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Oscillating non-progressing flows induce directed cell motion
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We present a deformation-dependent propulsion phenomenon for soft particles such as
cells in microchannels. It is based on a broken time-reversal symmetry generated by a fast
forward and a slow backward motion of a fluid which does not progress on average. In
both sections, soft particles deform differently and thus progress relatively to the liquid.
We demonstrate this by using Lattice-Boltzmann simulations of ubiquitous red blood cells
in microchannels, as well as simulations for capsules and minimal-soft-tissue models in
unbounded Poiseuille flows. The propulsion of the soft particles depends besides the oscil-
lation asymmetry on their size, deformation type, and elasticity. This is also demonstrated
by analytical calculations for a minimal model. Our findings may stimulate a rethinking
of particle sorting methods. For example, healthy and malignant cells often differ in their
elasticity. With the proposed method, several cell types with different deformabilities can
be separated simultaneously without labeling or obstacles in a microfluidic device.

DOI: 10.1103/PhysRevFluids.7.L032201

The massive growth of the field of microfluidics is due to a number of recent advances, including
methods for focusing and sorting microparticles, such as healthy and cancerous cells [1–12]. In
particular, label-free hydrodynamic separation methods are finding increasing applications due to
their robustness. Here, we report on a microfluidic transport process based on symmetry breaking
and appropriate for separation of particles of different elasticities, such as healthy from diseased
cells.

The change in deformability of individual cells has proven to be a useful indicator for the detec-
tion of diseases such as cancer [13,14], blood diseases (sickle cell anemia) [15], inflammation [16],
malaria [17], and diabetes [18]. In particular, the stiffness of individual cancer cells is drastically
reduced compared to normal tissue of the same origin. Furthermore, decreasing single cell stiffness
correlates with increasing invasiveness or metastatic potential. From this perspective, there is a great
need for methods to safely separate cells of different stiffnesses.

The widely used microfluidic particle separation methods such as filtration [19], inertial mi-
crofluidics, including curved microchannels [9,20], and deterministic lateral displacement (DLD)
[21–24] are successful methods especially for separating solid particles of different sizes. For these
classical separation techniques the deformability of particles is an additional degree of freedom and
ongoing research is addressing the associated effects [24,25].

In contrast, several transport phenomena in low-Reynolds-number microfluidics only occur for
soft particles. This is the lift force of vesicles and capsules in linear shear flows and Poiseuille
flows near symmetry-breaking walls [26–29]. In Poiseuille flows, the shear rate changes across
deformable particles and breaks their forward-backward symmetry, so that droplets [30,31], bubbles,
and capsules [32–34] even in unconfined Poiseuille flows exhibit cross-stream migration (CSM)
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toward the center of a parabolic flow profile. The CSM direction is reversed by a sufficiently strong
viscosity contrast between the interior of cells and the surrounding fluid [35] or in vertical channels
for non-buoyant capsules by gravitational effects [36]. For modulated microchannels, a secondary
attractor occurs aside from the channel center for soft particles such as red blood cells (RBCs) and
capsules [37]. These examples for CSM are, however, not appropriate to separate particles with
respect to a continuous variation of deformability.

Time-periodic flows in microchannels have increasingly attracted attention [38–48]. Among
others, they are utilized in combination with arrays of asymmetric posts in microchannels to realize
deterministic ratchets [41] or to reduce clogging in DLD arrays by particles [42,43].

We complement time-periodic flows with a crucial symmetry breaking. This is achieved by
different forward and backward velocities of a fluid in the microchannel that does not move on
average. We study four types of soft particles that are deformed and entrained differently during
the two sections of the low-Reynolds-number flow. As a consequence, deformable particles are
propelled relative to the fluid. This net transport increases with asymmetry of the flow oscillation,
particle deformability, and size. Thus, our propulsion mechanism is suitable for the development of
promising deformation-sensitive cell sorting methods.

The pulsating, undisturbed flow between the plane channel boundaries at y = ±w is given by

u(r, t ) = ũ(t )

(
1 − y2

w2

)
êx, (1)

with the unit vector êx in the x direction. We consider a rectangular time dependence,

ũ(t ) =
{

u1 > 0 for t ∈ [0, T1[,
u2 < 0 for t ∈ [T1, T [, (2)

repeating periodically with the flow period T = T1 + T2. For non-progressing flows the velocities
u1,2 are related to the time intervals T1,2 via

u1T1 + u2T2 = 0 ⇔ A = T2

T1
= −u1

u2
, (3)

with the oscillation asymmetry A. The time-dependent flow amplitude ũ(t ) is sketched in Fig. 1(a)
for A = 2.

We consider four types of soft particles. The minimal model (MM), the two-dimensional (2D)
ring polymer, and the 3D capsule are represented by N beads with radius a. The MM consists of
three beads connected by three Hookean springs with the spring constant k and equilibrium lengths
b and 2b. It is perpendicularly oriented to êx. The ring polymer model is represented by a closed
bead-spring chain with ten beads placed in the x-y (shear) plane. They are connected by Hookean
springs, and a bending potential [49] along the chain provides a ring shape in the quiescent liquid.
The capsule is built of a triangular mesh where the beads are situated at the N = 642 nodes. We
use the Neo-Hookean law [50] for the strain energy with the surface shear-elastic modulus κS and
a bending potential [51] with the bending rigidity κB. A volume potential [52] with the volume
modulus κV penalizes deviations from the reference volume V0 = 4πr3

0/3 of the capsule’s spherical
initial shape with the radius r0. The center of each particle is at rc = ∑N

i=1 ri/N , with bead positions
ri = (xi, yi, zi ). The Stokesean dynamics of the beads is described by

ṙi = u(ri, t ) +
N∑

j=1

H i j · F j . (4)

The forces acting on the beads are F j = −∇ jE (r), with the total particle-specific potential E (r) as
described above and H i j being the mobility matrix [53–55]. Particle-wall interactions are neglected.

The RBC consists of a mesh with the same refinement as the capsule, but has a biconcave initial
shape. The strain energy is modeled by the Skalak law [52,56] with the strain modulus κS and the
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FIG. 1. (a) Time dependence of ũ(t ) with time intervals T1 (forward flow, purple) and T2 (backward
flow, orange) and asymmetry A = T2/T1 = 2. (b) Different RBC shapes during the faster forward and slower
backward flow with u1 > |u2|, different lateral sizes �y1 < �y2, and velocities v1 > |v2|. The resulting net
progress �x (blue) per flow period T = T1 + T2 is the difference between the RBC’s initial position (shaded
snapshot, black bar) and its final position (bold snapshot, orange bar). (c) RBC position xc(t ) along the channel
axis in units of its undeformed diameter d0 obtained by a LBM simulation as a function of time for three
asymmetric flow cycles with A = 4. (d) Local minima of xc(t ) with the propulsion step �x. (e) Simulation
snapshots for the capsule, the ring polymer, and the minimal model during the forward flow section (left) and
the backward flow section (right).

area dilation modulus κα . A bending potential according to Ref. [57] is used and volume conserva-
tion is implemented as for the capsule. The RBC’s initial orientation is chosen so that the rotational
symmetry axis of its initial shape is parallel to the flow direction. For simulations of the RBC we use
the Lattice-Boltzmann method (LBM) with the Bhatnagar-Gross-Krook collision operator and the
immersed-boundary method [58–60]. The LBM inherently accounts for hydrodynamic interactions
(HIs) of particles with the channel boundaries. For more information on simulation methods and
particle models, see Ref. [61]. If not stated otherwise, the simulation parameters in Ref. [62] are
used.

Figure 1(b) shows simulation snapshots of the RBC with typical croissantlike shapes [63] during
the faster forward flow and the slower backward flow. The two different deformations of the RBC
are characterized by the vertical extensions �y1,2. This leads to different particle velocities along the
channel axis, v1 > 0 and v2 < 0, with v1 �= |v2|. Despite vanishing mean flow, the RBC is propelled
after each flow cycle by a step �x > 0. The RBC’s x position is shown as a function of time in a
pulsatile flow with A = 4 in Fig. 1(c). The particle follows the flow alternately in the positive x
direction and the negative x direction, with the nonzero propulsive step relative to the liquid shown
in Fig. 1(d). Figure 1(e) shows the corresponding snapshots for the capsule, the ring polymer, and
the MM.
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The flow-induced deformation of a particle depends essentially on the curvature of the flow
profile in Eq. (1), the particle size, the liquid viscosity, and the particle elasticity. These dependencies
can be summarized by the dimensionless capillary number

C = 2|ũ|r0tR
w2

, (5)

with C = C1,2 in the two flow sections T1,2. Here, 2|ũ|/w2 = |∂2
y ux(y, t )| is the curvature of a plane

Poiseuille flow and 2r0 = d0 is the initial diameter of the particle. For the MM, d0 = 2b holds and
for the RBC d0 refers to the large diameter of its initial biconcave shape. The particle’s relaxation
time is given by tR = ζ/k for the MM and the ring polymer and by tR = ηr0/κS for the capsule and
the RBC, where ζ = 6πηa is the Stokes friction and η is the fluid viscosity. The particle deformation
depends also on hydrodynamic particle-wall interactions, but they provide only corrections to the
leading-order bulk effect as shown below for the RBC.

The RBC and the MM in Fig. 1 adapt a curved shape that is induced by the y dependence of
ux(y, t ) and the associated frictional forces acting on the particle. Therefore, as the capillary number
C increases, the RBC and the MM become more curved, which in turn leads to a decrease in the
vertical extension, i.e., �y1 < �y2 < d0. The particle velocity v results from an averaging of the
local incident flow velocity over the particle surface. Accordingly, an increasing C results in a de-
creasing averaging length �y and, therefore, in an increasing ratio v/ũ. In other words, the particle’s
lag behind with respect to the incident flow at its center is smaller in the forward section than in the
backward section. Thus, v1/ũ1 > |v2/ũ2| and the propulsion step �x = v1T1 + v2T2 is positive.

In the limit of small deformations, the quantities �x and �y can be determined analytically in
terms of the particle properties for the MM. The velocities v1,2 determine the propulsion velocity
according to

vp = �x

T
= v1 + Av2

A + 1
. (6)

With the explicit expressions for v1 and v2 (see Supplemental Material [61]), the propulsion velocity
is given by

vp ≈ b

3tR
B1

W (A)A
1
3 − W (1)

A + 1
, (7)

with W (X ) =
√

1 + 8X
2
3 (4X

2
3 + B1)−1 and B1,2 = (2C2

1,2)1/3. The vertical extension �y of the MM
decreases with increasing C at leading order in the following manner:

�y1,2 ≈ 2b

[
1 − B1,2

12
+ O

(
B2

1,2

)]
. (8)

For a symmetric flow pulsation one has ũ1 = −ũ2 and thus C1 = C2. According to Eq. (8), the
flow-induced deformation in the two flow sections is identical with �y1 = �y2. The shape is only
mirrored after the change from the forward flow to the backward flow. That is, vp vanishes for
A = 1 according to Eq. (7). For A �= 1,this mirror symmetry is broken, as shown in Fig. 1(e), and vp

becomes finite. As the asymmetry A > 1 increases, the difference in vertical extensions, �y2 − �y1,
and vp also increase. Moreover, the propulsive step increases with the capillary number C1 and the
particle size given by b, but decreases with tR. If one changes the sign of ũ → −ũ, the propulsive
direction (sign of �x) also changes.

Whereas the vertical extension of the MM and the RBC decreases with ũ, the lateral size of the
capsule and the ring polymer increases with C. In Fig. 2(a) we show the evolution of the deformation
of a capsule after a sudden onset of a stationary parabolic flow for the two values C′ = 0.98 and
C′′ = 0.49. After a time of the order of tR, the capsule’s deformation reaches a stationary, bulletlike
shape with a vertical extension larger than that in its undeformed state, i.e., �y′ > �y′′ > d0. The
corresponding snapshots are shown in Fig. 2(b). Similar deformations are found for stiffer cells
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(a)

(b)

(c)

FIG. 2. Shape-dependent entrainment of capsules in stationary Poiseuille flow. (a) Time evolution of the
capsule’s lateral extension �y after the onset of the flow at t = 0 for the two capillary numbers C′ = 0.98 and
C′′ = 0.49. (b) Simulation snapshots of the capsule after the stationary shape is reached. (c) Plateau value of the
lateral size [see (a)] (top) and relative velocity v/ũ (bottom) as a function of the capillary number. Increasing
�y results in decreasing v/ũ.

[64,65]. This increase in lateral size is in contrast to the RBC and in agreement with previous
simulation results on capsules [66].

Note that any finite-sized particle in a parabolic flow profile lags behind ũ; i.e., v/ũ < 1 always
holds. Using the same reasoning as above, an increasing vertical extension �y for capsules leads
to a decreasing ratio v/ũ, as shown in Fig. 2(c). In the asymmetrically oscillating flow as given in
Eq. (1), this results in v1/ũ1 < |v2/ũ2| and a negative propulsion step for the capsule and the ring
polymer.

The determination of the evolution of a soft particle’s deformation such as for the capsule in
Fig. 2(a) gives the lower bounds of T1,2 for a pulsating flow as well as the sign of �x. T1,2 should
always be chosen significantly larger than tR of a soft particle in order to obtain a reasonable
difference between the traveled distances per flow section, v1T1 and |v2|T2. Since �x ∝ T according
to Eq. (6), the total net progress after n oscillation cycles will be the same if T is increased and n is
decreased proportionally, provided that tR 	 T1,2 applies.

The different sign and the dependence of �x on C1 is shown in Fig. 3 for three different particles.
C1 is changed by the flow amplitude ũ in T1,2 with C2 = C1/A and A = 2. For all particles, the
magnitude |�x| increases with growing C1. The analytical result according to Eq. (7) approximates
the numerical results for the MM in Fig. 3 quite well, especially for small C1.

|�x| increases monotonically with A for all types of soft particles, as shown in Fig. 4. Starting
from A = 1, we increase the flow asymmetry by lengthening T2 and decreasing u2 accordingly, while
keeping T1 and u1 fixed. The analytical approximation [see Eq. (7)] and numerical calculations for
the MM also agree well here.

So far our results for simulations in unbounded flows show that the net propulsion of soft particles
in asymmetrically oscillating flows originates from a leading bulk contribution as the particle-wall
HI has been neglected. This is a good approximation for the case of a small confinement parameter
χ = d0/(2w). In order to address the influence of the walls, we turn towards LBM simulations
in the following. In Fig. 5 the propulsion step per flow period is shown as a function of the
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FIG. 3. Propulsion step �x as a function of the capillary number of the forward flow section, C1, for
different particles in unbounded flows: Capsule (blue long-dashed line), ring polymer (red short-dashed line),
and minimal model (analytical: orange solid line; simulation: black dashed line). �x is given in units of the
respective initial particle diameters d0.

FIG. 4. Propulsion step �x in units of the initial particle diameter d0 as a function of the asymmetry of the
oscillating flow, A, for the same particles as in Fig. 3.

FIG. 5. Propulsion step �x of a red blood cell in units of its initial diameter d0 as function of the capillary
number C1 in the forward section of the asymmetrically oscillating flow. The results are obtained by Lattice-
Boltzmann simulations (bounded flows) with a flow asymmetry A = 4 for two confinements χ = 0.38 (solid
line) and χ = 0.5 (dashed line).
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capillary number for a RBC in bounded Poiseuille flow with A = 4. The results for two different,
experimentally common values of χ = 0.5 and χ = 0.38 are displayed. For the determination of
�x, we take the average value covering the range of three flow periods. For small C1, �x becomes
negative at first, similar to capsules. However, the propulsion step changes sign at intermediate
values of C1 and then continues to grow monotonically with C1. Nevertheless, the magnitude |�x| is
larger for χ = 0.38 than for χ = 0.5 throughout the majority of values of the capillary number
in Fig. 5. Therefore we conclude that the propulsive effect is reduced, but only quantitatively
changed by the particle-wall HI. For a multiparticle simulation we refer to Ref. [61]. Our results
are confirmed by recent experiments on RBCs in pulsating flows [67].

In this work, we identified and described a propulsion mechanism for soft particles in mi-
crochannels. In contrast to so-called microfluidic deterministic ratchets [41–43] it does not rely
on asymmetric posts in microchannels for directed particle motion in pulsating flows. Rather,
time-reversal symmetry is broken by using different forward and backward velocities of an on
average non-progressing liquid. Since soft particles are deformed and entrained differently in the
two flow sections, they are selectively propelled according to their deformability, whereas rigid
particles do not move on average.

The propulsion direction of a soft particle in pulsating microflows depends on its deformation
type. For example, the lateral extension of an originally biconcave RBC becomes smaller in a
Poiseuille flow. In contrast, the vertical extension increases for capsules or HeLa cells in Ref. [64].
The advance step has the opposite sign but particles of different elasticity are separated in both
cases.

The presented generic propulsion phenomenon is independent on specific elastic properties
of soft particles. Another great advantage of the method is that even cells with small elasticity
differences can be separated by increasing the number of forward/reverse flow cycles. Furthermore,
the oscillating fluid motion allows an efficient particle separation even in short channels compared
to other methods. Since the suggested particle propulsion mechanism operates in the range of small
Reynolds numbers (and thus small flow amplitudes), even larger bioparticles such as circulating
tumor cells can be sorted at physiological shear stresses without the cells being damaged or showing
a flow-induced response.

Our robust and label-free method fulfills a great need for separating cells with different me-
chanical properties, e.g., malignant cells and their healthy counterparts. Assuming RBCs of size
d0 = 8 μm with a shear modulus κS of 7 μNm−1 for healthy cells and 10 μNm−1 for RBCs with
the sickle cell mutation [15,68], we can approximate their different net progress. After 250 s of
oscillation with a flow amplitude of u1 = 4.8 mm s−1 and a flow asymmetry of 4 in a microchannel
with height 2w = 21 μm, healthy RBCs will have moved 3.6 mm, malignant cells only by 1.3 mm
on average.

We gratefully acknowledge discussions with P.-Y. Gires, S.W. Krauss, and M. Weiss. For support,
W.S. thanks the DAAD, W.S. and W.Z. thank the Elite Study Program Biological Physics, and all
the authors thank the French-German University (Grant No. CFDA-Q1-14, Living fluids).
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