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Abstract. We consider a continuum model for motility-induced phase separation (MIPS) of active Brow-
nian particles (ABP) (J. Chem. Phys. 142, 224149 (2015)). Using a recently introduced perturbative
analysis (Phys. Rev. E 98, 020604(R) (2018)), we show that this continuum model reduces to the classic
Cahn-Hilliard (CH) model near the onset of MIPS. This makes MIPS another example of the so-called
active phase separation. We further introduce a generalization of the perturbative analysis to the next
higher order. This results in a generic higher-order extension of the CH model for active phase separation.
Our analysis establishes the mathematical link between the basic mean-field ABP model on the one hand,
and the leading order and extended CH models on the other hand. Comparing numerical simulations of
the three models, we find that the leading-order CH model agrees nearly perfectly with the full contin-
uum model near the onset of MIPS. We also give estimates of the control parameter beyond which the
higher-order corrections become relevant and compare the extended CH model to recent phenomenological

models.

1 Introduction

Active matter systems are non-equilibrium systems which
consume fuel and disspative energy locally. These sys-
tems are full of fascinating phenomena and have recently
attracted increasing attention in the scientific commu-
nity [1-8]. Examples range from active molecular pro-
cesses which are driven by chemical free energy provided
by metabolic processes [9] up to flocks of birds and schools
of fish [1,2]. Various active matter systems also show col-
lective non-equilibrium transitions. On the time scale of
these transitions, the number of involved entities such as
proteins, cells or even birds is conserved. Examples include
cell polarization [10-16], chemotactically communicating
cells [17-20], self-propelled colloidal particles [21-27], as
well as mussels in ecology [28].

Self-propelling colloidal particles undergo a non-
equilibrium phase transition into two distinct phases —a
denser liquid-like phase and a dilute gas-like phase [21-
23]— if their swimming speed decreases with increasing
local density. This is known as motility-induced phase
separation (MIPS) [4,24,26]. It strikingly resembles well-
known phase separation processes at thermal equilibrium
such as the demixing of a binary fluid. We recently in-
troduced a class of such non-equilibrium demixing phe-
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nomena we call active phase separation [16]. Among the
phenomena identified as members of this class are cell po-
larization or chemotactically communicating cells. For this
class we have shown that the similarities between equilib-
rium and non-equilibrium demixing phenomena are in fact
not coincidental. We have generalized a classical weakly
nonlinear analysis near a supercritical bifurcation with
unconserved order parameter fields [29] to the case of ac-
tive phase separation with a conserved order parameter
field [16]. The generic equation describing active phase
separation systems turned out to be the classic Cahn-
Hilliard (CH) model —the same generic model that also
describes equilibrium phase separation. The class of ac-
tive phase separation thus defines non-equilibrium demix-
ing phenomena whose conserved order parameter is close
to onset described by the Cahn-Hilliard model.

In this work, we raise the question whether the recently
introduced nonlinear perturbation approach in ref. [16] is
also directly applicable to MIPS. We employ this reduc-
tion approach to a mean-field description of active Brow-
nian particles (ABP) showing MIPS provided by Speck et
al. [27,30] and show how the ABP model reduces to the
CH model at leading order.

Recently, several phenomenological extensions of the
CH model have also been considered as continuum mod-
els of MIPS [31,32]. These are extensions of the CH model
to the next higher order of nonlinear contributions. In this
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work, we therefore also introduce an extension of our per-
turbative scheme that allows us to systematically derive
higher-order nonlinearities directly from the continuum
model for MIPS. Due to our systematic approach, the ex-
tended CH model we derive is not a phenomenological
model. Instead, we directly map the continuum model for
ABP to the extended CH model. Note that we concentrate
on the example of MIPS in this work. However, the exten-
sion introduced here can be applied to any system in the
class of active phase separation. We thus show in general
how both the leading-order CH model and its extension
describe active phase separation as a non-equilibrium phe-
nomenon.

This work is organized as follows: We first present the
mean-field ABP model and calculate the onset of phase
separation in the system. We then introduce the pertur-
bative scheme we use to reduce the ABP model to the
classic CH equation near the onset of phase separation.
In the next step, we extend the previous approach to in-
clude nonlinearities at the next higher order. Section 5 is
an in-depth discussion of the derived leading-order and ex-
tended CH models including their connection to the mean-
field ABP model and other phenomenological descriptions
of MIPS. Finally, in sect. 6, we present numerical simu-
lations comparing leading-order and extended CH to the
full mean-field ABP model to assess validity and accuracy
of the reduced models.

2 Model

On a mean-field level, phase separation of active Brow-
nian particles (ABP) can be described by two coupled
equations for the particle density p(r,t) and a polariza-
tion p(r,t) [23,30]. The evolution of the particle density
p is determined by

Op ==V -[w(p)p — DVl (1)

where D, is the effective diffusion coefficient of the active
Brownian particles. v(p) is the density-dependent particle
speed given by

v(5) = vo — 5 + A2V25; (2)

vg is the speed of a single self-propelled particle. With in-
creasing particle density, the velocity is reduced by (p due
to interactions with other particles. ( is related to the pair
distribution function of the individual particles and as-
sumed to be spatially homogeneous [23]. The nonlocal con-
tribution in eq. (2) was earlier introduced in refs. [25,33]
and later incorporated into the model by Speck et al. [30].
It incorporates the effect that active Brownian particles
sample the neighboring particle density on a length scale
A larger than the particle spacing. Equation (2) is coupled
to a dynamical equation for the polarization [23,30],

op = —VP(p) + D.V’p — p, (3)
with the “pressure”
- 1
P(p) = 5v(p)p- (4)

Eur. Phys. J. E (2019) 42: 57

3 Onset of phase separation

A stationary solution of eq. (1) and eq. (3) is any con-
stant density p and p = 0. Therefore, we decompose the
particle density into its homogeneous part p and the in-
homogeneous density variation p:

p=p+p. (5)

Accordingly, we investigate the following dynamical equa-
tions for p and p in one spatial dimension:

Opp = =0y [ = Cp+ N202p| p+ D.Op, (6a)
Op = —0y | Bp — %Cﬂz + %2 (p+p)D2p
+D.02%p — p, (6b)
where 1
a=1v— R, 625(00—23), (7)

with the density parameter
R=(p (8)

We assume ¢ and D, to be constant [30].

The homogeneous basic solution p = 0, p = 0 is unsta-
ble if the perturbations p, p = p, pexp(ot+iqx) grow, i.e.
if the growth rate o is positive. Solving the linear parts of
eqs. (6) with this perturbation ansatz, the largest eigen-
value gives us the dispersion relation

1 1
o(q) = 5~ Deg® + 5\/1 —4afq? 4 2X\2apgt,
= D2q° — Dag* + O(¢), (9)
where

Dy = —(D. + af), (10)

AR

[ 2, AR
D4—<aﬂ 5 Ca). (11)

D5 changes its sign as a function of vg. Assuming Dy >
0, the growth rate o becomes positive in a finite range
of ¢ = [0, ¢maz], when Dy > 0. Note that the range of
wavenumbers ¢ with positive growth rate extends down
to ¢ = 0. The related instability condition

D, +afB =0 (12)
provides a quadratic polynomial for the critical mean den-
sity p (represented by the density parameter R) and the
respective particle speed vg(R):

1 3
5’[](2) — iR'UO + De + R2 = 0 (].3)
For particle speeds vy > v,, where
Ve = 44/ De, (14)
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Fig. 1. Instability curve R4 (vo) as given by eq. (15). The
minimum of the parabolic function is at (v, R.) = (1.0, 0.75),

assuming ¢ = 1, D. = 1/16. For vy > v., the homogeneous so-
lution is unstable for mean densities within the shaded region.

this polynomial has two real solutions

1
Ry = 1 |:3’U0:|:\/’U%—16De:| )

This corresponds to a critical value R, of the density pa-
rameter:

(15)

3
R, = R(vy) = i
Note that the assumption Dy > 0 is fulfilled if A2 <
2Ca3? /R, i.e. for sufficiently small X. At the critical point,
vg = v, and R = R,, this condition simplifies to

(16)

M < (v?/24. (17)
For particle velocities below v,, the homogeneous solution
is stable for any value of the density parameter R = (p.
For v > v, and R_ < R < Ry (shaded region in fig. 1)
the homogeneous particle density becomes unstable with
respect to perturbations.

4 Derivation of Cahn-Hilliard models

In this section, we will apply the systematic pertubative
scheme introduced recently in ref. [16] to the mean-field
model, egs. (6), and reduce them near onset to the well-
known Cahn-Hilliard (CH) model. In a second step, we
will then expand the pertubative scheme to include higher-
order contributions.

The transition from the homogenous state of eqs. (1)
and (3) to MIPS is either supercritical or slightly subcriti-
cal. In both cases, cubic nonlinearities limit the growth of
density modulations —as we also confirm in this work a
posteriori. Therefore, the amplitudes of the density mod-
ulations near MIPS are small and we write

p=ep (18)
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with a small parameter € and p; ~ O(1). Thereby € mea-
sures the distance from the critical velocity v,:
vo = (1 +¢). (19)
This also allows an expansion of Ry (vg) in eq. (15) near
R.. At leading order, we find Ry ~ R, (1 + ny/e) with
n = v/2/3. This suggests the following parameterization
of R in the ranges vg > v, and R_ < R < Ry near R*:
R:R*(1+T1), with rH = \/57:1 (20)
According to the dispersion relation in eq. (9), the
fastest growing mode is given by ¢?> = Dy/(2D4). The
largest growing wavenumber ¢, (calculated from o = 0)
is ¢2,,, = D2/Dy. Thus, both ¢ and ¢2,,, scale with the
factor Dy/Dy. Using the previously introduced definitions
and expanding for small values of the control parameter
g, we find Dy/Dy x e at leading order. Thus, both ¢,
and ¢mqe are of the order /e, i.e. perturbations of the
homogeneous basic state vary on a large length scale. Ac-
cordingly, we introduce the new scaling & = /ex, resulting
in the following replacement of the differential operator:

Oy — /20, (21)

From ¢? of order O(g) and Dy o ¢ follows that o oc &2
according to eq. (9). Thus, the growth of these long wave-
length perturbations is very slow. Accordingly, we intro-
duce the slow time scale T} = 2t. In order to capture the
dynamics at the next higher order of £'/2, we also intro-
duce a second slow time scale T, = £%/t. This suggests
the following replacement of the time derivatives:

9, — €20p, +&°/20n,. (22)
Since we expressed the density p as a multiple of /¢, see
eq. (18), we also expand the polarization field p in orders

of /e:

p=epo+epr+&°7

5/2 (23)

p2+62p3+5 Pat ...

We insert these scalings into the dynamic equations (6)
and collect terms of the same order \/". The polarization
follows the density field adiabatically. Thus, the contribu-
tions to the polarization in increasing orders up to /2

are

Pbo = 07 (24)
p1 = _ﬁ*ﬁxply (25)
b2 = Risdaps + S0.(60), (20)
Vs ~ N RN =
b3 = 75611)1 - <De/8>k + ? C > axph (27)
P4 = Degg (flR*pl + gp%)
AL -
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With these solutions, we can systematically solve the
equations for the density p; in the successive orders of
V2. In the lowest order O(£%/?), we find

0 = (a.fs + De) 82p1. (29)
This equation, however, is trivially satisfied due to the
instability condition a,(, + D, = 0.

At order O(g?), we get

0= (o +B8.) [Rn&2p1 + Oa (mopr) | (30)
With the definition of R, in eq. (16) it follows that c. +
B« = 0. Thus, eq. (30) is again trivially fulfilled.

At order O(e%/?), we finally get a dynamic equation
for pi:

O p1 = —02 {(8“* - IGUEF%) p1
1 4 3 2 2 32
s S\
+<2560* 32¢ v*> 0501

1

- %Cv*fl S p?] : (31)
Note that we used the expressions in eq. (14) and eq. (16)
to eliminate R, and D.. Equation (31) has the form
of the well-known Cahn-Hilliard (CH) equation [34, 35].
This shows that MIPS is a further example of the
non-equilibrium demixing phenomenon which shares the
universal CH model with classic phase separation. Re-
cently, the notion active phase separation was coined for
these types of non-equilibrium phenomena [16]. Other re-
cently discussed examples of active phase separation are
cell polarization or chemotactically communicating cell
colonies [16]. All of these very different systems can be
reduced to the same universal equation near the onset of
phase separation. They thus share generic features as ex-
pressed in their common representation via the CH equa-
tion.

In the next step, we extend the reduction scheme in-
troduced in ref. [16] to include higher-order nonlinearities.
Continuing the expansion above to the next order O(g?),
we obtain:

- [9 3 = 3
_ 52?2 e 2,2~ (52 o 2
Or,p1 = —0; [811*7“1,01 + 16§/\ VT (535/)1) + 4 Cvsni

3 3 _ 3 2 3 2
- (128@* T ”*) (a“"pl)
(32)

We will discuss these new contributions in detail in
sect. 5.2 below.

Equations (31) and (32) can be combined into a sin-
gle equation by reconstituting the original time scale via
Oip1 = €207, p1 +65/26T2p1. In addition, we go back to the
original spatial scaling by setting 0, = 9,./+/¢, to the orig-
inal density p via eq. (18), and 71 as defined in eq. (20).
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The complete extended amplitude equation for the density
variations p then reads:

Oip = =03 | (1 + B1) p+ (a2 + 2) Dp
+ (as + fB3) p° — cup®

85 (8,p)” + ﬂ63§l)2} . (33)

In this equation, contributions with the coefficients «;
originate from the leading order and are given by

9
Q= Qv — EUET%’ (34a)
1 4 3 2,2
S 4b
2= 956 32" (34D)
ag = 7141}*7"17 (34c)
1
oy = gg? (34d)

In other words, eq. (33) with 5; = 0 is the rescaled version
of eq. (31). The coefficients g; signal the new contributions
from the next higher order. They are given by

pr = gvfﬁ& (35a)

By = l%C)\Qvfm, (35D)
3

s = 1Cvae, (35¢)

_ 3 3 5 2

55 - 128CU* 16A U, (35(1)
)\2

Pe = 5 vs- (35€)

5 Discussion of the derived Cahn-Hilliard
models

In this section, we will discuss the results obtained in the
previous sect. 4. At first we consider the classic CH equa-
tion that resulted at leading order of our perturbative
analysis. We then take a closer look at the higher-order
corrections o f3; in eq. (33). We also focus on the relation
of the higher-order coefficients 3; to the parameters of re-
cently introduced phenomenological extensions of the CH
model for MIPS [31, 32, 36].

5.1 Classic CH equation at leading order
For 8; = 0, the leading order of eq. (33),

Op = —02 [a1p + a202p + azp® — aup®] (36)
corresponds to the asymmetric version of the Cahn-

Hilliard (CH) equation, see e.g. refs. [34, 35], The coef-
ficients «; are given in eqs. (34). Note that the quadratic



Eur. Phys. J. E (2019) 42: 57

nonlinearity implies a broken £p-symmetry. This is usu-
ally not included in the classic representation of the CH
equation since it can be removed by adding a constant to
the density: p — p + pp. In any case, the quadratic non-
linearity vanishes for ag = 0. For the ABP model, this is
fulfilled for r; = 0, or p = p, accordingly. This special
case has also been considered in [30] where they found a
CH equation with coefficients consistent with «; above.

Equation (36) can be derived from the energy func-
tional

= 22 293 3 Q4 4
F—/[ L 20 - Rt St e 37)

via, SF
op

(38)
At first glance this is a surprising result since the two
initial dynamical equations for the density, eq. (1), and
the polarization, eq. (3), do not follow potential dynamics
and therefore cannot be derived from a functional. Nev-
ertheless, this specific property has been seen for other
non-equilibrium systems: The evolution equation for the
envelope of spatially periodic patterns also follows poten-
tial dynamics while the dissipative starting equations do
not [29,37].

5.2 Extended CH model

We now take a closer look at the CH model extended to
the next higher order, eq. (33) with coefficients (; given
in egs. (35). The contributions £, §2 and (3 are correc-
tions to the coefficients o1, as and asz of the leading-
order CH equation. Note, however, that according to
egs. (35a) and (35¢), f1 and (3 are functions of £ and
thus both increase with the distance ¢ from phase separa-
tion onset. Notably, 83 —the correction to the quadratic
nonlinearity— is not a function of the relative deviation
ry from the critical density parameter R,. Thus, while for
r1 = 0 the CH model at leading order is +p-symmetric,
the symmetry is always broken at higher order.

The coefficients B5 and (g are the prefactors of higher-
order nonlinearities. These new contributions oc 92(9,p)?
and oc 9p? are structurally different compared to the
terms in the leading-order CH model. In general, an ad-
ditional nonlinearity oc 92p* is of the same order as these
two contributions. However, in the exemplary case of ABP
we analyze here this term does not appear. Note, however,
that the higher-order extension of the CH model presented
here can also be applied to other active phase separation
systems. We expect the additional nonlinearity of the form
o 02p* to be relevant in other examples such as cell po-
larization or chemotaxis.

In the context of MIPS, a contribution oc 92(9,p)>
has been introduced via a phenomenological approach
in ref. [31]. The CH model extended by this term has
been called Active Model B. It was considered as a non-
equilibrium extension of the CH model and minimal model
for MIPS. We would like to reiterate that the CH model as

Page 5 of 10

given by eq. (36) (without any additional nonlinear terms)
is the leading-order description of the non-equilibrium
phenomenon of active phase seperation [16]. As we have
shown here, this also includes MIPS. All higher-order non-
linearities vanish for ¢ — 0 (see also the discussion in
sect. 5.4). In that respect Active Model B is a nonlin-
ear extension of the CH model —not an extension of the
CH model to non-equilibrium systems. Our systematic ap-
proach reveals the existence of the additional higher non-
linearity oc 91p? = 20%[(0.p)? + pd2p]. It includes the
nonlinear correction to the CH model, oc 92(9,p)?, that
leads to the Active Model B [4,31]. The second part of
the new nonlinear correction term, o 9%(pd2p), has re-
cently been included in a further CH extension for MIPS
called Active Model B+ [32,36]. Note that the contribu-
tion o g in eq. (33) vanishes for A = 0. Active Model B
and Active Model B+ also do not include the quadratic
nonlinearity oc B3p?. Our analysis shows, however, that
the coefficients (3; in general are not independent of each
other and 35 in fact always appears simultaneously with
the nonlinearity o« (5. The broken +-symmetry and the
resulting asymmetric phase separation profiles depend on
the distance € from threshold (see f3 in eq. (35c¢)). It is
an important qualitative feature of the system behavior
above threshold.

As discussed in sect. 5.1, the leading-order CH model
can be derived from an energy potential. For the extended
CH model, eq. (33), the existence of an energy functional
depends on the coefficients of the additional higher-order
contributions: for arbitrary values of (5 and (g, the ex-
tended CH model is non-potential. In the special case
Bs = —f5, however, eq. (33) can be derived from the en-
ergy functional

F_/[—Ch +ﬂ1p2+a2+ﬂ2(5‘rp)2

2 2
a3+ B3 3 g 4 P55
3 1P + 5 P 0;p| dz. (39)
For the ABP model, egs. (6), this condition is fulfilled for
2
A2 = Qé* (40)

Note, however, that the linear stability analysis in sect. 3
introduced a condition for A\: A2 < (v?/24 in eq. (17). This
condition and eq. (40) cannot be fulfilled simultaneously.
Thus, whether the extended CH model can be derived
from an energy functional depends on the exact parame-
ter choices. For the ABP continuum model we investigate
here, there do not seem to be suitable parameter choices.
But note again that our approach can be applied to other
systems showing active phase separation. For these other
models, the coefficients of the extended CH model could
allow for the existence of a suitable potential.

5.3 Comparison of linear stability

As a first step to assess the quality of our derived reduced
equation, eq. (33), we analyze the linear stability of the
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homogeneous basic state p = 0, and compare to the sta-
bility of the full ABP model. As discussed in sect. 3, the
instability condition for the full ABP system is given by
eq. (12). Using vg = v.(1 +¢), R = R.(1 4+ r1) and the
definitions of D, and R, as given by egs. (14) and (16),

we find
1 1 ;
=3 (149r) — é\/l—&— 18r1 + 9r%
9 81 891
~ 3 — ?r% + 77“‘11 +0(r}) (41)

for the onset of phase separation. Thus, in the symmet-
ric case ;1 = 0 the threshold is e, = 0. For r; # 0 the
onset of phase separation is shifted to larger values of ¢.
Larger particle velocities vy are thus required to trigger
the demixing process.

Similarly, we can analyze the linear stability of both
the leading-order CH equation, eq. (36), and its higher-
order extension, eq. (33). The threshold calculated from
the linear parts of eq. (36) is given by

9 2
Eclead = 77~

) (42)

Comparing this to €. in eq. (41), we find that the shift-
ing of the threshold due to finite r; is represented up to
leading order of r1. Assuming 1 > 0, € 1ead significantly
overestimates the real threshold .. For the extended CH
equation, eq. (33), we find the threshold

. _ 97‘%
c,ext — 2(1 _’_971%)
9 81 729
~ 57‘% — ?r‘;’ + 77‘% +0(r?). (43)

This is in agreement with the threshold for the full model,
eq. (41), up to the order O(r3). The threshold is therefore
only slightly underestimated compared to the full model.
Keeping these different threshold values in mind is partic-
ularly important for the numerical comparison of the ABP
model, egs. (1) and (3), to its two reductions, eqgs. (36)
and (33) in sect. 6. All three equations only provide the
exact same threshold, namely . = 0, in the special case
r = 0.

The linear stability analysis also provides the disper-
sion relation for the perturbation growth rate o. For the
full model, it is given by eq. (9). Expanding for small per-
turbation wavenumbers ¢, the general form of the growth
rate is

o = Dag® — Dag* + O(¢%). (44)

The coeflicients Dy and Dy are given in egs. (10) and (11),
respectively. Using the definitions introduced in the course
of the perturbative expansion, D> can be rewritten to

1 9 9 1
Dy = —v2e — —02r? 4 —0Prie — 51}352.

4
8 16 8 (45)

Good agreement between the full ABP model and its re-
duction to eq. (33) can only be expected if the reduced
equations are able to reproduce the basic form of this
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growth rate. The linear part of eq. (33) leads to a growth
rate of the form

o(q) = Ga2g® — Gag’, (46)
where
1 9 9
Gy = gvfé - Evfr% + gvfns, (47)
1 4 3 2 2 3 2 2
— ot 2 I . 4
Ga= 556 ~3¢7 U=+ ¢ U (48)

G5 is in agreement with Do of the full model equations up
to linear order in €. Dy only includes an additional term
of order O(£2): Dy = G — v2e? /2. G4 exactly reduces to
D, in the case ¢ = r; = 0. In the limit € — 0 but r; # 0,
the two terms agree up to linear order in 7. As discussed
in sect. 3, the coefficient Dy has to be positive for the
instability condition to hold and to ensure damping of
short wavelength perturbations. The same applies to the
coefficient G4. The condition G4 > 0 is fulfilled if

(49)

Note the similarity to the previously derived condition in
eq. (17).

5.4 Significance of nonlinear corrections

In this section, we discuss the importance of the higher-
order nonlinearities compared to the leading-order terms
of the classic Cahn-Hilliard model in eq. (36). For this
comparison we focus on the case with +-symmetry at
leading order, ¢.e. 1 = 0. We rescale time, space and
amplitude in eq. (33) via t' = 79e%t, 2’ = &\/er and
P = pop/+/E, respectively, where

4¢v?

T0 = 7’03@_ — 24)\2 s (503)
32¢
2 _
gO_UzC_24)\27 (5Ob)
2V6

This allows us to rewrite eq. (33) in the following form:
Qp = =02 [p) + 020 — p”]
—\/e0% {71/)’2 720207 + 793 (0w )|, (51)

where
36
M= 9 (52&)
862
Y2 = W , (52b)
V6(302¢ — 40\2
vy = (3v.¢ ) (52¢)

2(02C — 2402)
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The first line in eq. (51) is the parameter-free, +p-
symmetric version of the Cahn-Hilliard model as de-
scribed, e.g., in refs. [34,35]. The additional three con-
tributions are the first higher-order corrections as gained
above via a systematic reduction of the continuum model
for MIPS. These three corrections are proportional to /&
and thus vanish when approaching the onset of active
phase separation (¢ — 0). In the limit £ — 0 the classic CH
model thus fully describes the non-equilibrium mean-field
dynamics of MIPS. With increasing ¢, the higher-order
contributions become more and more important.

Note that eq. (51) was derived under the assumption
r1 = 0. As discussed in sect. 5.1, the CH model at leading
order is £p-symmetric in this case. The three higher-order
contributions in eq. (51), however, break the +p-symmetry
with increasing e. Moreover, in the case of the ABP model
we analyze here, the coefficient v; does not depend on any
of the system parameters at all. Thus, there is in fact no
special case in which this contribution can be neglected.

The coefficients of the other two higher-order nonlin-
earities, 72 and -y3, are functions of the system parameters,
especially of \. Typical parameter choices for the contin-
uum model in eq. (6) are such that v, and ¢ are of order
O(1). Accordingly, A has to be small to fulfill the condi-
tion in eq. (17). Therefore, an expansion of vo and 3 in
terms of small A is appropriate:

Y

Y2 =

vi¢

Y3 =71+ 272 + O(\Y).

A+ O, (53)

(54)

In the limit A = 0 the coefficient 7, vanishes, i.e. v5 = 0,
and ~y3 simplifies to 3 = ;. For finite A, 5 also becomes
finite. But since according to eq. (53) vz is proportional to
A2, it will be much smaller than v for small A. For MIPS
as described by the mean-field model in egs. (6), the im-
pact of the nonlinearity oc 92(9,p)? thus seems to over-
shadow the term oc 92p?. This predominance of 3, how-
ever, is specific to MIPS as described by the ABP model.
For other examples of active phase separation such as cell
polarization or chemotactically communicating cells, we
expect that the nonlinearities described by 1 or 2 can
be of similar order as 3. As mentioned earlier, for both ex-
amples of active phase separation we also expect an addi-
tional higher-order correction oc 92p* which is completely
absent in the ABP model.

6 Numerical comparison

In this section, we compare numerical simulations of the
full ABP model, egs. (6), to both the leading-order CH
equation, eq. (36), as well as the extended version includ-
ing higher nonlinearities, eq. (33). On the one hand, this
allows us to assess the quality and validity range of our re-
duction scheme in general. On the other hand, comparing
the leading-order and the extended CH model also gives
us information about the importance of higher-order non-
linearities in MIPS.
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Fig. 2. Comparison of the steady-state profiles in the “sym-
metric” case (p = p«) at € = 0.01: full ABP model (shaded
grey) vs. leading-order CH equation (dashed line) vs. extended
CH equation (dotted line). Other parameters: { = v. = 1.

All simulations were performed using a spectral
method with a semi-implicit Euler time step. The system
size was L = 100 with periodic boundary conditions and
N = 256 Fourier modes were used.

We first analyze the special case ry = 0, i.e. p =
p«. This is the case in which the f-symmetry-breaking
quadratic nonlinearity vanishes at leading order. We
choose v, = 1 and ( = 1 throughout all of the follow-
ing simulation results. As discussed in sect. 5.4, A has to
be small and is thus not expected to significantly influence
the results. We thus set A = 0.

Figure 2 shows the steady-state profiles for the three
models (full ABP model, leading-order CH and extended
CH) at € = 0.01. The profiles are typical for phase sepa-
ration solutions: We find two distinct regions where the
mean density is either increased (p > 0) or decreased
(p < 0). In each of the regions p is essentially spatially
constant, creating two distinct density plateaus pmin and
Pmax- Lhe two plateaus are smoothly connected at their
boundary, resembling a hyperbolic tangent function. Note
that the mean density in the system is conserved. Thus,
the areas under the positive and negative parts of p(z) are
equal.

The solution for the full system is represented as the
outline of the grey shaded area. We first compare this
to the leading-order CH equation (dashed line). As pre-
dicted, the leading-order CH equation results in a sym-
metric phase separation profile, i.e. the two plateaus have
the same absolute value: pmax = |pmin|- This does not ac-
curately represent the solution for the full system, which
is already slightly asymmetric. However, the leading-order
CH equation gives a good approximation of the plateau
values with a deviation of less than 7% from the real value.
Extending the CH equation to the next higher order (dot-
ted line in fig. 2), we can almost perfectly reproduce the
profile for the full ABP model. It accurately represents the
asymmetry of the phase separation profile. The deviation
in the plateau values shrinks to less than 2%.
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Fig. 3. Comparison of plateau values |pmin| and pmax as a
function of the control parameter ¢ for p = ps (i.e., 11 = 0): full
ABP model (solid line) vs. leading-order CH equation (dashed
line) vs. extended CH equation (dotted line).

Figure 3 shows the absolute plateau values |pmin| and
Pmax as a function of € —the distance from the phase
separation onset. The bifurcation to active phase separa-
tion is supercritical in this case: starting at e, = 0, the
plateau values increase monotonically. Considering only
the leading-order approximation (dashed line), we again
find the system to be symmetric for all values of €. In
reality, the full system (solid lines) becomes more and
more asymmetric for increasing €. This is very accurately
represented by the higher-order approximation (dotted
lines). It only starts to deviate from the full model fur-
ther from threshold. Importantly though, close to the on-
set of mobility-induced phase separation, as € becomes
smaller, the full model becomes more and more symmetric.
All three models then are in increasingly good agreement.
This again underlines the fact that the classic CH model
is the simplest generic model for active phase separation.
All active phase separation phenomena of this type can
be reduced to the CH model close to onset. Higher-order
nonlinearities only come into play further from threshold.

If we allow 1 # 0, phase separation is asymmetric even
at leading order. This can be seen in fig. 4 which shows the
steady-state profiles for the full ABP model, leading-order
CH and extended CH at € = 0.02. Here, the leading-order
CH equation (dashed line) results in an asymmetric solu-
tion. However, the predicted plateau values deviate about
20% from the full system (outlines of shaded grey region).
The extended CH model, meanwhile, is still able to accu-
rately predict the full system solution with a deviation of
less than 6%.

Looking at the plateau values as a function of € (see
fig. 5) solidifies this impression: the leading-order CH
model gives a good qualitative representation of the full
system. Going to the extended CH model provides very
good quantitative agreement with the full model even for
larger values of €. As discussed earlier in sect. 5.3, the
onset of phase separation (i.e. the e-value at which the
homogeneous solution |pmin| = pmax = 0 becomes unsta-
ble) is shifted to finite values of ¢ in the case r1 # 0.
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Fig. 4. Comparison of the steady-state profiles for p = 0.8 at
e = 0.02: full ABP model (shaded grey) vs. leading-order CH
equation (dashed line) vs. extended CH equation (dotted line).
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Fig. 5. Comparison of plateau values |pmin| and pmax as a func-
tion of the control parameter ¢ for p = 0.8 (or 7y = 1/15): full
ABP model (solid line) vs. leading-order CH equation (dashed
line) vs. extended CH equation (dotted line).

For the given system parameters, the threshold for the
full system is shifted to . =~ 0.013. The leading-order CH
model significantly overestimates this threshold, shifting
to €. =~ 0.02. The extended CH model only very slightly
underestimates the real threshold. Note that above this
threshold, the plateau values immediately jump to finite
values. Thus, the transition from the homogeneous to the
phase-separated state is no longer smooth. On the other
hand, fig. 5 also shows that the branches of finite density
plateau values extend below the thresholds noted above.
This creates a range of bistability —a range of control
parameter values in which both the homogeneous and
the phase-separated state are stable simultaneously. All
of these characteristics indicate that bifurcation from the
homogeneous state to active phase separation is now sub-
critical.
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7 Conclusion

Starting from the mean-field model for active Brownian
particles in refs. [23,30], we applied a perturbative ap-
proach introduced in ref. [16]. We showed that the non-
equilibrium phenomenon motility-induced phase separa-
tion (MIPS) is described near its onset at leading order
by the Cahn-Hilliard (CH) model [34,35,38,39]. This is in
agreement with a recent observation that the CH model
describes the system-spanning behavior of a number of
very different demixing phenomena in active and living
systems far from thermal equilibrium [16]. The results
in this work show that MIPS also belongs to this class
of active phase separation. Thus, even though the CH
model was originally introduced to describe phase sep-
aration of binary mixtures in thermal equilibrium, our
analysis shows that it is also the generic leading-order de-
scription of active phase separation —a non-equilibrium
phenomenon.

We also extended the perturbative scheme introduced
in ref. [16] beyond the CH model to next higher-order
nonlinearities. In this work, we used the continuum ABP
model as a framework to establish this concept. The ex-
tension of our nonlinear expansion, however, can also be
applied to other systems showing active phase separation
(with a conserved order parameter field) such as cell po-
larization and clustering of chemotactically communicat-
ing cells. Having a 4+-symmetric CH model at the onset
of active phase separation, we find that in general four
nonlinear terms come into play at the next higher or-
der. Two of them have the same form as contributions
suggested in previous phenomenological extensions of the
CH model for MIPS [4,31,32,36]. These phenomenological
models are thus related to the extended CH model that
our perturbative scheme provides. Our approach, however,
is non-phenomenological: it establishes a direct mathe-
matical link between the coefficents of the extended CH
model and the full mean-field description of ABPs (or any
other basic model of active phase separation in general). It
shows in addition, that the coefficients of the additional
contributions in the extended CH model are in general
not independent of each other, as often assumed in phe-
nomenological approaches. Furthermore, these coefficents
are system-specific and cannot be removed by rescaling
as in the case of the leading-order CH model. It is also
important to reiterate that these nonlinear extensions be-
come negligible when approaching the onset of MIPS or
other examples of active phase separation. Therefore, the
leading-order CH model already covers the universal be-
havior of MIPS (as a non-equilibrium phenomenon) near
its onset. Higher-order nonlinearities mainly improve ac-
curacy and become relevant further from threshold. They
should thus not be seen as the key to expand the CH
model to non-equilibrium systems.

Within the systematics of the pattern formation the-
ory, the work we introduced in ref. [16] and extended here
is a weakly nonlinear analysis and reduction method for
active phase separation described by conserved order pa-
rameter fields. It can be seen as a yet unexplored counter-
part to the weakly nonlinear analysis of (non-oscillatory)
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spatially periodic patterns with unconserved order param-
eter fields and its numerous applications [29, 37,40-42].

Our generic approach for active phase separation opens
up several pathways for further system-spanning investi-
gations. Coarsening dynamics in large systems, and es-
pecially the role of higher nonlinearities in this context,
have already been of particular interest to the scientific
community (see, e.g., ref. [32] for MIPS). Other active
phase separation phenomena such as cell polarization, on
the other hand, take place in very small systems where
coarsening plays a less important role [43]. For these sys-
tems, spatial constraints may significantly influence the
behavior instead. Studies on spatially periodic patterns
have already shown that confinement may trigger various
interesting generic effects (see e.g. [44]) and even induce
patterns in small systems which are unstable in larger sys-
tems (see [45] and references therein). On the basis of our
results, it will be interesting to investigate finite size ef-
fects on non-equilibrium phase transitions with conserva-
tion constraints.
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