). Importantly, also in this case the wave numbers in the two regions are not strictly fixed, but can be
picked up out of whole bands. The system can therefore exhibit – at an identical parameter set – the following
intricate coexistence scenarios: (I) coexistence of straight wrinkles of different wave number beyond the crosses in
Fig. 3(b), (II) coexistence of straight wrinkles and branched patterns in the same range beyond the crosses, as well as
(III) coexistence of branched wrinkles of different wave numbers and hence displaying different numbers of branching
points per area in some larger region beyond the Eckhaus curves of the uncoupled system.

The coexistence of different branched wrinkles is characterized in further detail in Fig. 3(c), where we address the
following situation: as initial condition, we have chosen a periodic solution with the intrinsic wave number q0,A = 1
(q0,B = 0.833) in the region A (the region B) and in the complementary area any periodic solution out of the Eckhaus
stable band of the uncoupled system. Which combinations will then be stable in the coupled system? Fig. 3(c) shows

(a) (b) (c)

FIG. 4: Three patterns are shown, which are stable solutions of Eq. (11) for the case of a rapid wave number variation. They
all have been obtained at the identical parameter set ε = 0.1, q0,A = 1 and q0,B = 0.833, but for different initial conditions.
Panel (a) shows a straight wrinkle pattern with wave number qA = qB = 0.93. The two branched patterns (b) and (c) are
composed of wave numbers qA = 1 and qB = 0.875 and qA = 1.065 and qB = 0.764, respectively. Shown are cuts out of a larger
computational domain with Lx = 72λ0,A, Ly = 20λ0,A and periodic boundary conditions.
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that a wide range of stable wave numbers out of one of the two Eckhaus-bands of the uncoupled system coexist with
the fixed wave number in the complimentary area: wave numbers between the empty triangles are all stable in region
B, when q0,A = 1. In turn, wave numbers between the filled triangles are stable in region A, when q0,B = 0.833.

On the basis of this insight, one can imagine preparing a great variety of branched wrinkle patterns by choosing
appropriate initial configurations. This behavior, found here numerically for a step-like varying q0(y) agrees quali-
tatively with the behavior obtained for small, smooth sinusoidal variations of q0(y) in Ref. [35]. In experiments the
onset of wrinkles in general may be different in the areas A and B (cf. the discussion in section II B) but qualitatively
similar scenarios are expected.

IV. RAMPED PARAMETER VARIATIONS

The coexistence of a whole family of different branched wrinkle patterns in a wide region of parameter space, and
the coexistence of non-branched and branched patterns in a smaller region, is a generic and robust phenomenon. It
has been found for small, smooth harmonic variations of q0(y) in Ref. [35] and, as described in the previous section,
for rapid variations between two constant values q0,A and q0,B . In the latter case, the branching points are located
near the rapid parameter change between parts A and B, cf. Fig. 1 and 4. Recently, interesting gradient elastomeric
materials have been synthesized [37], with the elastic modulus varying linearly in one spatial direction. Wrinkling on
such substrates has been studied, but with the elasticity varied along the direction of the initial stretch [38], not yet
perpendicularly. This leads us to address the following questions: What is the spatial order of the branching points
when q0(y) is linearly ramped – perpendicular to the anisotropy – between two constant values q0,A and q0,B? And
how will the stability range of the branched patterns be affected by such a smooth ramping, compared to the rapid
variation just discussed?

Fig. 5(a) displays the imposed wave number ramp q0(y) between q0,A = 1 and q0,B = 0.667 with a ramp width
δ = 10λ0,A and a slope of ∆q/δ. By solving Eq. (11) numerically for such ramped q-variations and different initial
conditions, we find, again at identical parameter sets, either regularly or rather irregularly ordered branching patterns
of wrinkles as shown in Figs. 5(b) and (c). Similar branching point orderings have been observed experimentally on
substrates with a smooth gradient in the elastic modulus, cf. Ref. [40] and the supplementary material of Ref. [7]. In
each pattern configuration, the pattern locally adopts different wave numbers along the y-direction: Fig. 5(d) shows
possible local wave number distributions (blue lines), while the grey region shows the range of the ramp.

Similar as for the stability diagram in Fig. 3(c) for the rapid, step-like variation, one may choose now as an
initial condition in region A (region B) the wave number q0,A (q0,B) at the center of the neutral curve and in the
complementary area a wave number out of the Eckhaus stability range corresponding to the uncoupled system. The
resulting stable branched patterns with different wave numbers outside the ramped range is shown in Fig. 6 for a
wave number ramp of width δ = 10λ0,A and for a large system size, Lx = 72λ0,A and Ly = 80λ0,A. If a pattern with
q0,A = 1 (q0,B = 0.833) is chosen in area A (B), then all combinations with patterns having a wave number in area
B (A) between the open (filled) triangles are stable. Therefore, in the presence of a ramp between constant preferred
wave numbers, we recover the same generic coexistence scenario of a large family of different branched patterns, with
two representatives shown in Fig. 5(b) and (c).

The result in Fig. 6 can be compared with the one in Fig. 3(c), implying that the range of stable branched patterns
is substantially smaller when q0(y) is ramped between area A and B than for a stepwise variation. Namely, in each
of both cases shown in Fig. 6 the outside half of the Eckhaus-stability band of the uncoupled system is destabilized.
Interestingly, this restricting effect of a ramp on the range of stable wave numbers of patterns (here the branched
patterns) in our two dimensional system is similar to results obtained for ramps in quasi one-dimensional pattern
forming systems [29, 45–47]. In these works, the so-called ‘weak pinning’, corresponding to a non-smooth change of
the parameters, is widening the wave number range of stable patterns, similar as the step-like change does here when
compared to the smooth ramp.

The ramp width affects also the ordering of branching points as shown in Fig. 7. The adopted local wave number
(for different initial conditions) displays several ’layers’ of branching defects as a function of the ramp width δ. For
small δ (tending to zero) the branching points are attracted to the line located at the interface separating the two
media (cf. sec. III). Upon increase of δ the mean distance between the branching points increases and they start
to rearrange into a zig-zag order. Upon further increasing δ one observes, that the branching points arrange along
several lines perpendicular to the wave-number ramp, as indicated for instance in Fig. 7(e) by the steps in the wave
number. Thus, increasing the ramp’s width (and hence decreasing the slope of the wave number variation) allows for
the emergence of additional locally adopted wave numbers. In the limit of very small slopes the mean distance in y
direction between branching points becomes large and less ordered and the wave-number steps decrease during its
variation from q0,A to q0,B .
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(b) (c)

(a)

(d)

FIG. 5: (a) Shown is a ramp in the imposed wave number q0(y), i.e. a linear variation from q0,B to q0,A. Part (b) [part (c)]
shows a wrinkle pattern with a regular [irregular] zig-zag ordering of the branching points at the location of the ramp. (d)
The adopted wave numbers in the three respective regions (q0,B , ramp, and q0,A) as obtained from 6 simulations with different
initial conditions.

V. DISCUSSION AND CONCLUSIONS

We have modeled generic effects of wrinkle formation in inhomogeneous film-on-substrate systems under axial loads.
Our modeling is related to recent experiments, where material parameters of the film and/or the substrate vary along
the direction perpendicular to the uniaxial load direction [7, 36]. In addition, such systems belong to a recently
identified new symmetry class of pattern formation [35], that are anisotropic in one direction and inhomogeneous in
the direction orthogonal to the anisotropy.

When a film-on-substrate system is composed of two different substrate materials, A and B, that alternate per-
pendicular to the loading direction and prefer different wave numbers (due to, e.g., different elasticities), then the
emerging wrinkle patterns may display branching points located at the region where the materials match. While this
observation is intuitive – the system is frustrated and has to accommodate to the two different intrinsic wave numbers
of the regions A and B – the following observations are quite surprising: (i) straight wrinkles without branching
points and with different wave numbers coexist at a single parameter set in a certain range in the plane spanned by
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FIG. 7: Studied is the dependence of the adopted wave numbers on the width of the ramp (shaded range). The red solid lines
indicate the imposed preferred wave number q0(y) and the wave numbers locally adopted by the system for different initial
conditions are shown by the blue lines. The ramp width varies from (a) to (f) as δ = 6.54, 13.09, 52.36, 74.05, 104.72 and 209.44.
Upon increase of δ, additional ’effective layers’ of branching points occur, visible by additional jumps connecting additional
q-plateaus in the locally adapted wave numbers. Other parameters: ε = 0.08, Lx = 120λ0,A, Ly = 80λ0,A, ∆qc = 0.167.

the control parameter (related to the stretch) and the wave number of the pattern. Moreover, (ii) in the same region
straight wrinkles coexist with branched patterns and (iii) in an even larger region, branched wrinkles of different
defect densities and different wave numbers in the two regions A and B coexist.

This seemingly puzzling and very rich coexistence scenario is in fact a generalization of the Eckhaus stability bands
known from homogeneous pattern forming systems, which we used here to interpret our findings. Namely, spatially
periodic, nonlinear stripe-patterns – in the here-considered system the wrinkles – are not only stable at a unique
wave number (the preferred wave number q0 of maximal linear growth rate), but rather within the so-called Eckhaus
stability bands that have finite widths [22, 24, 25]. This well known concept, verified in several homogeneous pattern
forming systems [26–32], the closest to the wrinkling system being the buckling of plates [27, 28], is here proven useful
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also in its generalization to inhomogeneous and anisotropic systems.
Moreover, these coexistence scenarios – occurring in wide ranges of the parameter space – are also very robust

with respect to the specific form of the spatial variations of the preferred wave number q0(y): they occur not only for
smooth harmonic parameter modulations, where the modulational effects close to threshold have been described by
a new generic amplitude equation, cf. [35]. We here have shown that they are also encountered for larger step-like, as
well as for linearly ramped parameter variations. In addition we found that the range of coexistence of the branched
patterns is smaller for linear ramps than for step-like variations. Note that similar changes of the width of the stability
bands as a function of the smoothness of the perturbation have been found in quasi-one dimensional systems, studying
so-called pinning ramps [29, 45–47].

The described behavior is important for the interpretation of experiments, when material parameters vary along
the direction perpendicular to the stretching either in the substrate [7] or in the film [6]. Besides influencing the local
wave number, spatial parameter variations in film-on-substrate systems may also change the local critical loads above
which the wrinkles form. Consequently, the latter will also influence the described coexistence on the quantitative
level, but presumably not qualitatively.

Beyond the wrinkling system, we would like to mention that the homogeneous model equation (7) applies to
anisotropic systems displaying stationary periodic patterns in general [31]. In fact, it was originaly motivated and
used to study certain aspects of electroconvection in planarly aligned nematic liquid crystals, one of the major
representatives of anisotropic, dissipative pattern forming systems [31, 48–50]. Consequently, the results obtained in
this work for the inhomogeneous model equation (11) will also apply to, for instance, planarly aligned electroconvection
in nematic liquid crystals where the height of the convection cell (determining the wave number of the convection
rolls) varies along the direction perpendicular to the orientation of the nematic director (cf. Ref. [35]).

In the case of equal (or nearly equal) loading in Eq. (1) this pattern forming system may give rise for rapid parameter
variations to interesting selection phenomena similar as recently described in Ref. [51], in the case spatial modulations
of the stiffness in the thin film, cf. Ref. [6], to pattern orientations as in Refs. [52, 53] or in the case of an irregularly
varying stiffness to localized patterns [54].
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