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Microflows constitute an important instrument to control particle dynamics. A prominent example is the
sorting of biological cells, which relies on the ability of deformable cells to move transversely to flow lines.
A classic result is that soft microparticles migrate in flows through straight microchannels to an attractor at
their center. Here, we show that flows through wavy channels fundamentally change the overall picture.
They lead to the emergence of a second, coexisting attractor for soft particles. Its emergence and off-center
location depends on the boundary modulation and the particle properties. The related cross-stream
migration of soft particles is explained by analytical considerations, Stokesian dynamics simulations in
unbounded flows, and Lattice-Boltzmann simulations in bounded flows. The novel off-center attractor can
be used, for instance, in diagnostics, for separating cells of different size and elasticity, which is often an
indicator of their health status.
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Microfluidics attracts great attention across several dis-
ciplines [1–9]. The field includes important physics-based
strategies to understand the dynamics of particles in micro-
flows and the mechanics of (deformable) cells with a great
variety of applications in life science and technology. For
example, studies of soft particles in suspension and their
cross-streamline migration (CSM) in low Reynolds-num-
ber linear shear and Poiseuille flows provide important
insights about blood flow, cell dynamics, DNA sorting, and
polymer processing, among others [8–13]. Furthermore, a
surprising splitting of streams of wormlike colloids in
shear-thinning fluids through modulated channels was
found [14]. In modulated channels with secondary flows
[15] or in serpentine [16] or curved channels [17,18], for
instance, particle dynamics and separation may also be
driven by inertia. Very little is known about the behavior of
soft microparticles such as (red blood) cells in pressure
driven Newtonian fluid flows at low Reynolds number
through microchannels with modulated walls. For this case,
we describe the emergence of a novel second attractor for
soft particles. This may give rise to promising applications
in particle separation, such as biological cells with differing
elasticity or size.
Segré and Silberberg reported in 1961 on CSM of rigid

particles in low Reynolds-number flows through pipes [19].
Such finite Reynolds-number effects are exploited in
inertial microfluidics [17,20]. When particles and channels
approach the micrometer scale, it is also possible that fluid
inertia does not matter and particles follow the Stokesian
dynamics. In this limit, there is no CSM of rigid particles
but of soft particles which are deformed by the local shear

rate. This drives, for instance, tank-treading vesicles away
from walls in Poiseuille and linear shear flows [9,21–25].
Away from walls the spatially varying shear rate in bulk
Poiseuille flows breaks the fore-aft symmetry of the
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FIG. 1. (a) The trajectory of a soft capsule (dashed line) in plane
Poiseuille flow approaches the attractor at the channel center at
y ¼ 0: The inset shows the channel cross section with the particle
attractor (dash-dotted line). (b) A soft capsule in a wavy channel
moves to either the off-center attractor (solid line) or to the center,
depending on its initial position. The left inset shows the
particle’s wavy motion around the trajectory’s mean (cf. anima-
tions in the Supplemental Material [38]). The right inset shows
the wavy off-center particle attractor (dotted line) and the attractor
at the channel center (dash-dotted line). For parameters, see [39].
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deformed particle, so that dumbbells [26,27], droplets
[28,29], vesicles, and capsules [30–32] exhibit bulk
CSM, even in unbounded Poiseuille flows where the
interaction with the channel boundaries is neglected.
Such parity breaking mechanisms may be induced sponta-
neously by viscosity contrast [33] or chirality [34], which
are not considered here. Surprisingly, CSM of soft particles
can be also reversed by gravitational effects [35]. Recently,
migration was also found for nonsymmetric soft particles in
time-periodic linear shear flows [36] and even in time-
periodic homogeneous plug flows when particle inertia is
considered [37].
As we show, soft particles in flows through wavy

channels experience a periodically altering local shear rate;
therefore they are periodically deformed. However, they
adopt a different shape during each half period of a wavy
flow. This nonsymmetric deformation causes an off-center
attractor for soft particles in Newtonian fluid flow that
coexists with the particle attractor at the channel center, as
indicated in Fig. 1 (cf. animations in the Supplemental
Material [38]).
We consider red blood cells (RBCs) and soft capsules in

flows through a channel with modulated walls at

yb ¼ �d½1þ ε sin ðKxÞ� with K ¼ 2π

λ
; ð1Þ

with the mean boundary distance 2d, the modulation
amplitude ε, and the wavelength λ. The resulting wavy
flow field uðrÞ ¼ ðux; uy; 0Þ is determined up to first order
in the modulation amplitude ε (see Supplemental Material
[38]) [40]

ux ¼ ũ

�
1 −

y2

d2
þ 2ε sinðKxÞ

× ½B1Ky sinhðKyÞ þ ðB1 þ B2Þ coshðKyÞ�
�
; ð2aÞ

uy ¼−2ũεcosðKxÞ½B1KycoshðKyÞþB2 sinhðKyÞ�; ð2bÞ

with the flow amplitude ũ. The soft particle’s surface is
represented by N beads with radius a and located at ri.
Their Stokesian dynamics [41] is described by a set of
equations

_ri ¼ uðriÞ þ
XN
j¼1

Hij · Fj: ð3Þ

The particle center is at rc ¼
P

N
i¼1 ri=N and particle-wall

interactions are neglected. The force on the jth bead is
given by Fj ¼ −∇jVðrÞ with the total potential VðrÞ, and
Hij denoting the mobility matrix (see the Supplemental
Material [38]) [42–44].

For the capsule, the total potential is VðrÞ ¼ VNH þ
Vb þ Vv with the neo-Hookean part VNH, that describes
rubberlike materials with a constant surface shear-elastic
modulus G [45,46]. The beads form triangles as indicated
in the Supplemental Material [38]. With the angles βi;j
enclosed by the normal vectors at neighboring triangles and
the bending elasticity κ, the bending potential is Vb ¼
κ=2

P
i;jð1 − cos βi;jÞ [47]. The potential Vv ¼ kv½VðtÞ −

V0�2=V0 keeps the capsules volume VðtÞ close to the
reference volume V0 ¼ 4=3πR3 of a spherical capsule of
radius R with volume stiffness kv [48].
For the RBC we use as total potential VðrÞ ¼ VSk þ

Vb;R þ Vv þ Va [48]. VSk denotes the potential of the
Skalak law which describes the elastic forces of a
RBC with the shear and area resistance κs and κα (see

[48,49]). The bending potential is given by Vb;R ¼ffiffiffi
3

p
κR=2

P
i;jðβi;j − βð0Þi;j Þ2 where βð0Þi;j denotes the angles

of the equilibrium shape, whereby we use the typical
biconcave shape (see the Supplemental Material [38] and
Ref. [50]). The potentials Vv ¼ kv=V0½VðtÞ − V0�2 and
Va ¼ ka=A0½AðtÞ −A0�2 keep deviations of VðtÞ and
AðtÞ from the reference values V0 and A0 small [48].
The (dimensionless) parameters are given in Ref. [39].
We use also simulations for the particle dynamics with a

standard lattice Boltzmann method (LBM) with the
Bhatnager-Gross-Krook collision and the immersed boun-
dary method [51–55]. Hereby, the effects of the channel
boundary on the particle dynamics are fully taken into
account.
The migration velocity vm of a particle is the difference

between the particle velocity _rc and the undistorted flow
velocity uðrcÞ at the particle’s position rc, leading to

vm ¼ _rc − uðrcÞ ¼
X
i

uðriÞ
N

− uðrcÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼vfm

þ 1

N

X
i;j

Hij · Fj

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼vHIm

:

The contribution vfm is the difference between the undis-
turbed flow, averaged over the particle’s surface, and the
undisturbed flow at its center. In Poiseuille flow, the shear
gradient varies across an extended particle and accordingly
the particle does not follow a single streamline. The second
contribution vHIm describes the flow disturbance due to a
particle.
In plane Poiseuille flow, vfm is antiparallel to the straight

flow direction and causes a lag behind of particles with
respect to the undistorted, local flow, but does not con-
tribute to CSM. The classical CSM to the channel center is
induced by vHIm . In a wavy channel, vfm contributes also to
the migration perpendicular to the channel axis. In the
diverging parts of the channel, a particle lags behind the
outward directed streamline. Accordingly, the particle
migrates towards a streamline closer to the center. In the
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converging flow section the opposite is the case: The
particle migrates to a streamline farther away from the
center. For a rigid spherical particle in a periodically
alternating diverging and converging flow at low
Reynolds number, the migration steps inside and outside
compensate each other and there is no net migration.
However, the situation with deformable particles is differ-
ent: The particle’s shape is nonreciprocal during the
periodically alternating converging and the diverging
channel sections as indicated by the two snapshots for a
capsule from Stokesian dynamics simulations in Fig. 2.
This leads altogether to a net contribution of vfm to the
migration away from the channel axis.
We demonstrate by a simple analytical consideration that

the outward directed net migration caused by vfm may
become larger than the classical inward migration driven by
vHIm . By a Taylor expansion of uðrÞ around rc and with the
relations

X
i

ðri− rcÞ ¼ 0;
X
i

ðxi− xcÞðyi− ycÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
changes sign

≪
X
i

ðxi − xcÞ2|fflfflfflfflffl{zfflfflfflfflffl}
>0

we obtain for the y component of vfm

vfm;y ¼ 1

N

X
i

½uðriÞ − uðrcÞ� · ey

≈
∂2
xuy
2N

X
i

ðxi − xcÞ2 þ
∂2
yuy
2N

X
i

ðyi − ycÞ2: ð4Þ

The signs of the curvatures ∂2
xuy and ∂2

yuy of the wavy flow
determine the local direction of the migration velocity vfm;y.
Their values for the imposed flow evaluated at y=d ¼ 0.7
are shown in Fig. 2(b). The two sums in Eq. (4) are shape
factors. They indicate that the local migration velocity
increases with the deformation. In a widening channel

section the signs of both curvatures are negative and
therefore the migration direction points to the flow center
(vfm;y < 0).
In the following section, the flow is converging and the

signs of the curvatures are positive; i.e., the direction of
vfm;y points in this section away from the flow center.
During the converging half period, the soft particle is
stretched in flow direction with a maximum of the shape
factors of about (

P
iðxi−xcÞ2¼22.8 and

P
iðyi−ycÞ2¼

17.7). Both factors are larger than their maxima during the
diverging flow part, (

P
iðxi−xcÞ2¼21.4and

P
iðyi−ycÞ2¼

11.2), where the capsule is compressed in the flow
direction. Both shapes in Fig. 2(a) are not mirror symmetric
to the dashed vertical line. Therefore, the migration velocity
averaged over one spatial period, hvfm;yiλ, points for these
parameters away from the channel center.
The curvature of the flow lines vanishes at the channel

center. The local migration velocity vfm;y increases at every
x position with the distance from the channel center and
with the boundary-modulation amplitude ε. Above a
critical boundary-modulation amplitude εc the contribution
vfm;y may outweigh the classical inward migration described
by vHIm;y. In this case the resulting off-center attractor
coexists with the attractor at the channel center at y ¼ 0.
Depending on the initial value of y, particles migrate either
to the center or to the off-center attractor.
The trends of cross-stream migration illustrated by

analytical considerations are characterized by Stokesian
dynamics simulations of models for capsules and red blood
cells in unbounded wavy flows and by simulations using
the LBM in bounded flows. In Fig. 3, the averaged CSM
velocity hvm;yiλ of capsules and RBCs is shown as a
function of λ=R and in units of ũ for two values ũ ¼ 5, 11.
This averaged CSM velocity is obtained by a linear fit (over
a sufficient number of periods) of the lateral particle
position yðtÞ, whereby the mean values of each period
are used. For an initial particle position of y ¼ d=2 in
Fig. 3, the averaged migration direction hvm;yi points to the
channel center in the range of small and large values of
λ=R. This means capsules and RBCs migrate in both ranges
towards the channel center, similar as in unmodulated
channel flows. Here, the averaged modulation-induced
outward CSM, hvfm;yiλ, becomes small and cannot out-
weigh anymore the common inward migration hvHIm;yiλ. This
can be understood from Fig. 2: The flow’s curvature plays a
role only if the modulation wavelength is not much larger
and not much shorter than the particle size, such as in the
intermediate range of λ=R in Fig. 3. For the flow amplitude
ũ ¼ 5, capsules migrate in the range 7R≲ λ≲ 25R away
from the channel center and the outward CSM velocity
reaches a maximum at λ ≈ 12R. For a larger flow velocity at
the channel center ũ ¼ 11, the respective ranges for
capsules and RBCs are slightly shifted to larger values
of λ=R. With increasing particle distance y from the channel
center, the λ=R range of outward migration increases.

y 
/ d

0.

0.
∂

λ

∂ ∂

...........

.........

(a)

(b)

FIG. 2. (a) Two snapshots of a capsule are shown, resulting
from their Stokesian dynamics simulation in an unbounded wavy
flow field (black arrows). The flow is symmetric to the dashed
vertical line, but the deformed particle is not (see, e.g., colored
bars). (b) shows the second derivatives ∂2

xuyðxÞ and ∂2
yuyðxÞ of

the vertical flow velocity uy at y ¼ 0.7d.
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Importantly, the qualitative behavior of the CSM velocity
for capsules and RBCs is equivalent.
Figure 4 shows the averaged CSM velocity hvm;yiλ of a

capsule in units of the flow amplitude ũ and as a function of
the y position of the capsule for three amplitudes ε ¼ 0, 0.2,
0.3. Here, the CSM velocity results from LBM simulations
of the capsule in a wavy channel, fully accounting for wall
effects. In a flat channel with ε ¼ 0 the capsule migrates
from every 0 < y < d to the channel center. Beyond a
critical modulation amplitude, e.g., for ε ¼ 0.2, the CSM
velocity is negative at y≲ 0.15d and beyond one finds an
outward migration. The zero crossing of hvm;yiλ at y ≈
0.15d marks the position of a repeller. When a soft particle
approaches the channel wall, its migration changes to the

inward direction again. This means particles with y≳
0.15d migrate for ε ¼ 0.2 to the off-center attractor at y ≈
0.4d where the migration velocity vanishes again. For a
larger modulation amplitude ε ¼ 0.3 the repeller is moved
closer to the channel center and the attractor closer to the
wall as indicated by the dashed line in Fig. 4. Hence, the
results from LBM simulations for bounded Poiseuille
flows confirm the analytical considerations and the
results obtained by Stokesian dynamics simulations for
unbounded flows.
Figure 5 shows the y positions of the off-center particle

attractors (solid lines) and its repeller (dashed line) as a
function of the boundary-modulation amplitude ε for un-
bounded Poiseuille flows and for three ratios λ=R ¼ 12, 16,
20. In each case, the second attractor and the repeller appear
if ε is larger than the respective critical value εc ¼ 0.14, 0.19,
0.23. Capsules starting at a y position below the repeller
migrate towards the channel center, while capsules starting
above the repellermigrate to the off-center attractor. Figure 5
shows that the y positions of the second attractor and the
repeller move closer to the channel center with increasing
λ=R, i.e., with decreasing particle size for a given modula-
tion wavelength λ. The off-center attractor and the repeller
move also closer to the channel center with increasing
stiffness of the capsules, as shown in the Supplemental
Material [38].
The emergence of the second attractor for soft particles

in low Reynolds-number flows through wavy channels is
different to the inertia driven off-center attractors [7]. It
coexists with an attractor at the channel center and this
suggests a novel method for separating soft particles
according to their sizes and elasticities. For instance,
if two different sized particles with different radii R with
R ¼ λ=20 and R ¼ λ=12 are injected at y ≥ 0.5d in a

〉
〈

FIG. 3. The averaged CSM velocity hvm;yiλ of capsules and
RBCs in unbounded wavy Poiseuille flow as a function of λ=R.
hvm;yiλ is given for two amplitudes ũ ¼ 5, 11. It is negative for
small and rather large values of λ=R and the particles migrate to
the channel center. hvm;yiλ is positive in the intermediate range of
λ=R, where particles migrate away from the channel center. For
further parameters, cf. [39].

〉
〈

FIG. 4. The averaged migration velocity hvm;yiλ=ũ for capsules
in bounded flows obtained by LBM simulations as a function of
the particle’s y position and for the modulation amplitudes
ε ¼ 0.0, 0.2, 0.3. The capsule migrates toward the center
(y ¼ 0) at small y below the repeller (empty circles) and
otherwise to the second attractor (solid circles), confirming the
analytical considerations and Stokesian dynamics simulations in
unbounded flows. The arrows mark the migration direction, i.e.,
the sign of hvm;yiλ. For further parameters, cf. [56].

FIG. 5. The y position of the second attractors (solid lines) and
the repellers (dashed lines) of capsules as a function of ε for
λ=R ¼ 12, 16, 20. Particles with an initial position below the
repeller migrate to the channel center. The second attractor occurs
for ε larger than the respective critical values εc ¼ 0.14, 0.19,
0.23, which increase with increasing wavelength.
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channel with ε ≈ 0.22 they will be separated: The smaller
particle with R ¼ λ=20 migrates to the channel center,
whereas the larger particle with R ¼ λ=12 migrates to the
off-center attractor. Hence, they can be separated with two
different outlets, one at the channel center and one off
center. These trends are confirmed by taking fully into
account the boundary effects. For example, a capsule of
radius R ¼ 6.6 (λ=R ≈ 17) at y ¼ 0.3 migrates in LBM
simulations to the wall for parameters as in Fig. 4 and a
larger particle with R ¼ 20 (λ=R ¼ 5.5) to the channel
center. We also remark that the migration direction does not
depend on the flow direction. This allows us to utilize
shorter channels simply by reversing the flow’s direction in
experiments.
The discovered cross-stream migration of soft particles

in Newtonian fluids through wavy channels is controlled by
the amplitude of the boundary modulation and the ratio of
the particle size and the modulation wavelength. The origin
of this CSM is the interplay between a lag behind of a
particle with respect to the local flow and its asymmetric
deformation in each half-period of the channel modulation.
It can outweigh the classical CSM to the channel center
[30–32] and induce a second, coexisting off-center attrac-
tor. This generic CSM for soft particles may play also an
important role for the recently observed splitting of streams
of wormlike colloids in shear thinning fluids through wavy
channels [14]. Furthermore, the emergence of the second
attractor allows us to separate soft particles also with
respect to their stiffness (see also the Supplemental
Material [38]). Since the health status of cells has been
shown to affect the cell elasticity [57], our proposed
approach may improve further the separation of healthy
cells from malignant (e.g., cancer) cells.
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